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ABSTRACT

This dissertation extends the L1 adaptive control theory to sampled-data (SD) framework.

Multi-input multi-output non-square (underactuated) systems are considered with different sam-

pling rates for inputs and outputs. The sampled-data framework allows to address non-minimum

phase systems, subject to less restrictive assumptions as compared to continuous-time framework.

It is shown that the closed-loop system can recover the response of a continuous-time reference

system as the sampling time of the SD controller tends to zero. In this thesis, the L1 sampled-data

adaptive controller is integrated with the Simplex fault-tolerant architecture for resilient control of

cyber-physical systems (CPSs). Detection and mitigation of zero-dynamics attacks are addressed

and validated in flight tests of a quadrotor in Intelligent Robotics Laboratory of UIUC. The exper-

iments show that the multirate L1 controller can effectively detect stealthy zero-dynamics attacks

and recover the stability of the perturbed system, where the single-rate conventional L1 adaptive

controller fails.

From the perspective of applications, the dissertation considers navigation and control of au-

tonomous vehicles and proposes a two-loop framework, in which the high-level reference commands

are limited by a saturation function, while the low-level controller tracks the reference by compen-

sating for disturbances and uncertainties. A class of nested, uncertain, multi-input multi-output

(MIMO) systems subject to reference command saturation, possibly with non-minimum phase zeros,

is considered. Robust stability and performance of the overall closed-loop system with command

saturation and multirate L1 adaptive controller are analyzed.

Finally, a systematic analysis and synthesis method is proposed for the optimal design of filters

in the L1 adaptive output-feedback structure, where the lowpass filter is the key to the trade-off

between the performance and robustness of the closed-loop system. An optimization problem

is formulated using the constraint on the input time-delay margin and a cost-function based on

mixed L1/H2-norm performance measure. The optimization problem can be efficiently solved using

linear/quadratic programming.

We note that the framework of this dissertation and the multi-loop problem formulation of

navigation and control of autonomous systems provide suitable synthesis and analysis tools for

autonomous cyber-physical systems (CPSs), including self-driving cars, unmanned aerial vehicles

(UAVs), and industrial/medical robots, to name just a few. The SD design facilitates the im-

plementation of control laws on digital computers in CPSs, where the input/output signals are

available at discrete time instances with different sampling rates.
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CHAPTER 1

Introduction

The last two decades have witnessed significant progress in the development of autonomous

systems, including industrial/medical robots, unmanned aerial vehicles (UAVs), and self-driving

cars, to name just a few. The control structure in these complex systems is often nested with mul-

tiple levels such as mission management, guidance/steering/navigation, and low-level controllers.

These control loops are subject to contingencies and uncertainties due to dynamic environments

where they operate, making it challenging to achieve trustable autonomy. Also, the resilience of

these control systems against cyber and physical failures/attacks has recently become a grave con-

cern. In conventional designs, a human operator is a last-ditch defense for safe and secure control

of autonomous systems under unforeseen situations such as failures and attacks. For instance, an

Airbus 320 passenger plane (US Airways flight 1549) lost both engines minutes after take-off from

the New York City’s LaGuardia airport due to the aircraft striking a flock of birds in 2009 [1]. The

pilot, Captain Sullenberger, safely landed the plane in the nearby Hudson River. This example

highlights the challenges of resilient and secure control designs to achieve the goal of replacing

human operators with fully autonomous equipment.

Autonomous systems are important examples of cyber-physical systems (CPSs), where physical

components and processes are tightly coupled with computational elements via sensors, actuators,

and communication links. These CPSs often rely on control algorithms that run on digital com-

puters for their operations, safety monitoring, performance, etc. Traditionally, there have been

two separate approaches to assure the safety of controlled CPSs, which have been developed in-

dependently of each other. First, a significant amount of work in the field of control theory has

been dedicated to developing robust, adaptive, and fault-tolerant control algorithms. The second

approach utilities software assurance technologies to safeguard the real-time operation of CPSs. In

most cases, these methods suffer from inaccurate models, unrealistic assumptions, and overlooked

vulnerabilities due to the lack of comprehensive analysis. For example, many control design tech-

niques cannot deal with software failures. On the other hand, software assurance methods require

an accurate model of the physical process and correct measurement of the system states, which

may not be available due to uncertainties in physical plants or sensor/actuator failures. In the

following, an overview of the control designs for resilient CPSs is presented.

1.1. Overview of Control Designs for Resilient Cyber-Physical Systems

In autonomous CPSs, uncertainties and failures originate from both cyber and physical do-

mains. Malicious attacks can fail computational elements. In the last several years, many cyber

attack incidents have been reported against control systems of CPSs [2]. Consequently, numerous

studies have been dedicated to provide security guarantees for resilient CPSs and reveal vulner-
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abilities of critical infrastructures against such attacks. For example, cyber infiltration in the

supervisory control and data acquisition (SCADA) systems in power grids have been investigated

in [3–6], to name a few. In [7], the firmware in the engine control module is maliciously hacked,

while the car is running. Studies in [8–10] show that communication channels, global positioning

system (GPS), and on-board autopilot in UAVs are vulnerable to attacks. In 2011, the Predator

and Reaper fleets of the U.S. military were infected by a computer virus [11]. Stuxnet worm is

another notable example of cyber attacks against CPSs [12]. The aviation industry has also faced

similar challenges. For instance, it was revealed that one could use the entertainment system in

early Boeing 787 to take over the control of the aircraft [13].

Due to the complexity of software in modern systems, the verification for possible faults or

cyber attack infiltrations becomes hard or even impossible. Simplex architecture is recognized as a

useful approach for protection of CPSs against various software failures [14–18]. The main element

of Simplex is the realization of a secure computing base. Simplex software architecture runs two

separate control environments that provide different levels of functionalities and protection: (i) high

performance control (HPC) environment runs software components during the normal operation

of the system, which includes advanced controls and supplementary software, such as networking

applications that are more susceptible to malicious attacks; (ii) high assurance control (HAC)

environment runs a minimal set of software components that are critically required to control the

physical system even when the normal environment is wholly taken over by an adversary and does

not function. A security and safety monitoring module in the HAC environment monitors the

physical state of the system and also implements a set of security monitors to detect potential

security violations. This architecture is achieved by leveraging modern multicore processors and

virtualization technology [18].

For detection and mitigation of malicious activities, Simplex relies on true system models,

stored profiles, and accurate measurements, which are not always available in real-world systems.

Physical components in CPSs are often subject to different uncertainties, such as change of param-

eters, physical damage, exogenous disturbances, measurement errors, such as noise and delay, etc.

Also, deliberate physical attacks against CPSs, including sensor/actuator attacks and disruption of

communication links, are quite conceivable. Coordinated cyber and physical attacks (CCPAs) are

on the top alert list of Homeland Security Agency [19]. Simplex does not address either the prob-

lem of robust design for HAC or possible false negative/positive alarms that often arise in anomaly

detection. In the field of cybersecurity and software verification, CPSs with uncertain physical

plants have not been investigated rigorously. Traditionally, the control community has dealt with

uncertain systems by developing robust, adaptive, and fault-tolerant control techniques. Robust

control approaches have been developed for systems with uncertainties [20–22]. Adaptive control

schemes can deal with large variation of system parameters [23–25]. Also, fault detection and isola-

tion (FDI) methods have been developed for monitoring safety-critical systems and addressing the

control problems under physical faults [26, 27]. For example, a fault detection filter is used in [28]
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for detecting aircraft sensor and actuator fails. The multiple model adaptive estimation (MMAE)

method has been applied to many FDI problems, including the aircraft flight control [29, 30] and

inertial navigation systems subject to interference/jamming and spoofing [31]. In [32], an FDI

technique using a fuzzy-tuned interacting multiple-model (IMM) filter for flight control systems

is proposed. Following the residual detection, decision making tools such as cumulative sum al-

gorithm [33], sequential probability ratio test [34], generalized likelihood ratio test [35], and local

approach [36] are used. Finally, FDI is followed by the controller reconfiguration methods such as

multiple-model techniques [37,38] and adaptive control schemes [39,40].

In addition to software failures and uncertainties in physical plants, as described above, inad-

equate models for analysis of CPSs present other challenges yet to be addressed. In autonomous

CPSs, controllers are implemented on computers equipped with the sample and hold mechanisms

for sending/receiving a physical system’s input/output data. The sampled-data (SD) nature of

controller implementation generates additional vulnerability to stealthy attacks due to the sam-

pling zeros (so-called zero-dynamics attack) [41, 42], which remains unreported in CPS modeling

and analysis. If a closed-loop system possesses an unstable zero, an (ultimately) unbounded actu-

ator (or sensor) attack may not be observed by the monitoring data, i.e., the sampled outputs and

the command signals. From a control theory perspective, stealthy zero-dynamics attacks are hard

to detect and mitigate [42], rendering them as a benchmark problem to tackle for CPS security.

Therefore, a sampled-data framework for development and implementation of control algorithms

becomes necessary to capture the real underlying structure of CPSs and defend against cyber and

physical attacks.

1.2. L1 Adaptive Sampled-Data Control Design

Towards the goal of bridging the gap between control theory and software assurance techniques,

L1Simplex in [43] develops a unified framework that integrates the robust control design with

Simplex fault-tolerant architecture [15, 44]. This approach is based on co-design and analysis of

co-stability in cyber and physical components of the system to ensure the security of the overall

system [43,45]. In L1Simplex approach, L1 adaptive control is used as the high assurance controller.

L1 adaptive control is known as a robust technique, with quantifiable performance bounds and

robustness margins [46–48]. The controller compensates for uncertainties and disturbances within

the bandwidth of a lowpass filter. The performance of L1 adaptive control has been verified on

manned and unmanned aerial vehicles [49–53], as well as several high-fidelity simulation models

[54–58]. This thesis extends L1 adaptive control theory to the SD framework for improved safety and

security of the control implementation in Simplex architecture. Such an approach allows analyzing

continuous-time physical processes that interact with digital controllers through sensors/actuators

and communication links, [59]. As mentioned, the analysis of control systems in the SD framework

has significant cyber-physical security implications. For example, stealthy zero-dynamics attacks

can be implemented in the cyberspace as an additive disturbance to destabilize a feedback system.
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To deal with this problem, a multirate SD scheme can be applied, since it allows the attack to

be detected by ensuring that there are no relevant unstable zeros in the lifted system. As shown

in [42], unbounded zero-dynamics attacks can be detected if the control system is designed using

the dual-rate SD scheme.

Sampled-data control systems are extensively analyzed in the literature [60–64]. The SD control

designs are mainly based on the controller emulation methods, where an SD controller is developed

in two stages: first, a continuous-time controller which satisfies certain performance/robustness

requirements is designed; next, a discrete-time controller is obtained for digital implementation

using an approximation technique [65–67]. The main issue in this approach is the selection of

the sampling period that guarantees the stability of SD system with the emulated controller. In

practice, the sampling period cannot be chosen arbitrarily small due to hardware limitations, such

as the limits in the central processing unit (CPU) and communication links. On the other hand, a

larger sampling period reduces the performance and robustness of digital controllers. The conditions

under which the SD controllers recover the properties of the underlying continuous-time design are

investigated in [65, 68]. The problem of SD output-feedback control is addressed by introducing

high-gain observers to estimate the unmeasured states [69–71]. SD output-feedback control of

systems with uncertainties and disturbances has been addressed in [66,67,72,73] for a class of single-

input single-output (SISO) nonlinear systems under a lower-triangular linear growth condition.

Multirate sampling has been studied extensively in the context of SD control, and relevant analysis

and synthesis results have been reported in [74–76], to mention only a few.

We extend the results in the SD literature by considering a class of uncertain multi-input multi-

output (MIMO) systems with unknown nonlinearities subject to the locally Lipschitz continuity

assumption. In the L1 adaptive SD control design, we maintain the key benefits of a continuous-

time L1 adaptive controller, [46–48, 77]. Conditions are derived, under which the SD closed-loop

system uniformly recovers the underlying continuous-time reference system as the sampling time

tends to zero. The related preliminary results can be found in [78–80]. Recently, L1 adaptive

control has been developed in [81, 82] for under-actuated MIMO systems, where the number of

outputs is greater than or equal to the number of inputs, with minimum-phase transmission zeros.

This thesis extends L1 adaptive SD controllers to under-actuated systems with non-minimum phase

zeros. Also, compared to a continuous-time approach, the proposed SD scheme provides a richer

and more agile architecture for control of CPSs with discrete-continuous hybrid dynamics. We

notice that a few adaptive SD schemes that study SISO non-minimum phase systems are given

in [83–86].

In addition, we extend the results to a multi-level control architecture, where a high-level

controller provides reference commands to a low-level controller. This multi-loop structure is used

for navigation and control of autonomous CPSs in aerospace, robotics, and many other applications

[87–90]. The primary objective of multi-level control architectures is the decoupling between the

outer loop and the inner loop for reliable implementation and to satisfy input/state constraints
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Figure 1.1: Structure of the proposed multil-level multirate SD controller for navigation and control of
autonomous CPSs.

[91,92]. In such systems, it is desirable to limit the commands by saturation functions [91]. Nested

saturation for navigation and control of UAVs has been studied in [93–95]. In [96], it is shown

that a chain of multiple integrators can be globally stabilized using nested saturation functions.

In this thesis, the navigation and control problem for autonomous CPSs is formulated utilizing

the multirate SD scheme. The control structure consists of a high-level (outer-loop) control for

reference command generation and a low-level (inner-loop) adaptive control for reference tracking,

as shown in Figure 1.1. The high-level controller is limited by saturation bounds to maintain the

closed-loop system within an operational safety envelope. The low-level controller is a multirate L1

adaptive controller for tracking the generated reference command by compensating for uncertainties

and disturbances.

The low-level controller compensates for disturbances within the bandwidth of a lowpass filter,

similar to other L1 adaptive controllers. We extend the results by considering the output-feedback

control problem for a class of nested, uncertain, MIMO systems subject to reference command

saturation, with possibly non-minimum phase zeros. The unknown nonlinearities are assumed to

be locally Lipschitz continuous. The multi-rate SD design addresses the digital implementation of

the control law on computers, where the inputs and measurements are available at discrete time

instances with different sampling rates. Also, the multi-level structure of the problem formulation

allows for the design of the feedback loops for the high-level/low-level subsystems with their re-

spective control objectives, while the stability and robustness of the overall nested system subject

to command saturation are taken into account. Figure 1.2 illustrates an application of integrat-

ing the Simplex architecture with the proposed multi-level multirate approach for safe and secure

navigation and control of an autonomous air vehicle in the presence of possible failures/attacks.

1.3. Main Contributions and Thesis Organization

In this thesis, a sampled-data approach is developed for resilient and secure control of au-

tonomous CPSs using the L1 adaptive output-feedback control structure. The main contributions

are: (i) an adaptive SD control is developed for a class of nested, uncertain, MIMO systems sub-

ject to reference command saturation, possibly with non-minimum phase zeros; (ii) the SD control

design facilitates the direct implementation of control laws on digital computers in CPSs, where

the input/output signals are available at discrete time instances with different sampling rates; (iii)

stealthy zero-dynamics attacks become detectable by considering a multi-rate SD scheme for control
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Figure 1.2: Simplex structure can be integrated with the proposed multi-level multirate approach for
navigation and control of autonomous CPSs.

design in secure CPSs; (iv) a navigation and control problem for autonomous CPSs is formulat-

ed and solved using a multi-level multirate SD control structure; (v) a systematic analysis and

synthesis method is proposed for optimal design of filters in the L1 adaptive controllers.

In Chapter 2, we introduce a few preliminary definitions and mathematical notations.

Chapter 3 develops an SD controller for a class of uncertain MIMO systems using the L1

adaptive control architecture. Sufficient conditions for robust stability of the closed-loop system

with SD controller are obtained, where the input/output signals are held constant over a sampling

period. It is shown that the hybrid closed-loop system can recover the performance of a continuous-

time reference system as the sampling time tends to zero. Simulation examples are provided to

validate the theoretical findings.

In Chapter 4, the results on SD control design are extended by considering the output-feedback

problem for a class of nested, uncertain, MIMO systems subject to reference command saturation,

with possibly non-minimum phase zeros. While the controller design with uniform rate is con-

sidered in Chapter 3, a multi-rate SD approach is proposed in Chapter 4. The multirate scheme

allows the zero-dynamics attacks to be detected. We formulate a navigation and control problem

for autonomous systems using a multi-level control structure, in which the high-level reference

commands are limited by a saturation function, while the low-level controller tracks the reference

by compensating for disturbances and uncertainties. Simulation scenarios for a fixed-wing drone

under failures/attacks are provided to validate the theoretical findings.

Chapter 5 aims to extend the L1 adaptive SD control to under-actuated systems with non-

minimum-phase zeros. The multirate L1 adaptive control design of Chapter 4 is limited to square

MIMO systems with the same number of inputs and outputs. The controller is integrated with the

Simplex architecture for detection and mitigation of actuator attacks. The experimental results

from the flight test of a small quadrotor are provided. The experiments show that the multirate

L1 controller can effectively detect a zero-dynamics actuator attack and recover the stability of the

6



perturbed quadrotor.

In Chapter 6, a systematic analysis and synthesis method is proposed for optimal design

of filters in L1 adaptive feedback structure, where the low-pass filter is the key to the trade-

off between performance and robustness of the closed-loop system. An optimization problem is

formulated using a constraint on the input time-delay margin and a cost-function based on mixed

L1/H2-norm performance measure. The problem can be efficiently solved using a linear/quadratic

programming optimization method. In this chapter, an L1 controller with optimized filter is used

for precision trajectory tracking control of a Crazyflie quadrotor in an experimental setup. The

controller demonstrates robustness to input delay, noise, disturbances, and uncertainties in the

modeling of the quadrotor.

Finally, Chapter 7 presents the concluding remarks and the future research directions.
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CHAPTER 2

Preliminaries

In this chapter, we introduce a few preliminary definitions and mathematical notations.

Throughout this thesis, the notation ‖.‖p represents the vector or matrix p-norms with 1 ≤
p ≤ ∞. For a vector v ∈ Rq, the notation sat{v} represents the saturation function, defined by

sat{v} =


sgn{v1}min{|v1| , 1}

...

sgn{vq}min{|vq| , 1}

 , (2.1)

where sgn{·} is the standard sign function, and vi’s are the elements of the vector v.

Definition 2.1 (Lnp space [97, 98]). The Lnp space is defined as the set of measurable functions,

such that

Lnp = {f : R→ Rn; ‖f‖Lp <∞},

where ‖·‖Lp is given by

‖f‖Lp =

∫
R

‖f‖ppdt

1/p

, 1 ≤ p ≤ ∞,

‖f‖L∞ = sup
R
‖f(t)‖∞ .

The notation ‖xτ‖Lp represents the Lp norm of the truncated signal xτ (t) for a signal x(t) ∈ Rn,

such that
xτ (t) = x(t), ∀t ≤ τ,
xτ (t) = 0, otherwise.

Consider a continuous-time LTI system Pc with the minimal realization (Ac ∈ Rn×n, Bc ∈
Rn×p, Cc ∈ Rq×n, Dc ∈ Rq×p) and the corresponding discrete-time LTI system Pd = SPcH, which

is defined with the standard zero-order hold and sample devices H and S, respectively. The

relationship between Pc and Pd follows from the following definition.

Definition 2.2 (Step-invariant discrete-time equivalent system). Given an LTI system Pc, the

step-invariant discrete-time equivalent system Pd is given by the following state-space matrices:

Ad = eAcTs , Bd =

∫ Ts

0
eAcτBcdτ, Cd = Cc, Dd = Dc, (2.2)

where Ts > 0 is a sampling period.

8



Definition 2.3 (Pathological sampling [41]). Consider the continuous-time system Pc and its step-

invariant equivalent system Pd. The sampling frequency ωs = 2π
Ts

is pathological, if the matrix Ac

has at least two eigenvalues λ and λ′, such that for some k ∈ Z\{0} the following relationship holds:

λ = λ′ + jkωs. (2.3)

The L1 norm of the continuous-time LTI system Pc can be computed as follows:

‖Pc‖L1 = max
1≤i≤q

∫ ∞
0

 p∑
j=1

∣∣cieActbj(τ)
∣∣ dτ + ‖Dc‖∞,

where ci ∈ R1×n is ith row of Cc, and bj ∈ Rn×1 is the jth column of Bc.

Definition 2.4 (Relative degree). A MIMO system with the state-space realization (A, B, C) has

relative degree r > 1, if

CAiB = 0, i ∈ {0, ..., r − 2},

CAr−1B 6= 0.

Definition 2.5 (Transmission zero). Consider a MIMO system with the minimum realization

(A, B, C, D), where (A, B) is controllable and (A, C) is observable. The system has a finite

transmission zero at z0 ∈ C, if the Rosenbrock matrix[
sI−A −B
C D

]

loses rank at s = z0.

Definition 2.6 (Zero-dynamics actuator attack [42]). Assume the system Pd with the state-space

matrices in (2.2) has an unstable transmission zero at z0 ∈ C. Then, an unbounded actuator attack

signal of the form d[k] = εz0
k, which can be implemented as an additive input disturbance and

remain undetected for small enough ε at the sampled output while causing the states of the system

expand exponentially, is referred to as zero-dynamics actuator attack.

Definition 2.7 ( [99]). Let a > 0 be a positive constant.

(a) A function α : [0, a) → [0,∞) is called a class K function, if α(0) = 0 and α(·) is strictly

increasing.

(b) A function β : [0,∞) × [0, a) → [0,∞) is called a class KL function, if for each t ∈ [0,∞),

β(t, r) is in class K with respect to r, for each r ∈ [0, a), β(t, r) is decreasing with respect to t,

and for each r ∈ [0, a), β(t, r)→ 0 as t→∞.
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Definition 2.8 (Lp stability [98,99]). Consider the following input-output map H : Lmp → Lnp with

y = Hu, where u(t) ∈ Lmp and y(t) ∈ Lnp ; the map H is not necessarily linear. The map H is called

Lp-stable, if there exist a class K function α, defined on [0,∞), and a nonnegative constant b such

that

‖(Hu)τ‖Lp ≤ α(‖uτ‖Lp) + b, ∀u ∈ Lmp , ∀τ ∈ [0,∞).

Remark 2.1. The L∞ stability is often referred to as Bounded-Input Bounded-Output (BIBO)

stability.

Consider the system

ẋ = f(x, u, t, θ), x(t0) = x0, t ≥ t0, (2.4)

where x0 ∈ Rn is an initial condition, and θ ∈ Θ with Θ ⊆ Rl being a set of constant parameters.

In addition, suppose that for each θ ∈ Θ, fθ(x, u, t) is locally Lipschitz continuous in (x, u), and

piecewise continuous in t, where fθ(x, u, t) = f(x, u, t, θ).

Definition 2.9. (Semi-globally Practically Input to State Stability (SPISS) [100]) The system given

in (2.4) is said to be semi-globally practically input to state stable, if for each d > 0, δx > 0, and

δr > 0 satisfying δx > d, there exist θ?(d, δx, δr) ∈ Θ, a class K function γ, and a class KL function

β such that for all x0 ∈ D0 and t0 ≥ 0

‖x(t; t0, x0, θ
?)‖ ≤ β(‖x0‖, t− t0) + γ( sup

t0≤τ≤t
‖u(τ)‖) + d, ‖u‖L∞ < δr, ∀t ≥ t0, (2.5)

where D0 = {x ∈ Rn : ‖x‖ < δx}.

Definition 2.10 (L1Simplex Architecture [43]). As shown in Figure 2.1, the L1Simplex architecture

includes the RHAC, the HPC, the safety monitoring system, and the decision logic:

• Robust High-Assurance Controller (RHAC): The RHAC is a simple and verified controller

that ensures safe and stable operation of the system, but provides limited levels of performance

and reduced functionalities; the RHAC is designed based on the L1 adaptive controller;

• High-Performance Controller (HPC): The HPC is a complex controller providing high levels

of performance and advanced functionalities and is active during the normal operation of the

system; it, however, may not be (fully) verified and may experience software faults;

• Safety Monitor: This verified monitor provides estimates of the uncertainties inside the system

with fast adaptation, which takes the form of the state predictor in the L1 adaptive control

architecture;

• Decision Logic: This logic, which needs to be verified, is responsible for switching from the

complex HPC to the verified RHAC in the event of failures.
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Figure 2.1: L1Simplex architecture [43,101].
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CHAPTER 3

Sampled-Data Output-Feedback Control Design for a Class of Uncertain
Systems

This chapter develops a sampled-data (SD) output-feedback control approach for nonlinear

uncertain MIMO systems, using the L1 adaptive control structure. The L1 adaptive control the-

ory is extended to the SD framework while maintaining the key benefits of a continuous-time L1

controller implementation. Compared to continuous-time design, the proposed SD approach pro-

vides a more accurate model for cyber-physical systems (CPSs), with hybrid discrete/continuous

nature. Conditions are derived, under which the SD controller uniformly recovers the performance

of the underlying continuous-time control design. The unknown nonlinearities are assumed to be

locally Lipschitz. Also, the system under consideration can have non-minimum phase dynamics.

The controller compensates for disturbances within the bandwidth of a lowpass filter, and similar

to other L1 controllers, achieves uniform transient and steady-state performance. In this chapter,

using the method of controller emulation, a discrete-time L1 adaptive controller is derived from

a continuous-time reference system. Uniform bounds between the response of the closed-loop SD

system and the reference system are derived, which can be made arbitrarily small as the sampling

time tends to zero.

3.1. Problem Formulation

Consider the following MIMO system

ẋ(t) = Apx(t) +Bp (u(t) + f(t, x(t))) , x(0) = x0,

y(t) = Cpx(t),
(3.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the input signal, and y(t) ∈ Rq is the system

output vector. Also, {Ap ∈ Rn×n, Bp ∈ Rn×q, Cp ∈ Rq×n} is a known observable-controllable triple.

The unknown initial condition x0 ∈ Rn is assumed to be inside an arbitrarily large set, so that

‖x0‖∞ ≤ ρ0 <∞ for some known ρ0 > 0. Let f (t, x) ∈ Rq represent the time-varying uncertainties,

physical failures, and disturbances subject to the following assumption.

Assumption 3.1. There exist Kδ for arbitrary δ > 0, and constant L0 > 0 such that

‖f(t, x2)− f(t, x1)‖∞ ≤ Kδ‖x2 − x1‖∞,

‖f(t, 0)‖∞ ≤ L0

hold for all ‖xi‖∞ ≤ δ, i ∈ {1, 2}, uniformly in t ≥ 0.

The control input, which is implemented via a zero-order hold mechanism with the time period
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of Ts > 0, is given by

u(t) = ud[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0, (3.2)

where ud[i] is a discrete-time control input signal. The output y(t) is sampled with the sampling

time of Ts, such that the discrete-time output measurement yd[i] is given by

yd[i] = y (iTs) . (3.3)

Assumption 3.2. The desired dynamics are defined by

M(s)
∆
= Cm (sInm −Am)−1Bm, (3.4)

where the triple {Am ∈ Rnm×nm , Bm ∈ Rnm×q, Cm ∈ Rq×nm} represents a minimal state-space

realization. The desired system M(s) should satisfy one of the following conditions:

• the triple (Am, Bm, Cm) is selected such that CmBm is nonsingular, Am is Hurwitz, and M(s)

does not have a non-minimum-phase transmission zero,

• or, if the system defined by (Ap, Bp, Cp) does not have a non-minimum-phase transmission

zero, one can select

Am = Ap −BpF, Bm = Bp, Cm = Cp, (3.5)

where F ∈ Rq×n is selected such that Ap − BpF is Hurwitz. In this case CmBm can be rank

deficient.

The desired response ym(t) is given by the Laplace transform ym(s) = M(s)Kgr(s), where

Kg
∆
= −

(
CmA

−1
m Bm

)−1
,

and r(s) is the Laplace transform of r(t), given by

r(t) = rd[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0, (3.6)

where rd[i] is a given discrete-time reference command. The command signal is assumed to be

bounded, such that ‖rd[i]‖∞ ≤Mr, i ∈ Z≥0, where Mr is a known positive constant.

In the following, a sampled-data L1 adaptive controller is formulated to compensate for un-

certainties and disturbances, such that the output y(t) of the system in (3.1) tracks the desired

response ym(t).
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3.2. Proposed Sampled-Data Output-Feedback Controller

In this section, the proposed adaptive SD controller is presented. The conditions for selection

of the control parameters and the detailed analysis of the closed-loop system are provided in Section

3.3. Elements of the output-feedback L1 adaptive SD controller are given next.

Let Ts > 0 be the sampling time of the digital controller. Consider a strictly proper stable

transfer function C(s) such that C(0) = Iq. In the L1 adaptive control structure, C(s) represents

the low-pass filter at the control input [47]. Also, define O(s)
∆
= C(s)M−1(s)Cm(sInm −Am)−1,

and let {Ao ∈ Rv×v, Bo ∈ Rv×q, Co ∈ Rq×v} be a minimal state-space realization, such that

Co(sIv −Ao)−1Bo = O(s). (3.7)

The control law is given by

xu[i+ 1] = eAoTsxu[i] +A−1
o

(
eAoTs − Iv

)
Boe

−AmTs σ̂d[i], xu[0] = 0, i ∈ Z≥0,

ud[i] = Kgrd[i]− Coxu[i],
(3.8)

where σ̂d[·] ∈ Rn is given by the adaptation law in (3.13), and rd[·] is a given discrete-time reference

command.

The construction of σ̂d[·] is based on an output predictor that follows. The output predictor

is given by

x̂d[i+ 1] =eAmTs x̂d[i] +A−1
m (eAmTs − Inm) (Bmud[i] + σ̂d[i]) , x̂d[0] = C†my0,

ŷd[i] =Cmx̂d[i],
(3.9)

where ud(t) is provided by (3.8).

Given that Am ∈ Rnm×nm is Hurwitz, there exists a positive definite matrix P ∈ Rnm×nm

solving A>mP + PAm = −Q for a given positive definite matrix Q ∈ Rnm×nm . Define

Λ
∆
=

[
Cm

D
√
P

]
, (3.10)

where
√
P satisfies P =

√
P
>√

P , and D ∈ R(nm−q)×nm is a matrix that is in the null space of

Cm

(√
P
)−1

, i.e.

D

(
Cm

(√
P
)−1

)>
= 0 . (3.11)

Further, let Φ (·) be the nm × nm matrix

Φ (Ts)
∆
=

∫ Ts

0
eΛAmΛ−1(Ts−τ)Λdτ. (3.12)
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Finally, the adaptation law is given by

σ̂d[i] = −Φ−1 (Ts) e
ΛAmΛ−1Ts1nmqỹd[i], (3.13)

where ỹd[i] = ŷd[i]− yd[i], and 1nmq is given by

1nmq
∆
=

[
Iq

0(nm−q)×q

]
∈ Rnm×q. (3.14)

3.3. Analysis of the Closed-Loop Sampled-Data System

This section provides the analysis of stability and performance of the closed-loop SD system

with the proposed controller. Also, the conditions for selection of the control parameters Ts and

C(s) are provided. First, we define a few variables of interest and design constraints. Let

P (s)
∆
= Cp(sIn −Ap +BpF )−1Bp,

H0(s)
∆
= (sIn −Ap +BpF )−1Bp,

H1(s)
∆
=
(
Iq +

(
M−1(s)P (s)− Iq

)
C(s)

)−1
,

H2(s)
∆
= H0(s)−H0(s)C(s)H1(s)

(
M−1(s)P (s)− Iq

)
,

H3(s)
∆
= H1(s)M−1(s)P (s),

H4(s)
∆
= H1(s)

(
M−1(s)P (s)− Iq

)
,

H5(s)
∆
= H0(s)C(s)H1(s)M−1(s),

G(s)
∆
= H0(s)−H5(s)P (s),

(3.15)

where F ∈ Rq×n is selected such that Ap −BpF is Hurwitz, as mentioned in Assumption 3.2. Let

y0
∆
= Cpx0 be the known initial output. We define an auxiliary system with the same input-output

mapping as the system (3.1), using the state-space matrices (Am, Bm, Cm) of the desired dynamics.

The uncertainties are lumped into a variable denoted by σ(t) in the auxiliary system. The control

input u(t) compensates for the matched uncertainty σ(t) to recover the desired output tracking

response (introduced in Assumption 3.2). Let the auxiliary system be

ẋa(t) = Amxa(t) +Bm (u(t) + σ(t)) , xa(0) = C†my0,

y(t) = Cmxa(t),
(3.16)

where xa(t) ∈ Rnm is the state vector, the Laplace transform of σ(t) is given by

σ(s) = M−1(s) ((P (s)−M(s))u(s) + P (s)w(s) +Hin(s)x0) ,
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with

Hin(s)
∆
= Cp(sIn −Ap +BpF )−1 − Cm (sInm −Am)−1C†mCp,

and w(s) is the Laplace transform of w(t), given by

w(t)
∆
= Fx(t) + f (t, x(t)) . (3.17)

Since the full state measurement is not available, Fx(t) is unknown. Therefore, Fx(t) is added to

the uncertainty term f(t, x(t)), and the addition of the two unknown signals is denoted by w(t).

Remark 3.1. Given that M(s) does not have an unstable transmission zero, M−1(s)P (s) is proper

and stable. In addition, Assumption 3.2 implies that sM−1(s)Hin(s) is proper and stable.Therefore,

σ(t), defined in (3.16), is a casual signal.

Further, for every δ > 0, let

Lδ
∆
=
γ̄1 + δ

δ

(
K(γ̄1+δ) + ‖F‖∞

)
, (3.18)

where Kδ is introduced in Assumption 3.1, and γ̄1 is an arbitrarily small positive constant. It can

be shown that the following bound on w(t) holds

‖wt‖L∞ ≤ Lδ ‖xt‖L∞ + L0. (3.19)

The design of the controller proceeds by considering a strictly proper stable transfer function C(s)

such that C(0) = Iq. The selection of C(s) must ensure that

H1(s) is stable, (3.20)

where H1(s) is defined in (3.15), and

C(s)M−1(s) is proper. (3.21)

Also, for a given ρ0, there should exist ρr > ρ0 such that the following L1-norm condition holds

‖G(s)‖L1
<
ρr − ρ1 − ρ2

Lρrρr + L0
, (3.22)

where

ρ1
∆
=
∥∥∥s(sIn −Ap +BpF )−1 − sH5(s)Hin(s)

∥∥∥
L1

ρ0, ρ2
∆
= ‖H2(s)Kg‖L1

Mr. (3.23)

Remark 3.2. If the system with state-space matrices (Ap, Bp, Cp) does not have a non-minimum-

phase transmission zero, one can select the desired system as M(s) = P (s) (as stated in Assumption
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3.2), where P (s) is introduced in (3.15). Then, we have H1(s) = Iq. Also, G(s) can be rewritten as

G(s) = H0(s) (Iq − C(s)) . (3.24)

Therefore, a filter C(s) with sufficiently high bandwidth and high relative degree, such that C−1(s)M(s)

is proper, always satisfies the conditions in (3.20)-(3.22). In the case (Ap, Bp, Cp) defines a non-

minimum phase system, the selection of C(s) and M(s) that would verify (3.20)-(3.22) is not trivial,

as reported in [102].

Remark 3.3. The bandwidth of the filter C(s) provides a trade-off between performance in terms

of disturbance compensation and robustness in terms of input-delay margin. A mixed-norm opti-

mization of the filter for L1 adaptive control structure can be found in [103]. More results on filter

design are provided in [100, 104–107].

Let P1 ∈ Rq×q and P2 ∈ R(nm−q)×(nm−q) be positive definite matrices:

P1
∆
=
(
Cm

√
P
−1√

P
−>
C>m

)−1
, P2

∆
= (DD>)−1. (3.25)

Define [
η>1 (t) η>2 (t)

]
∆
= 1>nmqe

ΛAmΛ−1t, (3.26)

where η1(t) ∈ Rq×q and η2(t) ∈ R(nm−q)×q, and

κ(Ts)
∆
=

∫ Ts

0

∥∥∥1>nmqe
ΛAmΛ−1(Ts−τ)ΛBm

∥∥∥
2
dτ. (3.27)

Define the function

Γ (Ts)
∆
= α1(Ts)

∥∥∥(sIv −Ao)
−1
Bo

∥∥∥
L1

+ α2(Ts), (3.28)

where

α1(Ts)
∆
= max

t∈[0, Ts]

∥∥Co

(
eAot − Iv

)∥∥
∞ , α2(Ts)

∆
= max

t∈[0, Ts]

∫ t

0

∥∥∥Coe
Ao(t−τ)Bo

∥∥∥
∞
dτ.
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Let

Υ(Ts) =
∥∥∥e−AmTsΦ−1 (Ts) e

ΛAmΛ−1Ts1nmq

∥∥∥
∞
,

Ψ (Ts) =
∥∥∥H5(s)Cm(sInm −Am)−1

(
eAmTs − Inm

)∥∥∥
L1

,

Ω1(Ts) =
(∥∥H2(s)C(s)M−1(s)

∥∥
L1

+ ‖H2(s)‖L1
(Γ (Ts) + Ψ (Ts)) Υ (Ts)

)(
1− ‖G(s)‖L1

Lρr

)−1

,

Θ(Ts) = ‖H3(s)‖L1
LρrΩ1(Ts) +

∥∥H4(s)C(s)M−1(s)
∥∥
L1

+ ‖H4(s)‖L1
(Γ (Ts) + Ψ (Ts)) Υ (Ts) ,

ρ∆ =‖H3(s)‖L1
(Lρrρr + L0) + ‖H4(s)Kg‖L1

Mr +
∥∥sH1(s)M−1(s)Hin(s)

∥∥
L1
ρ0,

Ω2(Ts) =
∥∥C(s)M−1(s)

∥∥
L1

+ ‖C(s)‖L1
LρrΩ1(Ts) + (Γ (Ts) + Ψ (Ts)) Υ (Ts) ,

ρur =‖C(s)H3(s)‖L1
(Lρrρr + L0) +

∥∥sC(s)H1(s)M−1(s)Hin(s)
∥∥
L1
ρ0 + ‖(Iq − C(s)H4(s))Kg‖L1

Mr,

(3.29)

where Hi(·)’s are defined in (3.15). Next, we introduce the functions

β1(Ts)
∆
= max

t∈[0, Ts]
‖η1(t)‖2 , β2(Ts)

∆
= max

t∈[0, Ts]
‖η2(t)‖2 , (3.30)

where η1(t) and η2(t) are given in (3.26). Also

β3(Ts)
∆
= max

t∈[0, Ts]
η3(t, Ts), β4(Ts)

∆
= max

t∈[0, Ts]
η4(t), (3.31)

where

η3(t, Ts)
∆
=

∫ t

0

∥∥∥1>nmqe
ΛAmΛ−1(t−τ)ΛΦ−1 (Ts) e

ΛAmΛ−1Ts1nmq

∥∥∥
2
dτ,

η4(t)
∆
=

∫ t

0

∥∥∥1>nmqe
ΛAmΛ−1(t−τ)ΛBm

∥∥∥
2
dτ.

(3.32)

For γ̄0 > 0, let

∆1(γ̄0)
∆
=ρ∆ + Θ(Ts)γ̄0,

∆2(γ̄0)
∆
=λmax

(
Λ−>PΛ−1

)(2
√
q∆1(γ̄0)

∥∥Λ−>PBm

∥∥
2

λmin (Λ−>QΛ−1)

)2

,
(3.33)

where, ρ∆ and Θ(·) are defined in (3.29). Also, let

ς(γ̄0, Ts)
∆
= ‖η2 (Ts)‖2

√
∆2(γ̄0)

λmax(P2)
+
√
qκ(Ts)∆1(γ̄0), (3.34)

where η2(·) is defined in (3.26) and κ(·) is given in (3.27).

Finally, define

γ0(γ̄0, Ts)
∆
= β1(Ts)ς(γ̄0, Ts) + β2(Ts)

√
∆2(γ̄0)

λmax(P2)
+ β3(Ts)ς(γ̄0, Ts) +

√
qβ4(Ts)∆1(γ̄0). (3.35)
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Lemma 3.1. For all γ̄0 > 0, the following relationships hold:

lim
Ts→0

γ0(γ̄0, Ts) = 0, (3.36)

where γ0(·, ·) is given in (3.35).

Proof. It is similar to the proof of Lemma 3.3.1 in [47] and hence omitted here. �

Lemma 3.2. There exist Ts > 0 and arbitrarily small positive constant γ̄0, such that

γ0(γ̄0, Ts) < γ̄0, Ω1(Ts)γ̄0 < γ̄1, (3.37)

where γ̄1 is introduced in (3.18) and γ0(·, ·) is defined in (3.35), while Ω1(·) is given in (3.29).

Proof. It is straightforward to verify that Ω1(Ts) is a bounded function as Ts tends to zero. In

addition, Lemma 3.1 shows that γ0(γ̄0, Ts) approaches arbitrarily closely to zero for all γ̄0 with

sufficiently small Ts. Therefore, there always exist constants Ts and γ̄0 that satisfy the inequalities

in (3.37).

Lemma 3.3. For arbitrary ξ =

[
y

z

]
∈ Rnm, where y ∈ Rq and z ∈ R(nm−q), there exist positive

definite P1 ∈ Rq×q and P2 ∈ R(nm−q)×(nm−q), such that

ξ>
(
Λ−1

)>
PΛ−1ξ = y>P1y + z>P2z, (3.38)

where Λ is given in (3.10), and P1 and P2 are defined in (3.25).

Proof. The proof of Lemma 3.3 is given in [47].

Consider the following closed-loop reference system

ẋref(t) = Apxref(t) +Bp (uref(t) + f (t, xref(t))) , xref(0) = x0

uref(s) = Kgr(s)− C(s)σref(s),

yref(t) = Cpxref(t),

(3.39)

where

σref(s) =[(P (s)−M(s))C(s) +M(s)]−1 (P (s)−M(s))Kgr(s)

+ [(P (s)−M(s))C(s) +M(s)]−1 (P (s)wref(s) +Hin(s)x0) ,
(3.40)

and wref(s) is the Laplace transform of wref(t) given by

wref(t) = Fxref(t) + f (t, xref(t)) . (3.41)
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The reference system can be rewritten as

yref(s) = M(s)Kgr(s) +M(s) (Iq − C(s))σref(s) + Cm (sIq −Am)−1C†my0. (3.42)

From (3.42), we notice that the unknown uncertainty σref(t), given by the Laplace transform in

(3.40), is mitigated within the bandwidth of C(s), and the desired response (in Assumption 3.2)

is recovered. The reference system in (3.39) defines the achievable performance by the closed-loop

sampled-data system given in (3.1), (3.8)-(3.13), as the sampling time Ts of the digital controller

tends to zero. In the following, it is first proven that σref(t) is bounded, and the reference system

in (3.39) is stable. Then, we establish uniform bounds between the closed-loop system defined by

(3.1), (3.8)-(3.13), and the reference system.

Lemma 3.4. For the closed-loop reference system in (3.39), subject to the conditions in (3.20)-

(3.22), if ‖x0‖∞ ≤ ρ0, then

‖xref‖L∞ < ρr, (3.43)

‖uref‖L∞ < ρur, (3.44)

where ρr is introduced in (3.22), and ρur is given in (3.29).

Proof. It follows from (3.39) and the definitions of H0(s), H5(s), P (s) and G(s) in (3.15) that

xref(s) = [H0(s)−H5(s) (P (s)−M(s))]Kgr(s) +G(s)wref(s)−H5(s)Hin(s)x0 + (sIn −Ap +BpF )
−1
x0.

(3.45)

Then for τ > 0 the following upper bound can be established

‖xrefτ‖L∞ ≤‖G(s)‖L1
‖wrefτ‖L∞ + ‖H2(s)Kg‖L1

‖r‖L∞

+
∥∥∥s(sIn −Ap +BpF )−1 − sH5(s)Hin(s)

∥∥∥
L1

∥∥∥∥1

s
x0

∥∥∥∥
L∞
.

(3.46)

We have ‖xref(0)‖∞ = ‖x0‖∞ < ρr. In addition, xref(t) is continuous. Therefore, if the bound in

(3.43) is not true, there exists a time τ1 > 0 such that

‖xref(t)‖∞ < ρr, ∀t ∈ [0, τ1), ‖xref(τ1)‖∞ = ρr,

which implies that
∥∥xrefτ1

∥∥
L∞ = ρr. Then it follows from Assumption 3.1 and the redefinition in

(3.18) that ∥∥wrefτ1

∥∥
L∞ ≤ Lρr

∥∥xrefτ1

∥∥
L∞ + L0. (3.47)

The bound in (3.47), together with the upper bound in (3.46), lead to

∥∥xrefτ1

∥∥
L∞ ≤

‖G(s)‖L1
L0+ρ1+ρ2

1−‖G(s)‖L1
Lρr

.
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The condition in (3.22) can be solved for ρr to obtain the bound

ρr >
‖G(s)‖L1

L0+ρ1+ρ2

1−‖G(s)‖L1
Lρr

,

which leads to
∥∥xrefτ1

∥∥
L∞ < ρr. This contradicts

∥∥xrefτ1

∥∥
L∞ = ρr, thus proving the bound in (3.43).

This further implies that the upper bound in (3.47) holds for all τ1 > 0 with strict inequality, which

in turn implies that

‖wref‖L∞ < Lρrρr + L0. (3.48)

The bound on uref(t) follows from (3.39), (3.40), and (3.48), which proves (3.44). �

Remark 3.4. We can rewrite σref(s) in (3.40) as

σref(s) = H1(s)
(
M−1(s)P (s)− Iq

)
Kgr(s) +H1(s)

(
M−1(s)P (s)wref(s) +M−1(s)Hin(s)x0

)
.

Then Remark 3.1 implies that σref(s) is casual. In addition, the stability of H1(s) in (3.20) together

with the results of Lemma 3.4 imply that σref(s) is bounded:

‖σref‖L∞ ≤ ρ∆, (3.49)

where ρ∆ is defined in (3.29).

In the proposed SD control structure, discrete-time output predictor dynamics are introduced

in (3.9), where the unknown uncertainty σ(t) (formulated in (3.16)) is replaced with an adapta-

tion variable σ̂d[i]. We consider a continuous-time equivalent state-space model of the predictor

dynamics in (3.9), given by

˙̂x(t) = Amx̂(t) +Bmu(t) + σ̂(t), x̂(0) = C†mx0,

ŷ(t) = Cmx̂(t),
(3.50)

where

σ̂(t) = σ̂d[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0, (3.51)

and u(t) is given in (3.2) and (3.8). Since σ̂(t) and u(t) in (3.50) are held constant over sampling

intervals, we notice that (3.9) is a step-invariant discrete-time approximation of (3.50), such that

ŷ (iTs) = ŷd[i]. (3.52)

Let x̃(t) = x̂(t)−xa(t), where xa(t) is defined in (3.16). Then the prediction error dynamics between

(3.16) and (3.50) are given by

˙̃x(t) = Amx̃(t) + σ̂(t)−Bmσ(t), x̃(0) = 0nm×1,

ỹ(t) = Cmx̃(t),
(3.53)
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where σ̂(t) is defined in (3.51).

Lemma 3.5. Consider the closed-loop system defined by (3.1), (3.8)-(3.13), and the closed-loop

reference system in (3.39). The following upper bound holds

‖(xref − x)t‖L∞ ≤ Ω1(Ts)‖ỹt‖L∞ ,

where Ω1(·) is given in (3.29), and ỹ(t) is the prediction error defined in (3.53).

Proof. Let

uC(s) = Kgr(s)− C(s)M−1(s)Cm(sInm −Am)−1σ̂(s), (3.54)

uM(s) = Kgr(s)− C(s)M−1(s)Cm(sInm −Am)−1e−AmTs σ̂(s). (3.55)

It follows from (3.53) that

ỹ(s) =−M(s)σ(s) + Cm(sInm −Am)−1σ̂(s). (3.56)

Letting e(t)
∆
= xref(t)− x(t) and denoting by de(s) the Laplace transform of

de(t)
∆
= wref(t)− w(t), (3.57)

from (3.1), (3.17), (3.8), (3.39), (3.54), (3.55), and (3.56) it follows that

e(s) =H0(s)C(s)M−1(s)ỹ(s) +H0(s)de(s) +H0(s) (uC(s)− uM(s)) +H0(s) (uM(s)− u(s))

−H0(s)C(s) (σref(s)− σ(s)) ,
(3.58)

where H0(s) is defined in (3.15). Further

H0(s)C(s) (σref(s)− σ(s)) = H5(s)P (s)de(s)−H5(s) (P (s)−M(s)) (uC(s)− uM(s))

−H5(s) (P (s)−M(s)) (uM(s)− u(s)) +H5(s) (P (s)−M(s))C(s)M−1(s)ỹ(s).
(3.59)

From (3.58) and (3.59) one can obtain

e(s) = (H0(s)−H5(s) (P (s)−M(s)))C(s)M−1(s)ỹ(s) + (H0(s)−H5(s) (P (s)−M(s))) (uC(s)− uM(s))

+ (H0(s)−H5(s) (P (s)−M(s))) (uM(s)− u(s)) + (H0(s)−H5(s)P (s)) de(s).

(3.60)

Then the upper bound is given by

‖et‖L∞ ≤∥∥(H0(s)−H5(s) (P (s)−M(s)))C(s)M−1(s)
∥∥
L1
‖ỹt‖L∞ + ‖(H0(s)−H5(s) (P (s)−M(s)))‖L1

∥∥(uC − uM)t
∥∥
L∞

+‖(H0(s)−H5(s) (P (s)−M(s)))‖L1

∥∥(uM − u)t
∥∥
L∞

+ ‖G(s)‖L1
Lρr‖et‖L∞ .

(3.61)

From (3.52) we have

ỹ (iTs) = ỹd[i], i ∈ Z≥0. (3.62)
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From (3.13), (3.51) and (3.62) the following relation follows

∥∥e−AmTs σ̂t
∥∥
L∞ ≤ Υ (Ts) ‖ỹt‖L∞ , (3.63)

where Υ(·) is defined in (3.29). Notice that ud[i] given in (3.8) is a step-invariant discrete-time

approximation of uM(s), given in (3.55). Therefore, the discretization error bound between (3.2)

and (3.55) is given by

‖(uM − u)t‖L∞ ≤Γ (Ts) Υ (Ts) ‖ỹt‖L∞ , (3.64)

where Γ(·) is introduced in (3.28). Moreover, from (3.54), (3.55) and (3.63) one can obtain

‖(uC − uM)t‖L∞ ≤ Ψ (Ts) Υ (Ts) ‖ỹt‖L∞ , (3.65)

where Ψ(·) is defined in (3.29). From (3.61), (3.64) and (3.65) the following upper bound follows

‖et‖L∞ ≤ Ω1(Ts)‖ỹt‖L∞ . (3.66)

This concludes the proof. �

Theorem 3.1. Consider the system in (3.1) and the controller in (3.8)-(3.13), subject to the

conditions in (3.20)-(3.22). Assume that Ts is selected sufficiently small such that the inequalities

in (3.37) hold. If ‖x0‖∞ ≤ ρ0, then

‖ỹ‖L∞ < γ̄0, (3.67)

‖xref − x‖L∞ < Ω1(Ts)γ̄0, ‖uref − u‖L∞ < Ω2(Ts)γ̄0, (3.68)

where ỹ(t) is the prediction error defined in (3.53), and γ̄0 > 0 is a given arbitrarily small constant

that satisfies (3.37). Also, Ω1(Ts) and Ω2(Ts) are defined in (3.29).

Proof. Let γ̄0 be a constant that satisfies (3.37). First, we prove the bound in (3.67) by a contra-

diction argument. Since ỹ(0) = 0, and ỹ(t) is continuous, then assuming the opposite implies that

there exists τ1 such that

‖ỹ(t)‖∞ < γ̄0, ∀ 0 ≤ t < τ1,

‖ỹ(τ1)‖∞ = γ̄0,
(3.69)

which leads to

‖ỹτ1‖L∞ = γ̄0. (3.70)

Let e(t)
∆
= xref(t)− x(t). The sampling time Ts is selected such that the inequalities in (3.37) hold.

Then the bound in (3.37), Lemma 3.5 and the upper bound in (3.43) can be used to derive the
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following bound

‖xτ1‖L∞ ≤
∥∥∥xrefτ1

∥∥∥
L∞

+ ‖eτ1‖L∞ < ρr + γ̄1, (3.71)

which implies

‖wτ1‖L∞ ≤ Lρrρr + L0. (3.72)

Then one can obtain from (3.40) that ∥∥∥σrefτ1

∥∥∥
L∞
≤ ρ∆, (3.73)

where ρ∆ is defined in (3.29). Also, we have

σref(s)− σ(s) = H3(s)de(s)−H4(s) (uM(s)− u(s))−H4(s) (uC(s)− uM(s)) +H4(s)C(s)M−1(s)ỹ(s),

(3.74)

which along with (3.73) implies

‖στ1‖L∞ ≤ ∆1(γ̄0), (3.75)

where ∆(·) is defined in (3.33).

Now, consider the state transformation

ξ̃ = Λx̃, (3.76)

where Λ is defined in (3.10), and x̃(t) = x̂(t)− xa(t). From (3.53) and (3.76) it follows

˙̃
ξ(t) = ΛAmΛ−1ξ̃(t) + Λσ̂(t)− ΛBmσ(t), ξ̃(0) = 0nm×1

ỹ(t) = 1nmq ξ̃(t).
(3.77)

From (3.77) we have

ξ̃ (iTs + t) = eΛAmΛ−1tξ̃ (iTs) +

∫ t

0
eΛAmΛ−1(t−τ)Λ (σ̂ (iTs)−Bmσ (iTs + τ)) dτ. (3.78)

Since

ξ̃ (iTs + t) =

[
ỹ(iTs + t)

0(nm−q)×1

]
+

[
0q×1

z̃(iTs + t)

]
,

where z̃(t) =
[
ξ̃q+1(t), ..., ξ̃nm(t)

]>
, ξ̃(iTs + t) can be decomposed as

ξ̃ (iTs + t) = χ (iTs + t) + ζ (iTs + t) , (3.79)
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such that

χ (iTs + t) = eΛAmΛ−1t
[
ỹ (iTs)0(nm−q)×1

]
+

∫ t

0
eΛAmΛ−1(t−τ)Λσ̂ (jTs) dτ, (3.80)

ζ (iTs + t) = eΛAmΛ−1t

[
0q×1

z̃(iTs)

]
−
∫ t

0
eΛAmΛ−1(t−τ)ΛBmσ (iTs + τ) dτ. (3.81)

Now we prove that

‖ỹ (iTs)‖2 ≤ ς(γ̄0, Ts),

z̃> (iTs)P2z̃ (iTs) ≤ ∆2(γ̄0), ∀iTs ≤ τ1,
(3.82)

where ∆(·) and ς(·, ·) are defined in (3.33) and (3.34), respectively. It is straightforward to show that

‖ỹ(0)‖2 ≤ ς(γ̄0, Ts), z̃
>(0)P2z̃(0) ≤ ∆2(γ̄0). Next, for arbitrary k ∈ Z≥0, such that (k + 1)Ts ≤ τ1,

we prove that if

‖ỹ (kTs)‖2 ≤ ς(γ̄0, Ts), (3.83)

z̃> (kTs)P2z̃ (kTs) ≤ ∆2(γ̄0), (3.84)

then the inequalities in (3.83)-(3.84) hold for k + 1 as well, which would imply that the bounds in

(3.83)-(3.84) hold for all k ∈ Z≥0, such that kTs ≤ τ1. To this end, suppose that (3.83) and (3.84)

hold for k ∈ Z≥0, and in addition that (k + 1)Ts ≤ τ1. Then it follows from (3.79) that

ξ̃ ((k + 1)Ts) = χ ((k + 1)Ts) + ζ ((k + 1)Ts) , (3.85)

where

χ ((k + 1)Ts) = eΛAmΛ−1Ts

[
ỹ(kTs)

0(nm−q)×1

]
+

∫ Ts

0
eΛAmΛ−1(Ts−τ)Λσ̂ (kTs) dτ, (3.86)

ζ ((k + 1)Ts) = eΛAmΛ−1Ts

[
0q×1

z̃(kTs)

]
−
∫ Ts

0
eΛAmΛ−1(Ts−τ)ΛBmσ (kTs + τ) dτ. (3.87)

Using (3.62) and substituting the adaptive law from (3.13) and (3.51) for σ̂ (kTs) in (3.86), we have

χ ((k + 1)Ts) = 0. (3.88)

From (3.87) it follows that ζ(t) is the solution of the system:

ζ̇(t) = ΛAmΛ−1ζ(t)− ΛBmσ(t), ζ (kTs) =

[
0(nm−q)×1

z̃(kTs)

]
, t ∈ [kTs, (k + 1)Ts) . (3.89)

Let

V (t) = ζ>(t)Λ−>PΛ−1ζ(t), ∀t ∈ [kTs, (k + 1)Ts) .
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Since Λ is nonsingular and P is positive definite, Λ−>PΛ−1 is positive definite and, hence, V (t) is

a positive-definite function. Using Lemma 3.3 and Equation (3.89), it follows that

V (ζ (kTs)) = z̃> (kTs) Λ−>PΛ−1z̃ (kTs) ,

which, along with the upper bound in (3.84), yields

V (ζ (kTs)) ≤ ∆2(γ̄0). (3.90)

From (3.89) it follows that for all t ∈ [kTs, (k + 1)Ts) we have

V̇ (t) = ζ>(t)Λ−>PΛ−1ΛAmΛ−1ζ(t) + ζ>(t)Λ−>A>mΛ>Λ−>P>Λ−1ζ(t)− 2ζ>(t)Λ−>PΛ−1ΛBmσ(t)

= −ζ>(t)Λ−>QΛ−1ζ(t)− 2ζ>(t)Λ−>PΛ−1ΛBmσ(t).

Using the upper bound from (3.75), for all t ∈ [kTs, (k + 1)Ts) one can derive

V̇ (t) ≤ −λmin

(
Λ−>QΛ−1

)
‖ζ(t)‖22 + 2 ‖ζ(t)‖2

∥∥∥Λ−>PBm

∥∥∥
2

√
q∆1(γ̄0). (3.91)

Notice that if

V (t) > ∆2(γ̄0), ∀t ∈ [kTs, (k + 1)Ts) , (3.92)

the following holds

‖ζ(t)‖2 >

√
∆2(γ̄0)

λmax (Λ−>PΛ−1)
=

2
√
q∆1(γ̄0)

∥∥Λ−>PBm

∥∥
2

λmin (Λ−>QΛ−1)
.

Moreover, the upper bound in (3.91) yields

V̇ (t) < 0. (3.93)

From (3.90), (3.92) and (3.93), it follows that

V (t) ≤ ∆2(γ̄0), ∀t ∈ [kTs, (k + 1)Ts) ,

and therefore

ζ>((k + 1)Ts)Λ
−>PΛ−1ζ ((k + 1)Ts) ≤ ∆2(γ̄0). (3.94)

Then, (3.85), (3.88) and the upper bound in (3.94) lead to the following inequality

ξ̃>((k + 1)Ts)Λ
−>PΛ−1ξ̃ ((k + 1)Ts) ≤ ∆2(γ̄0).

Using the result of Lemma 3.3, one can drive

z̃>((k + 1)Ts)P2z̃ ((k + 1)Ts) ≤ ξ̃>((k + 1)Ts)Λ
−>PΛ−1ξ̃ ((k + 1)Ts) ≤ ∆2(γ̄0),
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which implies that the upper bound in (3.84) holds for k + 1.

Next, from (3.77), (3.85) and (3.88) it follows

ỹ ((k + 1)Ts) = 1>nmqζ ((k + 1)Ts) ,

and the definition of ζ ((k + 1)Ts) in (3.87) leads to the following expression

ỹ ((k + 1)Ts) = 1>nmqe
ΛAmΛ−1Ts

[
0q×1

z̃(kTs)

]
− 1>nmq

∫ Ts

0
eΛAmΛ−1(Ts−τ)ΛBmσ (kTs + τ) dτ.

The upper bounds in (3.75) and (3.84) yield the following upper bound

‖ỹ ((k + 1)Ts)‖2 ≤ ‖η2(Ts)‖2 ‖z̃(kTs)‖2 +
∫ Ts

0

∥∥∥1>nmqe
ΛAmΛ−1(Ts−τ)ΛBm

∥∥∥
2
‖σ (kTs + τ)‖2 dτ ≤ ς(γ̄0, Ts),

where η2(·), κ(·) and ς(·, ·) are defined in (3.26), (3.27) and (3.34), respectively. This confirms the

upper bound in (3.83) for k + 1. Hence, Equation (3.82) holds for all iTs ≤ τ1.

For all iTs + t ≤ τ1 and t ∈ [0, Ts], using the expression from (3.78), we obtain

ỹ (iTs + t) = 1>nmqe
ΛAmΛ−1tξ̃ (iTs) + 1>nmq

∫ t

0

eΛAmΛ−1(t−τ)Λσ̂ (iTs) dτ − 1>nmq

∫ t

0

eΛAmΛ−1(t−τ)ΛBmσ (iTs + τ) dτ.

The upper bound in (3.75) and the expressions of η1(·), η2(·), η3(·, ·) and η4(·, ·), given in (3.26)

and (3.32), lead to

‖ỹ (iTs + t)‖2 ≤ ‖η1(t)‖2 ‖ỹ (iTs)‖2 + ‖η2(t)‖2 ‖z̃ (iTs)‖2 + η3 (t, Ts) ‖ỹ (iTs)‖2 + η4 (t)
√
q∆1(γ̄0).

Consider (3.82) and β1(·), β2(·), β3(·), β4(·) defined in (3.30)-(3.31). For arbitrary nonnegative

integer i subject to iTs + t ≤ τ1 and for all t ∈ [0, Ts], we have

‖ỹ (iTs + t)‖2 ≤ β1 (Ts) ς(γ̄0, Ts) + β2 (Ts)

√
∆2(γ̄0)

λmax (P2)
+ β3 (Ts) ς(γ̄0, Ts) +

√
qβ4 (Ts) ∆1(γ̄0).

Since the right-hand side coincides with the definition of γ0(γ̄0, Ts) in (3.35), we have the bound

‖ỹ (t)‖2 ≤ γ0(γ̄0, Ts), ∀t ∈ [0, τ1],

which, along with the design constraint on Ts introduced in (3.37), yields

‖ỹτ1‖L∞ < γ̄0.

This clearly contradicts the statement in (3.70). Therefore, ‖ỹ‖L∞ < γ̄0, which proves (3.67).
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Further, it follows from Lemma 3.5 that

‖et‖L∞ < Ω1(Ts)γ̄0,

which holds uniformly for all t ≥ 0 and therefore leads to the first upper bound in (3.68).

To prove the second bound in (3.68), from (3.1), (3.8), (3.39), (3.54), (3.55) and (3.56), it

follows that

uref(s)− u(s) = C(s)M−1(s)ỹ(s)− C(s)de(s) + (uC(s)− uM(s)) + (uM(s)− u(s)) , (3.95)

where de(s) is the Laplace transform of de(t) defined in (3.57). Also, uC and uM are defined in
(3.54) and (3.55). Then, it leads to

‖uref(s)− u(s)‖L∞ ≤
∥∥C(s)M−1(s)

∥∥
L1
‖ỹ‖L∞ + ‖uC(s)− uM(s)‖L∞ + ‖uM(s)− u(s)‖L∞ + ‖C(s)‖L1

Lρr‖e‖L∞ .
(3.96)

Combining (3.64), (3.65), (3.67), (3.68) and (3.96) leads to

‖uref(s)− u(s)‖L∞ <Ω2(Ts)γ̄0. (3.97)

This concludes the proof. �

Remark 3.5. Lemmas 3.1 and 3.2 indicate that an arbitrarily small bound γ̄0 on the prediction

error can be achieved as Ts goes to zero. In addition, it can be shown that Ω1(Ts) and Ω2(Ts) are

bounded as Ts tends to zero. Therefore, the uniform bounds in (3.68) can be made arbitrarily small.

This implies that the closed-loop sampled-data system recovers the performance of the continuous-

time reference system in (3.39), as the sampling time goes to zero.

Corollary 3.1. The system in (3.1) with the controller in (3.8)-(3.13), subject to the conditions

in (3.20)-(3.22) and (3.37), is semi-globally practically input to state stable (SPISS) according

to [100, 108], if the system defined by the triple (Ap, Bp, Cp) does not have a non-minimum-phase

transmission zero.

Proof. By combining the results of Theorem 3.1 and Lemma 3.4, one can immediately conclude

that the closed-loop system is locally stable. To show the semi-global practical input-to-state

stability of the closed-loop system in the case of minimum-phase (Ap, Bp, Cp), we first show that

the reference system in (3.39) is SPISS.

From (3.45) we have

xref(s) = H2(s)Kgr(s) +G(s)wref(s) +
(

(sIn −Ap +BpF )−1 −H5(s)Hin(s)
)
x0., (3.98)

We notice that G(s), H2(s), H5(s) and Hin(s) are stable transfer functions if H1(s) is stable (the

condition in (3.20) is met). As indicated in Remark 3.2, we have H1(s) = Iq for M(s) = P (s).
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Therefore, H1(s) is obviously stable. In addition, the term due to the initial condition x0 in (3.98)

decays to zero exponentially, and it can be bounded by a class KL function β(‖x0‖ , t). Moreover,

we know from Assumption 3.2 that ‖r‖L∞ ≤ Mr. Therefore, there exists a class K function

γ(sup0≤τ≤t ‖r‖) to bound the term H2(s)Kgr(s) in (3.98).

The left hand side of the condition in (3.22), given by ‖G(s)‖L1 , can be made arbitrarily small

by increasing the bandwidth of C(s), as stated in Remark 3.2. Then there always exists a ρr that

satisfies (3.22). Using Lemma 3.4, we have

‖xref‖L∞ < ρr,

and from (3.47) one can obtain the bound in (3.48) on wref . Therefore, the term G(s)wref(s) in

(3.98) can be bounded by the arbitrarily given d > 0. Hence, the reference system in (3.39) is

SPISS.

Finally, the results of Theorem 3.1 and Remark 3.5 imply that the difference between the

closed-loop system and the reference system in (3.39) is semi-globally attractive with arbitrarily

small bounds, which together with semi-global stability of the reference system in (3.39) prove the

closed-loop SPISS. This concludes the proof. �

3.4. Simulation Examples: Aircraft Flight Control

Two flight control examples are provided to validate the theoretical claims, and to verify the

effectiveness of the proposed SD controller. The first example is the simulation of the lateral

dynamics of F-16 aircraft with two inputs and two outputs. In the second example, a controller

for the F-16 flight-path angle tracking is developed, where the dynamics from the control input

(elevator deflection) to the flight-path angle is non-minimum-phase and unstable.

3.4.1. Aircraft lateral dynamics

A model for the lateral dynamics of F-16 aircraft at the airspeed of V = 502 ft/s and the angle

of attack α = 2.11o, found in [109], is given by

Ap =


−0.3320 0.064 0.0364 −0.9917

0 0 1 0.0393

−30.6490 0 −3.6784 0.6646

8.5395 0 −0.0254 −0.4764

 , Bp =


0 0

0 0

−0.7331 0.1315

−0.0319 −0.0620

 , Cp =

[
1 0 0 0

0 1 0 0

]
.

The state vector of the lateral dynamics model is x(t) = [β(t), φ(t), ps(t), rs(t)]
>, where the vari-

ables β, φ, ps and rs represent the angle of sideslip, the roll angle, the stability axis roll and yaw

rates, respectively. The system dynamics are stable, however the eigenvalues are slow. The ob-

jective is to design a control input ud[i] = [δa[i], δr[i]]
>, where δa and δr are the aileron and the

rudder deflections, such that the output vector y(t) = [β(t), φ(t)]> tracks the reference command
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r(t), given by (3.6), where rd[i] is

rd[i] =

 0.2
(
− 0.5

1+eiTs−8 + 1
1+eiTs−30 − 0.5

)
0.2
(
− 0.5

1+eiTs−8 + 1
1+eiTs−30 − 0.2

)  , i ∈ Z≥0, (3.99)

and Ts is the sampling time. The desired tracking dynamics M(s) are given by the state-space

matrices

Am =


−4.0538 −4.5045 −0.8386 −2.0633

1.2602 1.1254 −2.0913 1.0746

2.7591 4.2500 −1.4731 1.3436

3.1833 −1.6250 6.5772 −3.3832

 , Bm =


−0.0021 0.1053

−0.0402 0.0347

0.1562 −0.0134

−0.1722 −0.0174

 ,
Cm =

[
0.0234 0.0894 0.0908 0.0597

−0.2073 0.6566 −0.2254 −0.1419

]
.

In this simulation, input uncertainties of the form

fδa(t, x(t)) =0.01 (|β(t)|+ |φ(t)|+ ps(t) cos(4t)) + 0.02rs(t) sin(t) + 0.25 cos(0.8t),

fδr(t, x(t)) =0.01 (|ps(t)|+ |rs(t)|+ φ(t) cos(0.7t)) + 0.02rs(t) sin(4t) + 0.25 sin(1.1t)

are considered. The non-zero initial condition is x0 = [0 rad, 0.06 rad, 0.02 rad/s, −0.02 rad/s]>,

leading to y0 = [0 rad, 0.06 rad]>. Next, we select the design parameters for the sampled-data

L1 controller. Let ρ0 = Mr = 0.25, Kδ = 0.05, γ̄0 = 0.1, γ̄1 = 9 × 103, and F = 02×4. With

ρr = 6.7× 103, the uncertainty bounds Lρr = 0.1172 and L0 = 0.25 (which satisfy (3.18)), and the

filter

C(s) =

[
10
s+10 0

0 40
s+40

]
,

the stability conditions in (3.20) and (3.22) are met. For the selected parameters we can calculate

ρ1 = 20.549 and ρ2 = 9.633. Then the right hand side of (3.22) is equal to 8.492, which is larger

than ‖G(s)‖L1
= 0.256, and thus the inequality in (3.22) is verified. Finally, by selecting the

sampling time Ts = 10−7 sec, we have γ0(γ̄0, Ts) = 0.0956 and Ω1(Ts) = 8.996 × 104. Therefore,

we can verify that the inequalities in (3.37) hold. The response of the closed-loop SD system is

shown in Figures 3.1-3.2. The output tracks the desired response in the presence of disturbances,

as illustrated in Figure 3.1. The control input is shown in Figure 3.2. Figures 3.3-3.4 show the

response of the closed-loop SD system for the step reference commands r(t) = [0.05 rad, 0.2 rad]>,

r(t) = [0.075 rad, 0.3 rad]>, and r(t) = [0.1 rad, 0.4 rad]> in the presence of uncertainties and time

delay of 0.01 sec at the control input. In this simulation, the sampling time of the SD controller is

Ts = 0.01 sec. We notice that the controller leads to scaled control inputs and outputs for scaled

reference commands.

30



0 5 10 15 20 25 30 35 40
Time [second]

-10

-5

0

5

10

O
ut

pu
ts

 [d
eg

re
es

]

Desired response β
m

(t)

Angle of sideslip β(t)
Reference command r

β
(t)

Desired response φ
m

(t)

Roll angle φ(t)
Reference command r

φ
(t)

Figure 3.1: The outputs, the reference commands, and the desired responses. The outputs of the closed-

loop lateral dynamics, β(t) and φ(t), track the desired responses βm(t) and φm(t) for the given reference

command in (3.99).
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Figure 3.2: The control inputs δa(t) and δr(t).
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Figure 3.3: Scaled responses of the closed-loop lateral dynamics to scaled reference inputs.

31



0 5 10 15
Time [seconds]

-10

-5

0

5

10

15

20

25

C
on

tr
ol

 in
pu

ts
 [d

eg
re

es
]

δ
a
(t),  r=[2.86o, 11.46o]

δ
r
(t)

δ
a
(t), r=[4.30o, 17.19o]

δ
r
(t)

δ
a
(t), r=[5.73o, 22.92o]

δ
r
(t)

Figure 3.4: Scaled control inputs.

3.4.2. Aircraft flight-path angle

We consider the problem of flight-path angle, γ, tracking, using the elevator deflection, δe, for

a longitudinal model of an F-16 aircraft. The state-space model, from [110], with γ(t) as the output

and δe(t) as the input, is non-minimum-phase and unstable, and is given by the matrices

Ap =

 −11.707 0 −75.666

0 11.141 −79.908

0.723 0.907 −1.844

 , Bp =

 0

0

0.117

 , Cp =
[

0 0 1
]
,

for Mach=0.7 and altitude of h = 10, 000 ft. This system has an unstable pole at s = 1.051, and a

non-minimum-phase zero at s = 11.141. The state vector is x(t) = [x1(t), x2(t), x3(t)]>, and the

output is γ(t) = x3(t). We choose the desired dynamics M(s) and the filter C(s) as

M(s) = −469.6 s2 + 1.384× 104 s+ 9.76× 104

2174 s3 + 7868 s2 + 4348 s+ 579.8
, C(s) =

174

(s+ 17)4
.

This choice of M(s) and C(s) satisfy the condition (3.20). The sampling time of the SD controller is

Ts = 0.01 sec. The initial condition of the simulation is x0 = [0.001, 0, −0.001]>, and the nonlinear

input disturbance is given by

f(t, x(t)) = 0.001x1(t)x2(t) cos(5t) + 0.001 sin(x1(t)x2(t)) + 0.003x2(t)x3(t) sin(3t).

In addition, a delay of 0.03 sec is considered at the control input. A white noise with the power

spectral density of 10−10 and the sample time of 0.01 sec is considered at the measured output. The

simulation results in Figures 3.5-3.6 indicate that the digital controller is robust to measurement

noise, input delay and nonlinear disturbances. The closed-loop system with the SD controller is

stable and tracks the desired flight-path angle in the presence of uncertainties, as illustrated in

Figure 3.5. The control input is shown in Figure 3.6. While many output feedback approaches

based on high-gain observer amplify the noise at the control input, the filter in the SD L1 controller
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limits the noise amplification at the input channel.
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Figure 3.5: The output, the reference command and the desired response. The flight-path angle, γ(t),
tracks the desired γm(t) for a sinusoidal reference command.
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CHAPTER 4

Multi-Rate Sampled-Data Output-Feedback Control Design For a Class of
Uncertain Autonomous Systems

This chapter extends the results of Chapter 3 on sampled-data (SD) control design, by consid-

ering the output-feedback SD control problem for a class nested uncertain MIMO systems subject

to reference command saturation, with possibly non-minimum phase zeros. Examples of such sys-

tems include industrial/medical robots, unmanned aerial vehicles (UAVs), self-driving cars, and

many other autonomous systems. While the controller design with uniform rate is considered in

Chapter 3, the multi-rate SD design of this chapter addresses the digital implementation of the

control law on computers, where the control inputs and the measurements are available at discrete

time instances with different sampling rates. Also, the multirate scheme allows the zero-dynamics

attacks to be detected by ensuring that there are no relevant unstable zeros in the lifted system. As

shown in [42], unbounded zero-dynamics attacks can be detected if the control system is designed

in the dual rate sampled-data framework.

In this chapter, the navigation and control problem for autonomous systems is formulated

using the multirate SD control approach. The control structure consists of a high-level (outer-

loop) control for reference command generation and a low-level (inner-loop) adaptive control for

reference tracking, as shown in Figure 1.1. The high-level controller is limited by saturation bounds

to maintain the closed-loop system within an operational safety envelope. The low-level controller is

a multirate L1 adaptive controller for tracking the generated reference command by compensating

for uncertainties and disturbances. Conditions are derived, under which the SD controller uniformly

recovers the performance of the underlying continuous-time reference system as the sampling time

tends to zero. The related preliminary results by authors can be found in [79, 80]. The multi-

level structure of the problem formulation allows for the design of the feedback loops for the

high-level/low-level subsystems with their respective control objectives, while the stability and

robustness of the overall nested system subject to command saturation are taken into account.

The effectiveness of the proposed approach is evaluated using the simulation study of a fixed-

wing UAV in the presence of uncertainties, zero-dynamics attack, and mechanical failure. In this

example, the multi-level SD control strategy is leveraged for navigation and control of the UAV

model, where the theoretical conditions for the control design are verified. A high-fidelity simulation

environment of an Unmanned Aerial Vehicle (UAV) is used to verify the effectiveness and the

benefits of the proposed control framework. A multi-level altitude tracking controller is designed

for the linearized UAV longitudinal dynamics and then validated in the high-fidelity UAV simulation

environment. Scenarios with and without saturation of reference command are considered. In the

end, a zero-dynamics attack on altitude measurement is simulated to show the benefits of the

multi-rate framework in detecting stealthy attacks.
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4.1. Problem Formulation

As depicted in Figure 1.1, consider the following multi-level model for an autonomous system

subject to uncertainties, disturbances, physical faults, and attack signals, comprised of a low-level

(inner-loop) subsystem

ẋ(t) = Axx(t) +Bx (u(t) + f(t, x(t)) + d(t)) , x(0) = x0,

y(t) = Cxx(t),
(4.1)

and a high-level (outer-loop) subsystem

ż(t) = Azz(t) +Bzy(t) + g(t, x(t)), z(0) = z0, (4.2)

where x(t) ∈ Rn and z(t) ∈ Rp are the state vectors, u(t) ∈ Rq is the input signal, and y(t) ∈ Rq is

the system output vector. Also, {Ax ∈ Rn×n, Bx ∈ Rn×q, Cx ∈ Rq×n} is an observable-controllable

triple and {Az ∈ Rp×p, Bz ∈ Rp×q} is a controllable pair. The unknown initial condition x0 ∈ Rn

is assumed to be inside an arbitrarily large set, so that ‖x0‖∞ ≤ ρ0 < ∞ for some known ρ0 > 0,

and z0 ∈ Rp is a known initial condition. Let d(t) ∈ Rq be an exogenous additive disturbance on

the control input, which can represent a CPS attack (ex. stealthy zero-dynamics attack signal) or

failure. Also, let f (t, x(t)) ∈ Rq and g (t, x(t)) ∈ Rp represent the time-varying uncertainties and

disturbances, subject to the following assumption.

Assumption 4.1. Given arbitrary δ > 0, there exist Kδ > 0, Gδ > 0 and constants L0 > 0,

L1 > 0, such that

‖f(t, x2)− f(t, x1)‖∞ ≤ Kδ‖x2 − x1‖∞, ‖f(t, 0)‖∞ ≤ L0, ‖d(t)‖∞ ≤ L1, ‖g (t, x1)‖∞ ≤ Gδ,

hold for all ‖xi‖∞ ≤ δ, i ∈ {1, 2}, uniformly in t ≥ 0.

Using a multirate SD control approach, the control input and the measurements are available

at discrete time instances with different sampling periods. The control input, which is implemented

via a zero-order hold mechanism with time period of Ts > 0, is given by

u(t) = ud[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0, (4.3)

where ud[i] is a discrete-time control input signal. The output of the low-level subsystem y(t) is

sampled N ∈ N times faster with the sampling time of Ts
N , such that the discrete-time output signal

yd[j] is given by

yd[j] = y

(
j
Ts

N

)
, t ∈

[
j
Ts

N
, (j + 1)

Ts

N

)
, j ∈ Z≥0, (4.4)

and the high-level subsystem state z(t) is sampled M ∈ N times slower with the period of MTs,
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such that

zd[k] = z (kMTs) , t ∈ [kMTs, (k + 1)MTs) , k ∈ Z≥0. (4.5)

Assumption 4.2. The desired dynamics for the low-level subsystem in (4.1) is defined by

M(s) = Cm (sInm −Am)−1Bm, (4.6)

where the triple {Am ∈ Rnm×nm , Bm ∈ Rnm×q, Cm ∈ Rq×nm} is a minimal state-space realization of

M(s), with Am being Hurwitz, and (CmBm) is nonsingular. Also, M(s) does not have any unstable

transmission zeros.

The desired response ym(t) is given by the Laplace transform ym(s) = M(s)Kgr(s), where

Kg
∆
= −

(
CmA

−1
m Bm

)−1
,

and r(s) is the Laplace transform of r(t) given by

r(t) = rd[k], t ∈ [kMTs, (k + 1)MTs) , k ∈ Z≥0, (4.7)

where rd[k] is a discrete-time reference command.

Assumption 4.3. The reference command is constrained to a convex polytope as a safe operation

region, defined by the set

R = {r ∈ Rq| ‖Wr‖∞ ≤ 1} , (4.8)

where W = diag{r−1
max1

, ..., r−1
maxq
}, and the positive constants rmaxi’s are the saturation bounds on

control inputs. Then the weighted reference command is bounded by

‖Wrd[k]‖∞ ≤ 1, k ∈ Z≥0.

Remark 4.1. For large uncertainties outside normal conditions, the low-level control inputs can

saturate or drive the system to unsafe states. By restricting the reference commands (generated by

high-level control) to a safe operational envelope, as defined in Assumption 4.3, the safety of the

autonomous system can be improved.

Assumption 4.4. The desired system for the high-level subsystem in (4.2) is defined by

żm(t) = Azzm(t) +Bzrm(t), zm(0) = z0, (4.9)

where zm(t) ∈ Rp is the desired state for the high-level subsystem, and

rm(t) = rmd
[k], t ∈ [kMTs, (k + 1)MTs) , k ∈ Z≥0, (4.10)
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is the precalculated reference command for the desired system. It is assumed that

‖Wrmd
[k]‖∞ ≤ α, k ∈ Z≥0, (4.11)

where α ∈ (0, 1) is a given constant, and W is defined in (4.8). In addition, we assume that

rmd
[0] = 0, and

1

MTs
‖rmd

[k + 1]− rmd
[k]‖∞ ≤ δrm , k ∈ Z≥0, (4.12)

where δrm > 0 is the bound on the rate of change of the reference command.

In the following, a multi-level multirate adaptive controller is formulated to:

• compensate for physical failures, uncertainties, and disturbances, such that the low-level

system in (4.1) is stable, and the output y(t) closely tracks the desired response ym(t);

• maintain the reference command r(t) within the safe operation envelope R defined in (4.8);

• bound the error between the states of the high-level subsystem, z(t), and the desired trajectory

zm(t) given in (4.9);

• detect sensor/actuator attacks (including stealthy zero-dynamics attacks), and recover sta-

bility of the perturbed system.

4.2. Proposed Multi-Level Multirate Controller

In this section, the proposed multi-level multirate controller is presented. The conditions for

selection of the control parameters and the detailed analysis of the closed-loop system are provided

in Section 4.3. First, the elements of the multirate output-feedback L1 adaptive controller that

generates the input u(t) to the low-level subsystem in (4.1) are given.

Let Ts > 0 be the sampling time of the control input. Consider a strictly proper stable transfer

function C(s), such that C(0) = Iq. In the L1 adaptive control structure, C(s) represents the

low-pass filter at the control input [47]. Also, define O(s)
∆
= C(s)M−1(s)Cm(sInm −Am)−1, and let

{Ao ∈ Rv×v, Bo ∈ Rv×q, Co ∈ Rq×v} be a minimal state-space realization such that

Co(sIv −Ao)−1Bo = O(s). (4.13)
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The control laws are given by

xu[j + 1] = eAo
Ts
N xu[j] +A−1

o

(
eAo

Ts
N − Iv

)
Boe

−Am
Ts
N σ̂d[j], xu[0] = 0, j ∈ Z≥0,

uNd
[j] = −Coxu[j],

uN(t) = uNd
[j], t ∈

[
j
Ts

N
, (j + 1)

Ts

N

)
,

ud[i] = uN(iTs) +Kgr(iTs), i ∈ Z≥0,

(4.14)

where σ̂d[·] ∈ Rn is provided by the adaptation law in (4.20). Also, the reference command r(·) ∈ Rq

is given by (4.7) and the high-level controller in (4.22).

The update of σ̂d[·] is based on an output predictor, given by

x̂d[j + 1] =eAm
Ts
N x̂d[j] +A−1

m (eAm
Ts
N − Inm) (BmuP[j] + σ̂d[j]) , x̂d[0] = C†my0, j ∈ Z≥0,

ŷd[j] =Cmx̂d[j].
(4.15)

The predictor control input uP[j] is defined by

uP[j] = u

(
j
Ts

N

)
, j ∈ Z≥0, (4.16)

where u(t) is defined by (4.3) and (4.14).

Given that Am ∈ Rnm×nm is Hurwitz, for a given positive definite matrix Q ∈ Rnm×nm there

exists a positive definite matrix P ∈ Rnm×nm solving A>mP + PAm = −Q. Define

Λ
∆
=

[
Cm

D
√
P

]
, (4.17)

where
√
P satisfies P =

√
P
>√

P , and D ∈ R(nm−q)×nm is a matrix that is in the null space of

Cm

(√
P
)−1

, i.e.

D

(
Cm

(√
P
)−1

)>
= 0 . (4.18)

Further, let Φ (·) be the nm × nm matrix

Φ (Ts)
∆
=

∫ Ts
N

0
eΛAmΛ−1(Ts

N
−τ)Λdτ. (4.19)

The adaptation law is governed by the following equation

σ̂d[j] = −Φ−1 (Ts) e
ΛAmΛ−1 Ts

N 1nmqỹd[j], j ∈ Z≥0, (4.20)
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where ỹd[j] = ŷd[j]− yd[j], and 1nmq ∈ Rnm×q is given by

1nmq
∆
=

[
Iq

0(nm−q)×q

]
. (4.21)

Finally, the reference command rd[k], which is generated by the high-level control law, is given

by

rd[k] = rmd
[k] + (1− α)W−1sat

{
1

1− α
WFz (zmd

[k]− zd[k])

}
, k ∈ Z≥0, (4.22)

where rmd
[k] is the desired reference command introduced in Assumption 4.4, and Fz ∈ Rq×p is the

state-feedback gain, while α is introduced in Assumption 4.4. Also, zd[k] is the measured high-level

state given by (4.2) and (4.5). Using (4.9), the desired high-level state zmd
[k] is obtained by

zmd
[0] = z0,

zmd
[k] = eAz(kMTs)z0 +

k−1∑
l=0

(∫ MTs

0
eAz((k−l)MTs−τ)Bzdτ

)
rmd

[l], k ∈ Z>0.
(4.23)

Notice that the saturation function in (4.22) ensures that the reference command always remains

within the safety envelope R defined in (4.8).

4.3. Analysis of the Closed-Loop Multilevel Multirate System

This section provides the analysis of stability and performance of the closed-loop SD system

with the proposed controller. Also, the conditions for selection of the control parameters Ts, C(s),

and Fz are provided. The analysis is summarized in Theorems 4.1 and 4.2 at the end of this section.

Towards this goal, we need to define a few variables of interest and design constraints. Let

P (s)
∆
= Cx(sIn −Ax +BxFx)−1Bx,

H0(s)
∆
= (sIn −Ax +BxFx)−1Bx,

H1(s)
∆
=
(
Iq +

(
M−1(s)P (s)− Iq

)
C(s)

)−1
,

H2(s)
∆
= H0(s)−H0(s)C(s)H1(s)

(
M−1(s)P (s)− Iq

)
,

H3(s)
∆
= H1(s)M−1(s)P (s),

H4(s)
∆
= H1(s)

(
M−1(s)P (s)− Iq

)
,

H5(s)
∆
= H0(s)C(s)H1(s)M−1(s),

G(s)
∆
= H0(s)−H5(s)P (s),

(4.24)
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where Fx ∈ Rq×n is selected such that Ax − BxFx is Hurwitz. Let y0
∆
= Cxx0 be the known initial

output. Define the auxiliary system

ẋa(t) = Amxa(t) +Bm (u(t) + σ(t)) , xa(0) = C†my0,

y(t) = Cmxa(t),
(4.25)

with the same input-to-output u(t)− > y(t) mapping as the system in (4.1), where xa(t) ∈ Rnm is

the state vector, and the Laplace transform of σ(t) is given by

σ(s) = M−1(s) ((P (s)−M(s))u(s) + P (s)w(s) +Hin(s)x0) ,

with

Hin(s)
∆
= Cx(sIn −Ax +BxFx)−1 − Cm (sInm −Am)−1C†mCx,

and w(s) is the Laplace transform of w(t) given by

w(t)
∆
= Fxx(t) + f (t, x(t)) + d(t). (4.26)

Remark 4.2. Assumption 4.2 implies that 1
sM

−1(s) is a proper transfer function. Given that M(s)

does not have an unstable transmission zero, M−1(s)P (s) is proper and stable, and M−1(s)Hin(s)

is strictly proper and stable (Hin(s) has total relative degree of two or higher). Therefore, σ(t),

defined in (4.25), is a casual signal.

Further, for every δ > 0, let

Lδ
∆
=
γ̄1 + δ

δ

(
K(γ̄1+δ) + ‖Fx‖∞

)
, (4.27)

where Kδ is introduced in Assumption 4.1, and γ̄1 is an arbitrarily small positive constant. It can

be shown that the following bound on w(t) holds

‖wt‖L∞ ≤ Lδ ‖xt‖L∞ + L2, (4.28)

where L2
∆
= L0 + L1. Also, define

Mr
∆
= max{rmax1 , ..., rmaxq}, (4.29)

where rmaxi ’s are introduced in (4.8). The design of the controller proceeds by finding a low-pass

filter C(s) such that C(0) = Iq. The selection of C(s) must ensure that

H1(s) is stable, (4.30)

where H1(s) is defined in (4.24), and for a given ρ0, there exists ρr > ρ0, such that the following
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L1-norm condition holds:

‖G(s)‖L1
<
ρr − ρ1 − ρ2

Lρrρr + L2
, (4.31)

where

ρ1
∆
=
∥∥∥s(sIn −Ax +BxFx)−1 − sH5(s)Hin(s)

∥∥∥
L1

ρ0, ρ2
∆
= ‖H2(s)Kg‖L1

Mr. (4.32)

Remark 4.3. Selection of the filter C(s) provides a trade-off between performance in terms of dis-

turbance compensation and robustness in terms of input-delay margin. A mixed-norm optimization

of the filter for L1 adaptive control structure can be found in [103].

Let P1 ∈ Rq×q and P2 ∈ R(nm−q)×(nm−q) be positive definite matrices given by

P1
∆
=
(
Cm

√
P
−1√

P
−>
C>m

)−1
, P2

∆
= (DD>)−1. (4.33)

Define [
η>1 (t) η>2 (t)

]
∆
= 1>nmqe

ΛAmΛ−1t, (4.34)

where η1(t) ∈ Rq×q and η2(t) ∈ R(nm−q)×q, and

κ(Ts)
∆
=

∫ Ts
N

0

∥∥∥1>nmqe
ΛAmΛ−1(Ts

N
−τ)ΛBm

∥∥∥
2
dτ. (4.35)

Define the function

Γ (Ts)
∆
= α1(Ts)

∥∥∥(sIv −Ao)−1Bo

∥∥∥
L1

+ α2(Ts), (4.36)

where the system matrices (Ao, Bo, Co) satisfy (4.13), and

α1(Ts)
∆
= max

t∈[0, Ts
N

]

∥∥Co

(
eAot − Iv

)∥∥
∞ , α2(Ts)

∆
= max

t∈[0, Ts
N

]

∫ t

0

∥∥∥Coe
Ao(t−τ)Bo

∥∥∥
∞
dτ.
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Let

Υ(Ts) =
∥∥∥e−Am

Ts
N Φ−1 (Ts) e

ΛAmΛ−1 Ts
N 1nmq

∥∥∥
∞
,

Ψ (Ts) =
∥∥∥H5(s)Cm(sInm

−Am)
−1
(
eAm

Ts
N − Inm

)∥∥∥
L1

,

Ω1(Ts) =
(
1− ‖G(s)‖L1

Lρr

)−1
(∥∥H2(s)C(s)M−1(s)

∥∥
L1

+ ‖H2(s)‖L1
(NΓ (Ts) + Ψ (Ts)) Υ (Ts)

)
,

Θ(Ts) = ‖H3(s)‖L1
Lρr

Ω1(Ts) +
∥∥H4(s)C(s)M−1(s)

∥∥
L1

+ ‖H4(s)‖L1
(NΓ (Ts) + Ψ (Ts)) Υ (Ts) ,

ρ∆ =‖H3(s)‖L1
(Lρrρr + L2) + ‖H4(s)Kg‖L1

Mr +
∥∥sH1(s)M−1(s)Hin(s)

∥∥
L1
ρ0,

Ω2(Ts)
∆
=
∥∥C(s)M−1(s)

∥∥
L1

+ ‖C(s)‖L1
Lρr

Ω1(Ts) + (NΓ (Ts) + Ψ (Ts)) Υ (Ts) ,

ρur
∆
=‖C(s)H3(s)‖L1

(Lρr
ρr + L2) +

∥∥sC(s)H1(s)M−1(s)Hin(s)
∥∥
L1
ρ0 + ‖(Iq − C(s)H4(s))Kg‖L1

Mr,

(4.37)

where Hi(·)’s are defined in (4.24). Next, we introduce the functions

β1(Ts)
∆
= max

t∈[0, Ts
N ]
‖η1(t)‖2 , β2(Ts)

∆
= max

t∈[0, Ts
N ]
‖η2(t)‖2 , (4.38)

where η1(t) and η2(t) are given in (4.34). Also

β3(Ts)
∆
= max

t∈[0, Ts
N ]
η3(t, Ts), β4(Ts)

∆
= max

t∈[0, Ts
N ]
η4(t), (4.39)

where

η3(t, Ts)
∆
=
∫ t

0

∥∥∥1>nmqe
ΛAmΛ−1(t−τ)ΛΦ−1 (Ts) e

ΛAmΛ−1 Ts
N 1nmq

∥∥∥
2
dτ, η4(t)

∆
=
∫ t

0

∥∥∥1>nmqe
ΛAmΛ−1(t−τ)ΛBm

∥∥∥
2
dτ.

(4.40)

For γ̄0 > 0, let

∆1(γ̄0)
∆
= ρ∆ + Θ(Ts)γ̄0, ∆2(γ̄0)

∆
= λmax

(
Λ−>PΛ−1

)(2
√
q∆1(γ̄0)

∥∥Λ−>PBm

∥∥
2

λmin (Λ−>QΛ−1)

)2

, (4.41)

where ρ∆ and Θ(·) are defined in (4.37). Also, let

ς(γ̄0, Ts)
∆
=

∥∥∥∥η2

(
Ts

N

)∥∥∥∥
2

√
∆2(γ̄0)

λmax(P2)
+
√
qκ(Ts)∆1(γ̄0), (4.42)

where η2(·) is defined in (4.34), and κ(·) is given in (4.35). Let

γ0(γ̄0, Ts)
∆
=β1(Ts)ς(γ̄0, Ts) + β2(Ts)

√
∆2(γ̄0)

λmax(P2)
+ β3(Ts)ς(γ̄0, Ts) +

√
qβ4(Ts)∆1(γ̄0). (4.43)

Let µ be a positive constant, and Tsmax > 0 be a given upper bound on the sampling time Ts.
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For Fz ∈ Rq×p, define

∆s(µ, Fz)
∆
=
‖Bz‖∞
µ

Mr ‖WFz‖∞ ν1,

∆F (µ, Fz)
∆
= ‖Bz‖∞ ‖M(s)(Iq − C(s))‖L1

ρ∆ + ‖Bz‖∞ ‖Cx‖∞ γ̄1 + ‖Bz‖∞

∥∥∥∥ µ

s+ µ
Iq −M(s)Kg

∥∥∥∥
L1

Mr

+ ‖Bz‖∞
∥∥∥sCm (sIq −Am)

−1
C†mCm

∥∥∥
L1

ρ0 +
‖Bz‖∞
µ

(δrm
+Mr ‖WFz‖∞Gρr+γ̄1

ν2)

+
Mr

µ
‖Bz‖2∞ ‖WFz‖∞ (αMr + ‖Cx‖∞ (ρr + γ̄1)) ν2 +Gρr+γ̄1

+ γ̄r,

(4.44)

where γ̄r is an arbitrarily small positive constant, and

ν1
∆
= sup

t∈(0,MTsmax ]

1

t

∥∥eAzt − Ip
∥∥
∞ , ν2

∆
= sup

t∈(0,MTsmax ]

1

t

∫ t

0

∥∥∥eAz(t−τ)
∥∥∥
∞
dτ. (4.45)

Following a notation similar to [111], let D be the set of q × q diagonal matrices, whose

diagonal elements are either 1 or 0. There are 2q elements in D, and we denote its elements as

Di, i ∈ {1, ..., 2q}. Denote D−i = Iq − Di. It is easy to see that D−i ∈ D. Let the positive

definite matrix S ∈ Rp×p be given. Next, the high-level controller design proceeds by considering

Fz, Hz ∈ Rq×p, a positive definite R ∈ Rp×p, and a constant µ > 0, such that(
Az −Bz(DiFz +D−i Hz)

)>
R+R

(
Az −Bz(DiFz +D−i Hz)

)
+ S ≺ 0p×p, ∀i ∈ {1, ..., 2q},

(4.46)

and

‖WHz‖∞ ≤ (1− α)ρ−1
z , (4.47)

where α is introduced in Assumption 4.4, and

ρz =

(
1−

2
√
p ‖R‖2 ∆s(µ, Fz)

λmin(S)

)−1 2
√
p ‖R‖2 ∆F (µ, Fz)

λmin(S)
, (4.48)

with ∆s(µ, Fz) and ∆F (µ, Fz) defined in (4.44).

Finally, define

γz(γ̄0, Ts)
∆
=α3(Ts)ρz + α4(Ts) (‖Bz‖∞ (αMr + ‖Cx‖∞ (ρr + Ω1(Ts)γ̄0)) +Gρr+γ̄1) ,

γr(γ̄0, Ts)
∆
= ‖Bz‖∞Mr

(
2(1− e−µMTs) + ‖WFz‖∞ γz(γ̄0, Ts)

)
,

(4.49)
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where

α3(Ts)
∆
= max

t∈[0,MTs]

∥∥eAzt − Ip
∥∥
∞ , α4(Ts)

∆
= max

t∈[0,MTs]

∫ t

0

∥∥∥eAz(t−τ)
∥∥∥
∞
dτ. (4.50)

Lemma 4.1. For all γ̄0 > 0, the following relationships hold:

lim
Ts→0

γ0(γ̄0, Ts) = 0, lim
Ts→0

γr(γ̄0, Ts) = 0, (4.51)

where γ0(·, ·) and γz(·, ·) are given in (4.43) and (4.49) respectively.

Proof. The proof is similar to the proof of Lemma 3.3.1 in [47] and hence is omitted here. �

Lemma 4.2. There exist Ts > 0 and an arbitrarily small positive constant γ̄0, such that

γ0(γ̄0, Ts) < γ̄0, Ω1(Ts)γ̄0 < γ̄1, γr(γ̄0, Ts) < γ̄r, (4.52)

where γ̄1 and γ̄r are introduced in (4.27) and (4.44). Also, Ω1(·), γ0(·, ·), and γr(·, ·) are defined

in (4.37), (4.43), and (4.49), respectively.

Proof. It is straightforward to verify that Ω1(Ts) is a bounded function as Ts tends to zero. In

addition, Lemma 4.1 shows that γ0(γ̄0, Ts) and γz(γ̄0, Ts) both approach arbitrarily close to zero

for all γ̄0 with sufficiently small Ts. Therefore, there always exist constants Ts and γ̄0 that satisfy

the inequalities in (4.52). �

The sampling time Ts of the digital controller is selected such that Ts ≤ Tsmax , and the in-

equalities in (4.52) hold.

Lemma 4.3. For arbitrary ξ =

[
y1

y2

]
∈ Rnm, where y1 ∈ Rq and y2 ∈ R(nm−q), there exist positive

definite P1 ∈ Rq×q and P2 ∈ R(nm−q)×(nm−q) such that

ξ>
(
Λ−1

)>
PΛ−1ξ = y>1 P1y1 + y>2 P2y2, (4.53)

where Λ is given in (4.17). Also, P1 and P2 are defined in (4.33).

Proof. The proof of Lemma 4.3 can be found in [47]. �

Consider the following closed-loop reference system

ẋref(t) = Axxref(t) +Bx (uref(t) + f (t, xref(t)) + d(t)) , xref(0) = x0

uref(s) = Kgr(s)− C(s)σref(s),

yref(t) = Cxxref(t),

(4.54)
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where

σref(s) =[(P (s)−M(s))C(s) +M(s)]−1 (P (s)−M(s))Kgr(s)

+ [(P (s)−M(s))C(s) +M(s)]−1 (P (s)wref(s) +Hin(s)x0) ,
(4.55)

and wref(s) is the Laplace transform of wref(t) given by

wref(t) = Fxxref(t) + f (t, xref(t)) + d(t). (4.56)

The reference system can be rewritten as

yref(s) =M(s)Kgr(s) +M(s) (Iq − C(s))σref(s) + Cm (sInm −Am)−1C†my0. (4.57)

From (4.57) we notice that the unknown uncertainty σref(t), given by the Laplace transform in

(4.55), is mitigated within the bandwidth of C(s), and the desired response (in Assumption 4.2)

is recovered. The reference system in (4.54) defines the achievable performance by the closed-loop

multirate system given in (4.1), (4.14)-(4.20), as the sampling time Ts of the digital controller

tends to zero. In the following, we first prove that σref(t) is bounded, and the reference system

in (4.54) is stable. Then we establish uniform bounds between the closed-loop system defined by

(4.1), (4.14)-(4.20) and the reference system.

Lemma 4.4. For the closed-loop reference system in (4.54), subject to the L1-norm condition

(4.31), if ‖x0‖∞ ≤ ρ0, then

‖xref‖L∞ < ρr, (4.58)

‖uref‖L∞ < ρur, (4.59)

where ρr and ρur are given in (4.37).

Proof. It follows from (4.54) and the definition of H0(s), H5(s), P (s) and G(s) in (4.24) that

xref(s) = [H0(s)−H5(s) (P (s)−M(s))]Kgr(s)−G(s)wref(s)−H5(s)Hin(s)xo + (sIn −Ax +BxFx)
−1
x0.

Then the following upper bound can be established for τ > 0

‖xrefτ‖L∞ ≤ ‖G(s)‖L1
‖wrefτ‖L∞ + ‖H2(s)Kg‖L1

‖r‖L∞ +
∥∥s(sIn −Ax +BxFx)−1 − sH5(s)Hin(s)

∥∥
L1

∥∥∥∥1

s
x0

∥∥∥∥
L∞

.

(4.60)

We have ‖xref(0)‖∞ = ‖x0‖∞ < ρr. In addition, xref(t) is continuous. Therefore, if the bound in

(4.58) is not true, there exists a time τ1 > 0, such that

‖xref(t)‖∞ < ρr, ∀t ∈ [0, τ1), ‖xref(τ1)‖∞ = ρr,

which implies that
∥∥xrefτ1

∥∥
L∞ = ρr. Then it follows from Assumption 4.1 and the redefinition in
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(4.27) that ∥∥wrefτ1

∥∥
L∞ ≤ Lρr

∥∥xrefτ1

∥∥
L∞ + L2. (4.61)

The bound in (4.61), together with the upper bound in (4.60), lead to

∥∥xrefτ1

∥∥
L∞ ≤

‖G(s)‖L1
L2+ρ1+ρ2

1−‖G(s)‖L1
Lρr

.

The condition in (4.31) can be solved for ρr to obtain the bound

ρr >
‖G(s)‖L1

L2+ρ1+ρ2

1−‖G(s)‖L1
Lρr

,

which leads to
∥∥xrefτ1

∥∥
L∞ < ρr. This contradicts

∥∥xrefτ1

∥∥
L∞ = ρr, thus proving the bound in (4.58).

This further implies that the upper bound in (4.61) holds for all τ1 > 0 with strict inequality, which

in turn implies that

‖wref‖L∞ < Lρrρr + L2. (4.62)

The bound on uref(t) follows from (4.54), (4.55) and (4.62), which proves (4.59). �

Remark 4.4. Lemma 4.4 implies that σref(t), with its Laplace transform defined in (4.55), is

bounded

‖σref‖L∞ ≤ ρ∆, (4.63)

where ρ∆ is defined in (4.37).

We consider an equivalent state-space model of the predictor dynamics in (4.15) given by

˙̂x(t) = Amx̂(t) +Bmu(t) + σ̂(t), x̂(0) = C†my0

ŷ(t) = Cmx̂(t),
(4.64)

where

σ̂(t) = σ̂d[j], t ∈
[
j
Ts

N
, (j + 1)

Ts

N

)
, j ∈ Z≥0, (4.65)

and u(t) is given by (4.3) and (4.14). Since σ̂(t) and u(t) are piecewise constants in (4.64), from

(4.15) we have

ŷ

(
j
Ts

N

)
= ŷd[j], j ∈ Z≥0. (4.66)

Let x̃(t) = x̂(t)−xa(t), where xa(t) is defined in (4.25). Then the prediction error dynamics between

(4.25) and (4.64) are given by

˙̃x(t) = Amx̃(t) + σ̂(t)−Bmσ(t), x̃(0) = 0nm×1,

ỹ(t) = Cmx̃(t),
(4.67)

where σ̂(t) is defined in (4.65).
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Lemma 4.5. Consider the closed-loop system defined by (4.1), (4.14)-(4.20), and the closed-loop

reference system in (4.54). The following upper bound holds

‖(xref − x)t‖L∞ ≤ Ω1(Ts)‖ỹt‖L∞ ,

where Ω1(·) is given in (4.37), and ỹ(t) is the prediction error defined in (4.67).

Proof. Let

uC(s) = Kgr(s)− C(s)M−1(s)Cm(sInm −Am)−1σ̂(s), (4.68)

uM(s) = Kgr(s)− C(s)M−1(s)Cm(sInm −Am)−1e−Am
Ts
N σ̂(s). (4.69)

It follows from (4.67) that

ỹ(s) =−M(s)σ(s) + Cm(sInm −Am)−1σ̂(s). (4.70)

Letting e(t)
∆
= xref(t)− x(t) and denoting by de(s) the Laplace transform of

de(t)
∆
= wref(t)− w(t), (4.71)

it follows from (4.1), (4.26), (4.14), (4.54), (4.68), (4.69) and (4.70)

e(s) =H0(s)C(s)M−1(s)ỹ(s) +H0(s)de(s) +H0(s) (uC(s)− uM(s)) +H0(s) (uM(s)− u(s))

−H0(s)C(s) (σref(s)− σ(s)) ,

(4.72)

where H0(s) is defined in (4.24). Further

H0(s)C(s) (σref(s)− σ(s)) =H5(s)P (s)de(s)−H5(s) (P (s)−M(s)) (uC(s)− uM(s))

−H5(s) (P (s)−M(s)) (uM(s)− u(s)) +H5(s) (P (s)−M(s))C(s)M−1(s)ỹ(s).

(4.73)

From (4.72) and (4.73) one can obtain

e(s) = (H0(s)−H5(s) (P (s)−M(s)))C(s)M−1(s)ỹ(s) + (H0(s)−H5(s) (P (s)−M(s))) (uC(s)− uM(s))

+ (H0(s)−H5(s) (P (s)−M(s))) (uM(s)− u(s)) + (H0(s)−H5(s)P (s)) de(s).

(4.74)

Then the upper bound is given by

‖et‖L∞ ≤
∥∥(H0(s)−H5(s) (P (s)−M(s)))C(s)M−1(s)

∥∥
L1
‖ỹt‖L∞ + ‖(H0(s)−H5(s) (P (s)−M(s)))‖L1

∥∥(uC − uM)t
∥∥
L∞

+ ‖(H0(s)−H5(s) (P (s)−M(s)))‖L1

∥∥(uM − u)t
∥∥
L∞

+ ‖G(s)‖L1
Lρr‖et‖L∞ .

(4.75)
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From (4.66) we have

ỹ

(
j
Ts

N

)
= ỹd[j], j ∈ Z≥0. (4.76)

From (4.20), (4.65) and (4.76) the following relation can be derived∥∥∥e−Am
Ts
N σ̂t

∥∥∥
L∞
≤ Υ (Ts) ‖ỹt‖L∞ , (4.77)

where Υ(·) is defined in (4.37). Notice that ud[i] in (4.14) is a step-invariant discrete-time approxi-

mation of uM(s), given in (4.69). Therefore, the discretization error bound between (4.3) and (4.69)

is given by

‖(uM − u)t‖L∞ ≤NΓ (Ts) Υ (Ts) ‖ỹt‖L∞ , (4.78)

where Γ(·) is introduced in (4.36). Moreover, from (4.68), (4.69) and (4.77) one can obtain

‖(uC − uM)t‖L∞ ≤ Ψ (Ts) Υ (Ts) ‖ỹt‖L∞ , (4.79)

where Ψ(·) is defined in (4.37). From (4.75), (4.78) and (4.79) the following upper bound can be

deduced

‖et‖L∞ ≤ Ω1(Ts)‖ỹt‖L∞ . (4.80)

This concludes the proof. �

Theorem 4.1. Consider the system in (4.1) and the controller in (4.14)-(4.20), subject to con-

ditions in (4.30) and (4.31). Assume that Ts ≤ Tsmax is selected sufficiently small, such that the

inequalities in (4.52) hold. If ‖x0‖∞ ≤ ρ0, then

‖ỹ‖L∞ < γ̄0, (4.81)

‖xref − x‖L∞ < Ω1(Ts)γ̄0, ‖uref − u‖L∞ < Ω2(Ts)γ̄0, (4.82)

where ỹ(t) is the prediction error, defined in (4.67), and γ̄0 > 0 is a given arbitrarily small constant.

Also, Ω1(Ts) and Ω2(Ts) are defined in (4.37) respectively.

Proof. Let γ̄0 be a constant satisfying (4.52). First, we prove the bound in (4.81) by a contradiction

argument. Since ỹ(0) = 0, and ỹ(t) is continuous, then assuming the opposite implies that there

exists τ1, such that

‖ỹ(t)‖∞ < γ̄0, ∀ 0 ≤ t < τ1,

‖ỹ(τ1)‖∞ = γ̄0,
(4.83)

which leads to

‖ỹτ1‖L∞ = γ̄0. (4.84)
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Let e(t)
∆
= xref(t) − x(t). The sampling time Ts is selected such that the inequities in (4.52) hold.

Then the bound in (4.52), Lemma 4.5 and the upper bound in (4.58) can be used to derive the

following bound

‖xτ1‖L∞ ≤
∥∥∥xrefτ1

∥∥∥
L∞

+ ‖eτ1‖L∞ < ρr + γ̄1, (4.85)

which implies

‖wτ1‖L∞ ≤ Lρrρr + L2. (4.86)

One can obtain from (4.55) ∥∥∥σrefτ1

∥∥∥
L∞
≤ ρ∆, (4.87)

where ρ∆ is defined in (4.37). Also, we have

σref(s)− σ(s) = H3(s)de(s)−H4(s) (uM(s)− u(s))−H4(s) (uC(s)− uM(s)) +H4(s)C(s)M−1(s)ỹ(s),

(4.88)

which along with (4.87) implies

‖στ1‖L∞ ≤ ∆1(γ̄0), (4.89)

where ∆(·) is defined in (4.41).

Now consider the state transformation

ξ̃ = Λx̃, (4.90)

where Λ is defined in (4.17), and x̃(t) = x̂(t)− xa(t). From (4.67) and (4.90) it follows

˙̃
ξ(t) = ΛAmΛ−1ξ̃(t) + Λσ̂(t)− ΛBmσ(t), ξ̃(0) = 0nm×1

ỹ(t) = 1nmq ξ̃(t).
(4.91)

From (4.91) we have

ξ̃

(
j
Ts

N
+ t

)
= eΛAmΛ−1tξ̃

(
j
Ts

N

)
+

∫ t

0
eΛAmΛ−1(t−τ)Λ

(
σ̂

(
j
Ts

N

)
−Bmσ

(
j
Ts

N
+ τ

))
dτ. (4.92)

Since

ξ̃

(
j
Ts

N
+ t

)
=

[
ỹ(j Ts

N + t)

0(nm−q)×1

]
+

[
0q×1

z̃(j Ts
N + t)

]
,

where z̃(t) =
[
ξ̃q+1(t), ..., ξ̃nm(t)

]>
, ξ̃(j Ts

N + t) can be decomposed as

ξ̃

(
j
Ts

N
+ t

)
= χ

(
j
Ts

N
+ t

)
+ ζ

(
j
Ts

N
+ t

)
, (4.93)
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such that

χ

(
j
Ts

N
+ t

)
=eΛAmΛ−1t

[
ỹ
(
j Ts
N

)
0(nm−q)×1

]
+

∫ t

0
eΛAmΛ−1(t−τ)Λσ̂

(
j
Ts

N

)
dτ, (4.94)

ζ

(
j
Ts

N
+ t

)
=eΛAmΛ−1t

[
0q×1

z̃(j Ts
N )

]
−
∫ t

0
eΛAmΛ−1(t−τ)ΛBmσ

(
j
Ts

N
+ τ

)
dτ. (4.95)

Next we prove that∥∥∥∥ỹ(j Ts

N

)∥∥∥∥
2

≤ ς(γ̄0, Ts), z̃>
(
j
Ts

N

)
P2z̃

(
j
Ts

N

)
≤ ∆2(γ̄0), ∀j Ts

N
≤ τ1, (4.96)

where ∆(·) and ς(·, ·) are defined in (4.41) and (4.42) respectively. It is straightforward to show that

‖ỹ(0)‖2 ≤ ς(γ̄0, Ts), z̃
>(0)P2z̃(0) ≤ ∆2(γ̄0). Next, for arbitrary k ∈ Z≥0, such that (k + 1)Ts

N ≤ τ1,

we prove that if ∥∥∥∥ỹ(kTs

N

)∥∥∥∥
2

≤ ς(γ̄0, Ts), (4.97)

z̃>
(
k
Ts

N

)
P2z̃

(
k
Ts

N

)
≤ ∆2(γ̄0), (4.98)

then the inequalities in (4.97)-(4.98) hold for k + 1 as well, which would imply that the bounds in

(4.97)-(4.98) hold for all k ∈ Z≥0, such that k Ts
N ≤ τ1. To this end, suppose that (4.97) and (4.98)

hold for k ∈ Z≥0, and in addition that (k + 1)Ts
N ≤ τ1. Then it follows from (4.93) that

ξ̃

(
(k + 1)

Ts

N

)
= χ

(
(k + 1)

Ts

N

)
+ ζ

(
(k + 1)

Ts

N

)
, (4.99)

where

χ

(
(k + 1)

Ts

N

)
=eΛAmΛ−1 Ts

N

[
ỹ(k Ts

N )

0(nm−q)×1

]
+

∫ Ts
N

0
eΛAmΛ−1(Ts

N
−τ)Λσ̂

(
k
Ts

N

)
dτ, (4.100)

ζ

(
(k + 1)

Ts

N

)
=eΛAmΛ−1 Ts

N

[
0q×1

z̃(k Ts
N )

]
−
∫ Ts

N

0
eΛAmΛ−1(Ts

N
−τ)ΛBmσ

(
k
Ts

N
+ τ

)
dτ. (4.101)

Using (4.76) and substituting the adaptive law from (4.20) and (4.65) for σ̂
(
k Ts
N

)
in (4.100), we

have

χ

(
(k + 1)

Ts

N

)
= 0. (4.102)

From (4.95), it follows that ζ(t) is the solution of the system:

ζ̇(t) = ΛAmΛ−1ζ(t)− ΛBmσ(t),

ζ

(
k
Ts

N

)
=

[
0(nm−q)×1

z̃(k Ts
N )

]
, t ∈

[
k
Ts

N
, (k + 1)

Ts

N

)
.

(4.103)
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Let

V (t) = ζ>(t)Λ−>PΛ−1ζ(t), ∀t ∈
[
k
Ts

N
, (k + 1)

Ts

N

)
.

Since Λ is nonsingular, and P is positive definite, Λ−>PΛ−1 is positive definite, and, hence, V (t)

is a positive-definite function. Using Lemma 4.3 and Equation (4.103), we can derive

V

(
ζ

(
k
Ts

N

))
= z̃>

(
k
Ts

N

)
Λ−>PΛ−1z̃

(
k
Ts

N

)
,

which, along with the upper bound in (4.98), yields

V

(
ζ

(
k
Ts

N

))
≤ ∆2(γ̄0). (4.104)

From (4.103) it follows that for all t ∈
[
k Ts
N , (k + 1)Ts

N

)
V̇ (t) =ζ>(t)Λ−>PΛ−1ΛAmΛ−1ζ(t) + ζ>(t)Λ−>A>mΛ>Λ−>P>Λ−1ζ(t)− 2ζ>(t)Λ−>PΛ−1ΛBmσ(t)

=− ζ>(t)Λ−>QΛ−1ζ(t)− 2ζ>(t)Λ−>PΛ−1ΛBmσ(t).

Using the upper bound from (4.89), for all t ∈
[
k Ts
N , (k + 1)Ts

N

)
, one can derive

V̇ (t) ≤− λmin

(
Λ−>QΛ−1

)
‖ζ(t)‖22 + 2 ‖ζ(t)‖2

∥∥∥Λ−>PBm

∥∥∥
2

√
q∆1(γ̄0). (4.105)

Notice that if

V (t) > ∆2(γ̄0), ∀t ∈
[
k
Ts

N
, (k + 1)

Ts

N

)
, (4.106)

the following holds

‖ζ(t)‖2 >

√
∆2(γ̄0)

λmax (Λ−>PΛ−1)
=

2
√
q∆1(γ̄0)

∥∥Λ−>PBm

∥∥
2

λmin (Λ−>QΛ−1)
.

Moreover, the upper bound in (4.105) yields

V̇ (t) < 0. (4.107)

From (4.104), (4.106) and (4.107), it follows

V (t) ≤ ∆2(γ̄0), ∀t ∈
[
k
Ts

N
, (k + 1)

Ts

N

)
,

and therefore

ζ>
(

(k + 1)
Ts

N

)
Λ−>PΛ−1ζ

(
(k + 1)

Ts

N

)
≤ ∆2(γ̄0). (4.108)

51



Then (4.99), (4.102) and the upper bound in (4.108) lead to the following inequality

ξ̃>
(

(k + 1)
Ts

N

)
Λ−>PΛ−1ξ̃

(
(k + 1)

Ts

N

)
≤ ∆2(γ̄0).

Using the result of Lemma 4.3, one can derive

z̃>
(
(k + 1)Ts

N

)
P2z̃

(
(k + 1)Ts

N

)
≤ ξ̃>

(
(k + 1)Ts

N

)
Λ−>PΛ−1ξ̃

(
(k + 1)Ts

N

)
≤ ∆2(γ̄0),

which implies that the upper bound in (4.98) holds for k + 1.

Next, from (4.91), (4.99) and (4.102) it follows

ỹ

(
(k + 1)

Ts

N

)
= 1>nmqζ

(
(k + 1)

Ts

N

)
,

and the definition of ζ
(
(k + 1)Ts

N

)
in (4.101) leads to the following expression

ỹ

(
(k + 1)

Ts

N

)
=1>nmqe

ΛAmΛ−1 Ts
N

[
0q×1

z̃(k Ts
N )

]
− 1>nmq

∫ Ts
N

0
eΛAmΛ−1(Ts

N
−τ)ΛBmσ

(
k
Ts

N
+ τ

)
dτ.

The upper bounds in (4.89) and (4.98) yield the following upper bound

∥∥ỹ ((k + 1)Ts

N

)∥∥
2
≤
∥∥η2(Ts

N )
∥∥

2

∥∥z̃(k Ts

N )
∥∥

2
+
∫ Ts

N

0

∥∥∥1>nmqe
ΛAmΛ−1( Ts

N −τ)ΛBm

∥∥∥
2

∥∥σ (k Ts

N + τ
)∥∥

2
dτ ≤ ς(γ̄0, Ts),

where η2(·), κ(·) and ς(·, ·) are defined in (4.34), (4.35) and (4.42) respectively. This confirms the

upper bound in (4.97) for k + 1. Hence, Equation (4.96) holds for all j Ts
N ≤ τ1.

For all j Ts
N + t ≤ τ1 and t ∈

[
0, Ts

N

]
, using the expression from (4.92), we obtain

ỹ

(
j
Ts

N
+ t

)
=1>nmqe

ΛAmΛ−1tξ̃

(
j
Ts

N

)
+ 1>nmq

∫ t

0
eΛAmΛ−1(t−τ)Λσ̂

(
j
Ts

N

)
dτ

− 1>nmq

∫ t

0
eΛAmΛ−1(t−τ)ΛBmσ

(
j
Ts

N
+ τ

)
dτ.

The upper bound in (4.89) and the expressions of η1(·), η2(·), η3(·, ·) and η4(·, ·), given in (4.34)

and (4.40), lead to∥∥∥∥ỹ(j Ts

N
+ t

)∥∥∥∥
2

≤ ‖η1(t)‖2

∥∥∥∥ỹ(j Ts

N

)∥∥∥∥
2

+ ‖η2(t)‖2

∥∥∥∥z̃(j Ts

N

)∥∥∥∥
2

+ η3 (t, Ts)

∥∥∥∥ỹ(j Ts

N

)∥∥∥∥
2

+ η4 (t)
√
q∆1(γ̄0).

Consider (4.96) and β1(·), β2(·), β3(·), β4(·) defined in (4.38)-(4.39). For arbitrary nonnegative

integer j, subject to j Ts
N + t ≤ τ1, and for all t ∈

[
0, Ts

N

]
, we have

∥∥∥∥ỹ(j Ts

N
+ t

)∥∥∥∥
2

≤β1 (Ts) ς(γ̄0, Ts) + β2 (Ts)

√
∆2(γ̄0)

λmax (P2)
+ β3 (Ts) ς(γ̄0, Ts) +

√
qβ4 (Ts) ∆1(γ̄0).
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Since the right-hand side coincides with the definition of γ0(γ̄0, Ts) in (4.43), we have the bound

‖ỹ (t)‖2 ≤ γ0(Ts, ε̄), ∀t ∈ [0, τ1],

which, along with the design constraint on Ts introduced in (4.52), yields

‖ỹτ1‖L∞ < γ̄0.

This clearly contradicts the statement in (4.84). Therefore, ‖ỹ‖L∞ < γ̄0, which proves (4.81).

Further, it follows from Lemma 4.5 that

‖et‖L∞ < Ω1(Ts)γ̄0,

which holds uniformly for all t ≥ 0 and therefore leads to the first upper bound in (4.82).

To prove the second bound in (4.82), we notice that it follows from (4.1), (4.14), (4.54), (4.68),

(4.69) and (4.70) that

uref(s)− u(s) =C(s)M−1(s)ỹ(s)− C(s)de(s) + (uC(s)− uM(s)) + (uM(s)− u(s)) , (4.109)

where de(s) is the Laplace transform of de(t) defined in (4.71). Also, uC and uM are defined in
(4.68) and (4.69). We have

‖uref(s)− u(s)‖L∞ ≤
∥∥C(s)M−1(s)

∥∥
L1
‖ỹ‖L∞ + ‖uC(s)− uM(s)‖L∞ + ‖uM(s)− u(s)‖L∞ + ‖C(s)‖L1

Lρr‖e‖L∞ .
(4.110)

Combining (4.78), (4.79), (4.81), (4.82) and (4.110) leads to

‖uref(s)− u(s)‖L∞ <Ω2(Ts)γ̄0. (4.111)

This concludes the proof. �

Remark 4.5. Lemmas 4.1 and 4.2 indicate that an arbitrarily small bound on the prediction error

γ̄0 can be achieved as Ts goes to zero. We can show also that Ω1(Ts) and Ω2(Ts) are bounded, as Ts

tends to zero. Therefore the bounds in (4.82) can be made arbitrarily small. This implies that the

closed-loop sampled-data system recovers the performance of the continuous-time reference system

in (4.54), as the sampling time goes to zero.

Lemma 4.6. Let u, v ∈ Rq with u = [u1, ..., uq]
> and v = [v1, ..., vq]

>. Suppose that |vj | ≤ 1 for

all j ∈ [1, ..., q]. Then sat{u} ∈ co{Diu + D−i v : i ∈ [1, ..., 2q]}, where co{·} denotes the convex

hull.

Proof. See [112] for the proof.

Theorem 4.2. Consider the high-level subsystem in (4.2), the desired system in (4.9) and the

reference command law in (4.22). Let the positive definite matrix S ∈ Rp×p be given. Then if there
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exist Fz, Hz ∈ Rq×p and a positive definite R ∈ Rp×p, such that the conditions in (4.46) and (4.47)

hold, then the error ez(t) = zm(t)− z(t) is uniformly bounded

‖ez‖L∞ < ρz, (4.112)

where ρz is given in (4.48).

Proof. Using (4.2) and (4.9), the error ez(t) is governed by

ėz(t) = Azez(t) +Bz (rm(t)− y(t))− g(x(t), t), ez(0) = 0. (4.113)

Then we can rewrite (4.113) as

ėz(t) =Azez(t)− (1− α)BzW
−1sat{ 1

1− α
WFzez(t)}+Bz (yref(t)− y(t)) +Bz (rF(t)− yref(t))

+Bz

(
rm(t)− r(t) + (1− α)W−1sat{ 1

1− α
WFzez(t)}

)
− g(x(t), t) +Bz (r(t)− rF(t)) .

(4.114)

where the Laplace transform of rF(t) is given by

rF(s) =
µ

s+ µ
r(s). (4.115)

Let

F(t) =Bz (yref(t)− y(t)) +Bz (rm(t)− r(t))− g(x(t), t) + (1− α)BzW
−1sat{ 1

1− α
WFzez(t)}

+Bz (r(t)− rF(t)) +Bz (rF(t)− yref(t)) .

(4.116)

Then the equation in (4.114) can be rewritten as

ėz(t) = Azez(t)− (1− α)BzW
−1sat{ 1

1− α
WFzez(t)}+ F(t). (4.117)

Select Vz(t) = e>z (t)Rez(t) as the Lyapunov function for the closed-loop error dynamics in

(4.117). Then the derivative of Vz can be obtained as

V̇z(t) =2e>z (t)R (Azez(t) + F(t))− 2e>z (t)RBz(1− α)W−1sat{ 1

1− α
WFzez(t)}. (4.118)

We have ‖ez(0)‖∞ = 0 < ρz. In addition, ez(t) is continuous. Therefore, if the bound in (4.58)

is not true, there exists a time τ1 > 0 such that

‖ez(t)‖∞ < ρz, ∀t ∈ [0, τ1), ‖ez(τ1)‖∞ = ρz,
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which implies that ‖ezτ1‖L∞ = ρz. Then, by Lemma 4.6 and the condition in (4.47), we have for

∀t ∈ [0, τ1] that

V̇z(t) ≤ max
i∈{1,...,2q}

{2e>z (t)R
(
Azez(t)−Bz

(
DiFz +D−i Hz

)
ez(t) + F(t)

)
}. (4.119)

Furthermore, from the condition in (4.46) we obtain

V̇z(t) ≤ −e>z (t)Sez(t) + 2e>z (t)RF(t). (4.120)

Using the upper bound from (4.120), for t ∈ [0, τ1] one can derive

V̇z(t) ≤ −λmin(S) ‖ez(t)‖22 + 2
√
p ‖ez(t)‖2 ‖R‖2 ‖Fτ1‖L∞ . (4.121)

Notice that if

Vz(t) > λmax(R)

(
2
√
p ‖R‖2 ‖Fτ1‖L∞
λmin(S)

)2

, (4.122)

the following holds

‖ez(t)‖2 >
2
√
p ‖R‖2 ‖Fτ1‖L∞
λmin(S)

. (4.123)

Moreover, the upper bound in (4.121) yields

V̇z(t) < 0. (4.124)

From (4.122)-(4.124) it follows

Vz(t) ≤ λmax(R)

(
2
√
p ‖R‖2 ‖Fτ1‖L∞
λmin(S)

)2

, (4.125)

and therefore ∥∥ezτ1

∥∥
L∞
≤

2
√
p ‖R‖2 ‖Fτ1‖L∞
λmin(S)

. (4.126)

In the following, we obtain the bound on F(t) for t ∈ [0, τ1]. Using the result of Theorem 4.1, it

follows that ‖x‖L∞ < ρr + γ̄1. Then Assumption 4.1 implies that

‖g(x(t), t)‖L∞ ≤ Gρr+γ̄1 . (4.127)

Moreover, from Theorem 4.1 one can obtain

‖y − yref‖L∞ < ‖Cx‖∞Ω1(Ts)γ̄0. (4.128)
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Also, from (4.57) and (4.115) we have

rF(s)− yref(s) =

(
µ

s+ µ
Iq −M(s)Kg

)
r(s)− Cm (sIq −Am)−1C†my0 −M(s) (Iq − C(s))σref(s).

(4.129)

It follows

‖rF − yref‖L∞ ≤
∥∥∥ µ
s+µ Iq −M(s)Kg

∥∥∥
L1

Mr +
∥∥∥sCm (sIq −Am)

−1
C†mCm

∥∥∥
L∞

ρ0 + ‖M(s) (Iq − C(s))‖L1
ρ∆.

(4.130)

For all t ∈ [kMTs, (k + 1)MTs) ∩ [0, τ1], k ∈ Z≥0, we obtain form (4.22) that∥∥∥∥rm(t)− r(t) + (1− α)W−1sat{ 1

1− αWFez(t)}
∥∥∥∥
∞
≤

∥∥∥∥(1− α)W−1

(
sat{WFz

1− αez(t)} − sat{WFz

1− αez(kMTs)}
)∥∥∥∥
∞

≤Mr ‖WFz (ez(t)− ez(kMTs))‖∞
≤Mr ‖WFz‖∞ ‖(ez(t)− ez(kMTs))‖∞ .

(4.131)

From (4.113) one can obtain

ez(t) = eAz(t−kMTs)ez(kMTs) +

∫ t

kMTs

eAz(t−τ) (Bz (rm(τ)− y(τ))− g(x(τ), τ)) dτ. (4.132)

Using Theorem 4.1, Lemma 4.4 and the bounds defined in (4.50), from (4.127) and (4.132) it follows

‖ez(t)− ez(kMTs))‖∞ ≤ γz(γ̄0, Ts), (4.133)

where γz(·, ·) is defined in (4.49).

Let

rFd
[k] = rF(kMTs), t ∈ [kMTs, (k + 1)MTs) , k ∈ Z≥0. (4.134)

Then from (4.115) and (4.134) we have

rFd
[k] =

k∑
l=0

e−µlMTs(1− e−µMTs)rd[k − l]. (4.135)

Using summation by part, it follows from (4.135) that

rFd
[k] = rd[k] +

k∑
l=0

e−µ(l+1)MTs(rd[k + 1− l]− rd[k − l]). (4.136)

Then one can obtain

‖rFd
[k]− rd[k]‖∞ ≤

k∑
l=0

e−µ(l+1)MTs ‖rd[k + 1− l]− rd[k − l]‖∞ . (4.137)
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From (4.4), (4.22), (4.131), (4.133), and for any k ∈ Z≥0, we have

‖rd[k + 1]− rd[k]‖∞ ≤Mr ‖WFz‖∞ γz(γ̄0, Ts) +MTsδrm . (4.138)

From (4.137) and (4.138) it follows

‖rFd
[k]− rd[k]‖∞ ≤

e−µMTs

1−e−µMTs
(Mr ‖WFz‖∞ γz(γ̄0, Ts) +MTsδrm). (4.139)

Taking the discretization error into account, we have

‖rF − r‖L∞ ≤
e−µMTs

1−e−µMTs
(Mr ‖WFz‖∞ γz(γ̄0, Ts) +MTsδrm) + 2(1− e−µMTs)Mr. (4.140)

Then from (4.127)-(4.140) it follows

‖F‖L∞ ≤‖Bz‖∞ ‖M(s)(Iq − C(s))‖L1
ρ∆ + ‖Bz‖∞ ‖Cx‖∞Ω1(Ts)γ̄0 + γr(γ̄0, Ts) +Gρr+γ̄1

+ ‖Bz‖∞

∥∥∥∥ µ

s+ µ
Iq −M(s)Kg

∥∥∥∥
L1

Mr + ‖Bz‖∞
∥∥∥sCm (sIq −Am)−1C†mCm

∥∥∥
L1

ρ0

+
1

µ
‖Bz‖∞ (

1

MTs
Mr ‖WFz‖∞ γz(γ̄0, Ts) + δrm).

(4.141)

Since Ts ≤ Tsmax is selected such that the inequalities in (4.52) hold, we have γr(γ̄0, Ts) < γ̄r.

Therefore

‖Fτ1‖L∞ <

(
1−

2
√
p ‖R‖2 ∆s(µ, Fz)

λmin(S)

)−1

∆F (µ, Fz), (4.142)

where ∆s(µ, Fz) and ∆F (µ, Fz) are defined in (4.44). From (4.126) and (4.142) it follows

∥∥ezτ1

∥∥
L∞

< ρz, (4.143)

which contradicts with ‖ezτ1‖L∞ = ρz. Hence, the inequality in (4.112) is true. �

4.4. Simulation Example: Navigation and Control of an Autonomous UAV

A high-fidelity simulation environment of an Unmanned Aerial Vehicle (UAV) is used to verify

the effectiveness and the benefits of the proposed control framework. To substantiate the exis-

tence of a feasible controller that satisfies the theoretical conditions, a multi-level altitude tracking

controller is designed for linearized UAV longitudinal dynamics. We then validate the multi-level

SD control framework in a high-fidelity UAV simulator. Scenarios with and without saturation of

reference command are considered. In the end, a zero-dynamics attack on altitude measurement is

simulated to show the advantages of the multi-rate framework in detecting stealthy attacks.
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4.4.1. Linearized Longitudinal Dynamics

A multi-level SD controller is designed for linearized UAV longitudinal dynamics that sat-

isfies (4.31), (4.46), (4.47) and (4.52). Consider the following trim condition within the desired

flight operating envelope of an Ultra StickTM 25e model UAV [113]: inertial frame position of

[0, 0,−100] m, body frame velocities of [17, 0, 0.369] m/s, Euler orientation (roll, pitch, and yaw)

of [0, 0.0217, 1.5708] rad, surface of elevator at −0.091 rad, aileron and rudder at zero position,

throttle at 55.9%, and engine speed at 827 rad/s. Define the state vector x = (u,w, q, θ)> ∈ R,

where u, w, q, and θ respectively denote the changes of forward velocity, vertical velocity, pitch

rate, and pitch angle deviated from the trim condition. With the high-fidelity UAV simulation

software developed by the University of Minnesota [113], the following linearized UAV longitudinal

dynamics is considered for the inner-loop dynamics:

ẋ(t) = Axx(t) +Bxδe(t), y(t) = θ(t), (4.144)

where

Ax =


−0.5961 0.8011 −0.871 −9.791

−0.7454 −7.581 15.72 −0.5272

1.042 −7.427 −15.85 0

0 0 1 0

 ,

Bx =
(

0.4681 − 2.711 − 134.1 0
)>

,

Cx =
(

0 0 0 1
)

with δe being the control input, indicating the deviation of the elevator surface from the trim

condition, and the pitch angle θ chosen as the output for feedback. The outer-loop dynamics from

the pitch angle θ to the UAV altitude h takes the form of (4.145) after linearization:

ḣ(t) = 17 · θ(t). (4.145)

Subject to the dynamical models given in (4.144) and (4.145), a multi-level SD controller is designed

with the following design parameters: ρ0 = 0.01, ρr = 8.1, α = 0.1, γ̄1 = 0.015, δ = 0.01, γ̄z = 0.01,

µ = 9.4, M = 1, γ̄0 = 6.5 × 10−11, Gρr+γ̄1 = 0.01, Hz = 1.177 × 10−3, K(γ̄1+δ) = 0.01, L0 = 0.01,

L1 = 0.01, Mr = 0.4363, N = 5, Q = I2, R = 1, S = 0.04, Ts = 10−15 and Tsmax = 0.01. For

the outer-loop controller, given by (4.22), we choose the feedback gain Fz = 0.008 and the weight

W = 1/Mr. The inner-loop multi-rate L1 adaptive controller is designed with the desired model

M(s) =
−1.339× 10−3s− 133.9

s2 + 134.5s+ 1193
, (4.146)
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Figure 4.1: The UAV tracks the desired altitude.

and the low-pass filter

C(s) =
15000

s+ 15000
. (4.147)

With the preceding parameters, conditions (4.31), (4.46), (4.47) and (4.52) are fulfilled with

‖G(s)‖L1 = 1.819 × 10−2 < (ρr − ρ1 − ρ2)/(Lρrρr + L2) = 1.826 × 10−2 in (4.31), ‖WHz‖∞ =

2.698×10−3 < (1−α)ρ−1
z = 2.702×10−3 in (4.47), and γ0(γ̄0, Ts) = 6.369×10−11 < γ̄0 = 6.5×10−11,

Ω1(Ts)γ̄0 = 1.468×10−2 < γ̄1 = 1.5×10−2 and γr(γ̄0, Ts) = 1.589×10−13 < γ̄r = 1.0×10−2 in (4.52).

The simulations below illustrate the conservativeness of the design parameters, which follows from

the sufficient conditions.

With the multi-level SD controller, the UAV tracks the following reference altitude (height)

signal:

hr(t) = 10 ·
(

−0.5

1 + et/5−10
+

1

1 + et/5−40
− 0.5

)
+ 100. (4.148)

The reference altitude signal hr(t) and the UAV altitude h(t) are given in Figure 4.1. Due to the

conservativeness of the design parameters, certain amount of tracking error exists in Figure 4.1,

which can be efficiently reduced by increasing the proportional gain Fz in the outer-loop controller.

Figure 4.2 shows the commanded pitch angle hr(t), generated by the outer-loop controller, UAV

pitch angle θ(t) and the deviation of the elevator surface δe(t). From the results one can see that

the reference signal r(t) is within the bound Mr = 0.4363 rad ≈ 25◦; the UAV pitch angle θ(t)

tracks the reference pitch angle r(t) precisely with the multi-rate L1 inner-loop controller, and the

deviation of the elevator is also within the saturation bound.
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Figure 4.2: Pitch angle θ(t) and elevator deviation δe.

4.4.2. Nonlinear Model with Motor Failures

We now test this multi-level SD control framework in a high-fidelity UAV simulation environ-

ment [113]. Assume that the lateral dynamics are stabilized by some existing controller along the

roll and yaw channels, and consider a scenario when the propulsion level of the UAV decreases

by 80% for two minutes (as a large unplanned uncertainty), while the UAV still tries to track a

commanded altitude signal at hr(t) = 100. The saturation limits of UAV elevator are ±25◦. Some

design parameters are adjusted to adapt to the high-fidelity UAV dynamics and environmental

factors. The desired dynamics are selected as

M(s) =
−0.2067s− 20.67

s2 + 2.9s+ 3.793
, (4.149)

with the low-pass filter

C(s) =
4

s+ 4
. (4.150)

The sampling period is Ts = 0.02, and all the other parameters are unaltered. We compare a multi-

level controller with reference pitch angle rw(t), constrained by saturation bounds within [−8◦, 8◦],

and a multi-level controller with unconstrained reference signal rw/o(t). This constraint does not

limit the maneuverability of the UAV, since the safety constraint is on the generated command

signal, not on the actuators.

In the following simulation, we use subscript ‘w’ to denote the results of the control scheme with

saturated reference signal, while subscript ‘w/o’ is used to denote the results of the control scheme

without saturating the reference signal. The reference altitude signal hr(t), the UAV altitudes

hw(t) and hw/o(t), and the tracking errors ew(t) and ew/o(t) are shown in Figure 4.3. The reference

pitch angles rw(t) and rw/o(t), the UAV pitch angles θw(t) and θw/o(t), the angles of attack αw(t)
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and αw/o(t), and the deviations of elevator δe,w(t) and δe,w/o(t) are given in Figure 4.4. It can

be observed that although the reference pitch angle is confined inside an envelope, the difference

between the altitudes hw(t) and hw/o(t) is small. Meanwhile, the saturated reference pitch angle

rw(t) prevents the elevator input from saturation and keeps the pitch angle θw(t) and the angle of

attack αw(t) inside a relatively safer envelope, in which the UAV is less likely to crash or stall. It is

clear that the multi-level SD control framework with the saturated reference signal ensures safety

of the autonomous UAV in the presence of uncertainties.
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Figure 4.3: Altitudes and tracking errors under the motor failure scenario.
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Figure 4.4: Pitch angles and elevator deviations under the motor failure scenario.
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Figure 4.5: Pitch angle θ with the linearized UAV model under the zero-dynamics attack.

4.4.3. Full-State UAV Model under Zero-Dynamics Attacks

The multi-rate control scheme is also able to detect the stealthy zero-dynamics attacks. In

this last scenario we show a zero-dynamics attack on a full-state UAV trim model via GPS or

altimeter spoofing. With the same trim condition, when the sampling period of the digital control

system is Ts = 5T = 0.1 s, while the faster output sampling period is T = 0.02 s, discretizing the

continuous transfer function from the elevator δe to the UAV altitude h(t) with the sampling period

T generates a non-minimum-phase zero at z = −6.0108, which can be used for stealthy attack. The

attack signal is generated by adding the following zero-dynamics attack signal

ha(t) = Z−1

[
1

z + 6.0108

]
(4.151)

into the normal altitude measurement signal h(t). Under the zero-dynamics attack and in the p-

resence of measurement noise, Figure 4.5 shows the zero-dynamics attack signal ha(t), the altitude

measurements from a single-rate controller hs(t) and the altitude measurement from a multi-rate

adaptive controller hm(t). It is apparent that the single rate controller is not able to detect the

drastic changes of UAV height caused by the zero-dynamics attack, while the multi-rate L1 con-

troller can detect this anomaly at a relative earlier stage despite the contamination by measurement

noise.

Remark 4.6. After detection, zero-dynamics attack can be removed by considering a secure soft-

ware/hardware architecture (Simplex design [15, 17]). In such structure, a backup controller will

operate the system, when the normal mode controller is compromised due to a cyber attack. By

switching from the normal mode to a secured backup controller, the unbounded stealthy attack can

be removed (from the cyber space). Then the backup controller can recover the stability of the per-

turbed system. For successful recovery the early detection is critical. Refer to [80, 114] for more

details.
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CHAPTER 5

A Mutirate Sampled-Data Control Design for Under-Actuated Systems

The multirate L1 adaptive control design of Chapter 4 is limited to square MIMO systems

with the same number of inputs and outputs. This chapter aims to extend the L1 adaptive control

theory to under-actuated systems possibly with non-minimum-phase zeros. In [81,82], L1 controllers

have been developed for under-actuated MIMO systems with stable transmission zeros. Compared

to the continuous-time approach, the sampled-data framework provides a richer and more agile

architecture for control of CPSs that use digital computers interacting with physical plants. The

preliminary results in [78] on mutirate L1 control design are limited to square MIMO systems

without unstable transmission zeros. This chapter extends the mutirate L1 control design to under-

actuated systems possibly with non-minimum phase zeros, where the number of outputs is greater

than or equal to the number of inputs. The controller design allows for detection and mitigation

of actuator attacks.

In order to verify the effectiveness of the proposed approach, the multirate L1 adaptive con-

troller is implemented for trajectory tracking control of a quadrotor in an indoor flight arena

equipped with VICON cameras. By leveraging the multirate approach, the stealthy zero-dynamics

attack becomes detectable. The controller recovers the stability of the quadrotor subject to such

an attack. The estimation loop in the control structure, which has a faster rate than the control

input, can timely detect the abnormality in the measured output data and trigger a switch to a

safe mode control.

5.1. Problem Formulation

Consider the following MIMO system

ẋ(t) = Amx(t) +Bm (u(t) + d(t)) , x(0) = x0,

y(t) = Cmx(t),
(5.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input signal, and y(t) ∈ Rq is the system output

vector, where p ≤ q. Also, {Am ∈ Rn×n, Bm ∈ Rn×p, Cm ∈ Rq×n} is an observable-controllable

triple, where Am is Hurwitz, and Bm, Cm are full rank matrices. The unknown initial condition x0

is assumed to be inside an arbitrarily large known set, so that ‖x0‖∞ ≤ ρ0 < ∞ for some known

ρ0 > 0. The transfer function

M(s)
∆
= Cm(sIn −Am)−1Bm (5.2)

represents the desired dynamics.

The control input, which is implemented via a zero-order hold mechanism with time period of
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Ts > 0, is given by

u(t) = ud[k], t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0, (5.3)

where ud[k] is the discrete-time control law. The output is sampled N times faster with the sampling

period of Ts
N . For each period Ts, the N sampled outputs are grouped in a vector form given by

ȳd[k] =

[
y> (kTs) , . . . , y

>
(

(Nk +N − 1)Ts

N

)]>
. (5.4)

Finally, the system uncertainties, disturbances, and the actuator attack are represented by

d(t) = f(kTs, x(kTs)), t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0, (5.5)

where f (·, ·) : (R, Rn)→ Rp is an unknown function.

Assumption 5.1. The system M(s) in (5.2) does not have a transmission zero at the origin.

Assumption 5.2. For arbitrary δ > 0 there exist Kδ > 0 and L0 > 0, such that

‖f(t2, x2)− f(t1, x1)‖∞ ≤ L0|t2 − t1|+Kδ‖x2 − x1‖∞

holds for all ‖xi‖ ≤ δ, and ti ≥ 0, i ∈ {1, 2}.

Assumption 5.3. There exists constant B0 > 0, such that

‖f(t, 0)‖∞ ≤ B0

holds uniformly in t ≥ 0.

Remark 5.1. In the case of zero-dynamics attack, the boundedness of the attack signal d(t) can

be realized by assuming a secure software/hardware structure for the CPS (Simplex architecture

[14–17]). In such structure, a backup controller will operate the system, when the normal mode

controller is compromised due to a cyber attack. By switching from the normal mode to a secured

backup controller, the unbounded stealthy attack can be removed (from the cyber space), rendering

d(t) bounded. However, sensor/actuator attacks, such as zero-dynamics attack, can undermine

the effectiveness of model-based detection and control algorithms needed to operate the Simplex

architecture. For example, the control design in [17] does not consider the sampled-data structure

of CPSs and hence is oblivious to stealthy zero-dynamics attacks. This motivates to address the

detection and control problem for Simplex structures in the presence of zero-dynamics attacks.

The control objective is to design an output feedback controller u(t) such that the system

output y(t) tracks the desired response ym(t) governed by ym(s) = M(s)r(s), where r(s) is the
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Laplace transform of the piece-wise constant signal r(t) given by

r(t) = rd[k], t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0, (5.6)

with rd[k] being the discrete-time signal. Let ‖r‖L∞ ≤Mr, where Mr is a positive constant.

5.2. Control Design

First, we define a few variables of interest and design constraints. For design of the controller,

we consider a strictly proper stable transfer function C(s) such that C(0) = Ip. Let

H(s)
∆
= (sIn −Am)−1Bm,

G(s)
∆
= H(s) (Ip − C(s)) .

(5.7)

The selection of C(s) must ensure that for a given ρ0, there exists ρr > 0 such that the following

L1-norm condition holds:

‖G(s)‖L1
<
ρr − ‖H(s)C(s)Kg‖L1

Mr − ρin

Lρrρr +B0
, (5.8)

where

ρin
∆
=
∥∥∥s(sIn −Am)−1

∥∥∥
L1

ρ0. (5.9)

Further, for every δ > 0 let

Lδ
∆
=
γ̄1 + δ

δ
K(γ̄1+δ), (5.10)

where Kδ is introduced in Assumption 5.2, and γ̄1 is an arbitrarily small positive constant.

To deal with the multirate structure of the controller, where the rate of sampling at the output

is N times faster than the rate of hold at the input, we use the standard lifting technique to

represent the system matrices. The desired plant M(s) with dual-rate sampling and hold can be

described by the discrete-time mapping, given by

M̄d = SNMH.

One can obtain a step-invariant LTI description of the discrete-time system M̄d by grouping the

plant outputs as in (5.4). A state-space description of M̄d can be obtained as follows:

Ād = AN , B̄d =
N−1∑
k=0

AkB, C̄d =


C

CA
...

CAN−1

 , D̄d =


0q×p

CB
...

C
N−2∑
k=0

AkB

 , (5.11)
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where

A = eAm
T
N , B =

∫ T
N

0
eAmτBmdτ, C = Cm. (5.12)

For brevity the dependence of Ād, B̄d, C̄d and D̄d on the parameter Ts has been dropped. Assuming

that the sampling is not pathological [41], the realization (A, B, C) is controllable/observable. For

the multirate control design, N ∈ N is selected so that

Z
∆
=


C

CA
...

CAN−2

 (5.13)

is full column rank, where matrices A, B and C are given in (5.12). This condition holds for large

enough N , in particular N = n+ 1, since the pair (A, C) is observable. It ensures that C̄d is also

full rank.

Remark 5.2. Using the results obtained in [42], if rank(Z) = n and Assumption 5.1 is true, it can

be shown that the lifted system M̄d does not have a non-minimum-phase zero. Therefore, a stealthy

zero-dynamics attack is impossible.

Define

K(Ts)
∆
= ((Ād − I)C̄†dD̄d − B̄d)†, (5.14)

where † denotes the left pseudo inverse.

Let (Af , Bf , Cf) be a minimal state-space realization such that

Cf(sInc −Af)
−1Bf

∆
= C(s), (5.15)

where nc is the order of C(s). Define the function Γ(·) as

Γ (Ts)
∆
= α1(T )

∥∥∥(sInc
−Af)

−1
Bf

∥∥∥
L1

+ α2(Ts), (5.16)

where

α1(Ts)
∆
= max

t∈[0, Ts]

∥∥Cf

(
eAf t − Inc

)∥∥
∞ , α2(Ts)

∆
= max

t∈[0, Ts]

∫ t

0

∥∥∥Cfe
Af(t−τ)Bf

∥∥∥
∞
dτ.
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Let

Ω(Ts) =
(∥∥ĀdC̄

+
d D̄d − B̄d

∥∥
∞ +

∥∥C̄+
d D̄d

∥∥
∞

)
(B0 + Lρr

ρr) ,

ρu(Ts) =‖C(s)‖L1
‖K(Ts)‖∞Ω(Ts),

γdx(Ts) =Lρr

(∥∥Ād − In
∥∥
∞ρr +

∥∥B̄d

∥∥
∞ (ρu(Ts) +B0 + Lρrρr)

)
+ L0Ts,

γ0(Ts) =
∥∥∥(Ip +K(Ts)C̄

†
dD̄d

)∥∥∥
∞
γdx(Ts),

γC(Ts) =Γ(Ts)‖C(s)‖L1
(B0 + Lρr

ρr + γ0(Ts)) + Γ(Ts)‖Kg‖∞Mr,

ρd0 =‖sH(s)C(s)‖L1
(B0 + Lρrρr) ,

(5.17)

where Kg
∆
= −CmA

−1
m Bm, H(s) is defined in (5.7), and Γ(·) is given in (5.16). Matrices Ād, B̄d, C̄d

and D̄d are introduced in (5.11). Also, C̄†d denotes the pseudo-inverse of C̄d. Finally let

γx(Ts) =
‖G(s)‖L1

γdx(Ts)+‖H(s)‖L1
γC(Ts)+‖H(s)C(s)‖L1

γ0(Ts)+Tsρd0

1−Lρr‖G(s)‖L1

. (5.18)

The sampling time Ts of the digital controller is chosen such that

γx(Ts) < γ̄1, (5.19)

where γ̄1 > 0 is introduced in (5.10), and γx(·) is given in (5.18). Also, the sampling time Ts should

not be pathological.

Remark 5.3. Existence of such Ts depends on the uncertainty bounds and the system parameters.

For certain class of MIMO systems that additionally satisfy

rank




Cm

...

CmA
l−1
m


 = n, (5.20)

where l and n are the relative degree and order of M(s) in (5.2) respectively, we will show in

Theorem 5.1 that the continuous-time function γx(Ts) tends to zero as Ts goes to zero. As a result,

if the relation (5.20) is true, the condition in (5.19) can be met by choosing small enough sampling

time Ts.

The elements of the proposed multirate adaptive controller are stated next. The predicted

output ˆ̄yd[k] is given by

x̂d[k + 1] = Ādx̂d[k] + B̄dud[k] + d̂d[k], x̂d[0] = C̄†dȳ0,

ˆ̄yd[k] = C̄dx̂d[k] + D̄dud[k],
(5.21)

where

ȳ0 = [y0, ..., y0︸ ︷︷ ︸
N

]>, y0 = Cmx0, (5.22)
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and d̂d[k] ∈ Rn, ud[k] ∈ Rp are provided by adaptation and control laws, respectively. Also,

Ād, B̄d, C̄d, D̄d are defined in (5.11). The update law for d̂d[k] is given by

d̂[k] = −ĀdC̄
†
dỹd[k], (5.23)

where ỹd[k] = ˆ̄yd − ȳd[k] and C†d is the left inverse of C̄d. Finally, the control signal is defined as

ud[z] = Cd[z]
(
Kgrd[z] +K(Ts)Ā

−1
d d̂d[z]

)
, (5.24)

where

Cd[z] = Cf

(
zInc − eAfTs

)−1
A−1

f

(
eAfTs − Inc

)
Bf ,

and (Af , Bf , Cf) is a minimal state-space realization of C(s). Also, d̂d[z] is the z-transform of the

discrete-time signal d̂d[k] given by (5.23).

5.3. Analysis of the Closed-Loop Multirate System

We proceed by defining a few variables of interest:

ρx =ρr + γ̄1,

ρur =‖C(s)Kg‖L1
Mr + ‖C(s)‖L1

(Lρrρr +B0) ,

ρd1 =‖sC(s)‖L1
(B0 + Lρrρr) ,

γu(Ts) =‖C(s)‖L1
(γ0(Ts) + Lρrγx(Ts) + γdx(Ts)) + γC(Ts) + Tsρd1 ,

(5.25)

where γ̄1 is introduced in (5.10), and γx(·) is defined in (5.18). Also, γ0(·), γdx(·) and γC(·) are

given in (5.17).

Lemma 5.1. Consider the system M(s) in (5.2), subject to Assumption 5.1, with the minimum

realization (Am, Bm, Cm), where Am is Hurwitz, and Bm, Cm are full rank. Then ((Ād− I)C̄†dD̄d−
B̄d) has full column rank, and its left inverse introduced in (5.14) is well-defined.

Proof. We can write

((Ād − In)C̄†dD̄d − B̄d) = (Ād − In)
[
(In −A)−1B + C̄†dD̄d

]
. (5.26)

Since (Ād − I) is invertible, it is sufficient to show that (I − A)−1B + C̄†dD̄d is full column rank.

Notice that we can rewrite D̄d as

D̄d =


C (In −A)

...

C
(
In −AN−1

)
 (In −A)−1B. (5.27)
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It follows from (5.27) that

C̄>d D̄d =


N−1∑

j=0

Aj

>C>C − C̄>d C̄d

 (In −A)−1B.

Given that C̄†d = (C̄>d C̄d)−1C̄>d , one can obtain

C̄†dD̄d =
[
(C̄>d C̄d)−1

[
C(In −A)−1(In −AN )

]>
C − I

]
(In −A)−1B,

where matrices A, B and C are given in (5.12). It follows

(In −A)−1B + C̄†dD̄d = (C̄>d C̄d)−1
[
C(In −A)−1(In −AN )

]>
C(I−A)−1B. (5.28)

Since C is full row rank and (In − A)−1(In − AN ) is invertible,
[
C(In −A)−1(In −AN )

]>
has full

column rank. Also, notice that C(In − A)−1B = −CmA
−1
m Bm. Since s = 0 is neither eigenvalue

of Am, nor transmission zero of M(s) (by Assumption 5.1), C(In − A)−1B is full column rank.

Then the Sylvester rank inequity implies that
[
C(In −A)−1(In −AN )

]>
C(In−A)−1B, and hence

(In −A)−1B + C̄†dD̄d has full column rank. This concludes the proof. �

Lemma 5.2. The following relations are true

lim
Ts→0

TsK(Ts) = −
(
C>mCmA

−1
m Bm

)†
C>mCmA

−1
m , (5.29)

∥∥∥C̄†dD̄d

∥∥∥
2
≤
∥∥A−1

m Bm

∥∥
2
, ∀Ts > 0. (5.30)

Additionally, if the condition in (5.20) holds, we have

lim
Ts→0

C̄†dD̄d = 0n×p, (5.31)

where K(Ts) is defined in (5.14), and C†d, D̄d are given in (5.11).

Proof. Let

X
∆
=



Iq 0q×q 0q×q · · · 0q×q

Iq −Iq 0q×q
. . .

...

0q×q Iq −Iq
. . . 0q×q

...
. . .

. . .
. . . 0q×q

0q×q · · · 0q×q Iq −Iq


︸ ︷︷ ︸

N

.

Then one can obtain
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XC̄d =

[
C

Z (In −A)

]
, XD̄d =

[
0q×n

−ZB

]
, (5.32)

where Z is defined in (5.13). The term C̄†dD̄d can be written as follows

C̄†dD̄d =
(
XC̄d

)†
XD̄d. (5.33)

Define

S(Ts)
∆
=
(
In −A>

)
Z>Z (In −A) , (5.34)

and

W (Ts)
∆
=
(
C>C + S(Ts)

)−1
S(Ts)

(
−A−1

m Bm

)
. (5.35)

It follows from (5.26) and (5.28) that the matrix K(Ts) in (5.14) can be rewritten as follows

K(Ts) =
(
C>mCmA

−1
m Bm

)† (In + ...+AN−1
)−> (

C̄>d C̄d

) (
In − Ād

)−1
. (5.36)

We have (
In − Ād

)−1
=

(
−TsAm −

T 2
s

2!
A2

m + ...

)−1

. (5.37)

From (5.36) and (5.37) we can obtain the relationship in (5.29).

Next we prove (5.30) and (5.31). From (5.32)-(5.35) it follows

C̄+
d D̄d = W (Ts). (5.38)

Since Z is assumed to be full column rank, S(Ts) in (5.34) is positive-definite matrix for all Ts ∈ R>0.

Then W (Ts) is also non-singular, and it can be shown that

‖W (Ts)‖2 ≤
∥∥A−1

m Bm

∥∥
2
, ∀Ts > 0, (5.39)

which proves (5.30). By expanding the exponential terms due to A = eAm
T
N , S(Ts) can be written

as

S(Ts) =
∞∑
i=1

∞∑
j=1

κijT
i+j
s (A>m)

i
C>CAjm, (5.40)

where κij ’s are non-zero constant coefficients. From (5.35) it follows

S(Ts)
(
−A−1

m Bm

)
=
(
C>C + S(Ts)

)
W (Ts). (5.41)

By taking the limit of both sides of (5.41) as Ts → 0, we have

lim
Ts→0

C>CW (Ts) = 0. (5.42)
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For M(s) with relative degree l, we have

CmA
j
mBm = 0, j ∈ {0, ..., l − 2}.

If the relative degree of M(s) is two or higher, by multiplying both sides of (5.41) with 1
T 2

s
and

taking limit, we obtain

lim
Ts→0

(
1

T 2
s

C>C + κ11A
>
mC
>CAm

)
W (Ts) = 0. (5.43)

In similar procedures as above, by multiplying both sides of (5.41) with higher order powers of 1
Ts

and taking the limit, we have

lim
Ts→0

Θ(Ts)W (Ts) = 0, (5.44)

where

Θ(Ts) =


C>C

1
T 2

s
C>C + κ11A

>
mC
>CAm

...

1
T l

s
C>C +

l∑
j=2

j−1∑
i=1

κi(j−i)
1

T
(l−j)
s

(A>m)
i
C>CA

(j−i)
m

 . (5.45)

The condition in (5.20) implies that Θ(Ts) given in (5.45) is full column rank. Then from the limit

in (5.44) it follows

lim
Ts→0

W (Ts) = 0. (5.46)

Hence, the limiting relationship in (5.31) holds. This concludes the proof. �

Lemma 5.3. Let Cd[z] denote the z-transform of a step-invariant discrete-time approximation

of C(s), defined in (5.15). Given a bounded discrete-time signal rd[j], define r(t) = rd[j] for

t ∈ [jTs, (j + 1)Ts), j ∈ Z≥0, where Ts > 0 is a sampling time. Then

∥∥(ε− ε′)t
∥∥
L∞ ≤ Γ (Ts) ‖rt‖L∞ , (5.47)

where Γ(·) is defined in (5.16), ε(t) is the signal with Laplace transform ε(s) = C(s)r(s), and

ε′(t) = εd[j], t ∈ [jTs, (j + 1)Ts), j ∈ Z≥0, while εd[j] is the discrete signal with the z-transform

εd[z] = Cd[z]rd[z].

Proof. The proof is straightforward and hence omitted. �

Theorem 5.1. If the condition in (5.20) holds, the following limiting relationship is true

lim
Ts→0

γx(Ts) = 0, (5.48)

where γx(Ts) is defined in (5.18).
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Proof. Using the results of Lemmas 5.1-5.3, it is straightforward to verify that γ0(Ts), γdx(Ts) and

γC(Ts), given in (5.17), tend to zero as the sampling time Ts goes to zero. Hence, the limiting

relationship in (5.48) is true. �

Consider the following closed-loop reference system

ẋref(t) = Amxref(t) +Bm (uref(t) + dref(t)) , xref(0) = x0,

uref(s) = C(s) (Kgr(s)− dref(s)) ,

yref(t) = Cmxref(t),

(5.49)

where dref(s) is the Laplace transform of dref(t)
∆
= f(t, xref(t)).

The reference system in (5.49) defines the achievable response by the closed-loop system given

by (5.1), (5.21)-(5.24), where instead of the estimates the actual unknown signals are used in

(5.49). Notice that dref(t) is unknown, and this reference system is used only for analysis. To

prove the stability of the closed-loop sampled-data system with the multirate controller proposed

in (5.21)-(5.24), we introduce a condition for stability of the reference system in (5.49). Then we

establish uniform bounds between the reference system and the closed-loop system given by (5.1)

and (5.21)-(5.24).

Lemma 5.4. For the closed-loop reference system in (5.49), subject to the L1-norm condition (5.8),

if ‖x0‖∞ ≤ ρ0, then

‖xref‖L∞ < ρr, (5.50)

‖uref‖L∞ < ρur, (5.51)

where ρr is introduced in (5.8), and ρur is given in (5.25).

Proof. It follows from (5.49) and the definition of H(s) and G(s) in (5.7) that

xref(s) = H(s)C(s)Kgr(s) +H(s) (Ip − C(s)) dref(s) + (sIn −Am)−1 x0. (5.52)

Then for arbitrary τ > 0, we have

‖xrefτ‖L∞ ≤ ‖G(s)‖L1
‖drefτ‖L∞ + ρin + ‖H(s)C(s)Kg‖L1

Mr. (5.53)

Since
∥∥∥s(sIn −Am)−1

∥∥∥
L1

> 1, we have ρ0 < ρin. The condition in (5.8) implies that ‖xref(0)‖∞ =

‖x0‖∞ < ρr. In addition, xref(t) is continuous. Therefore, if the bound in (5.50) is not true, there

exists a time τ1 > 0 such that

‖xref(t)‖∞ < ρr, ∀t ∈ [0, τ1),

‖xref(τ1)‖∞ = ρr,
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which implies that ∥∥xrefτ1

∥∥
L∞ = ρr. (5.54)

The redefinition in (5.10) implies Kρr ≤ Lρr . It follows from the bound in (5.54), and Assumptions

5.2 and 5.3 that ∥∥drefτ1

∥∥
L∞ ≤ Lρr

∥∥xrefτ1

∥∥
L∞ +B0. (5.55)

The bound in (5.55), together with the upper bound in (5.53), lead to

‖xrefτ1‖L∞ ≤
‖G(s)‖L1

B0 + ‖H(s)C(s)Kg‖L1
Mr + ρin

1− ‖G(s)‖L1
Lρr

.

The condition in (5.8) can be solved for ρr to obtain the bound

‖G(s)‖L1
B0 + ‖H(s)C(s)Kg‖L1

Mr + ρin

1− ‖G(s)‖L1
Lρr

< ρr,

which leads to ∥∥xrefτ1

∥∥
L∞ < ρr.

This contradicts the equality in (5.54), thus proving the bound in (5.50). This further implies that

the upper bound in (5.55) holds for all τ > 0 with strict inequality, which in turn implies that

‖dref‖L∞ < Lρrρr +B0. (5.56)

The bound on uref(t) follows from (5.49)

‖urefτ‖L∞ < ‖C(s)Kg‖L1
Mr + ‖C(s)‖L1

(Lρr
ρr +B0) ,

which proves (5.51). �

Lemma 5.5. Consider the system in (5.1) and the controller in (5.21)-(5.24), subject to conditions

in (5.8). If Ts satisfies (5.19), and

‖xτ‖L∞ < ρx (5.57)

holds, then ∥∥∥(K(Ts)C̄
†
dỹ(s)− d′(s))τ

∥∥∥
L∞
≤ γ0(Ts), (5.58)

where ỹ(s) is the Laplace transform of ỹ(t) given by

ỹ(t) = ỹd[k], t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0, (5.59)

and ỹ[k] is the prediction error defined in (5.23). Also, d′(s) is the Laplace transform of d′(t)

defined by

d′(t) =

{
d(t), Ts ≤ t,
0, 0 ≤ t < Ts.

(5.60)
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The bounds γ0(Ts) and ρx are given in (5.17) and (5.25), respectively.

Proof. Since C̄†dỹd[0] = 0, the definition in (5.60) implies that the left side of (5.58) is zero for

every τ ∈ [0, Ts), and the inequality in (5.58) holds. In the following, we show that (5.58) is true

for τ ≥ Ts.

The step-invariant discrete-time system equivalent to the continuous-time system in (5.1) is

given by

xd[k + 1] =Ādxd[k] + B̄d (ud[k] + dd[k]) , xd[0] = x0,

ȳd[k] =C̄dxd[k] + D̄d (ud[k] + dd[k]) .
(5.61)

Define

x̃d[k]
∆
= x̂d[k]− xd[k]. (5.62)

Then from (5.61) and the predictor dynamics in (5.21) it follows

x̃d[k + 1] = Ādx̃d[k] + d̂[k]− B̄ddd[k], x̃d[0] = C̄†dȳ0 − x0,

ỹd[k] = C̄dx̃d[k]− D̄ddd[k],
(5.63)

where ỹd[k] is defined in (5.23). From (5.63) one can obtain

C̄†dỹd[k + 1] =
(
ĀdC̄

+
d D̄d − B̄d

)
dd[k]− C̄†dD̄ddd[k + 1]. (5.64)

By multiplying both sides of (5.64) by K(Ts), which is defined in (5.14), and subtracting dd[k+ 1],

we have

K(Ts)C̄
†
dỹd[k + 1]− dd[k + 1] = −

(
I +K(Ts)C̄

†
dD̄d

)
(dd[k + 1]− dd[k]) .

For all k ∈ Z≥0 such that (k + 1)Ts ≤ τ , since (5.57) holds, one can obtain∥∥∥K(Ts)C̄
†
dỹd[k + 1]− dd[k + 1]

∥∥∥
∞
≤
∥∥∥(I +K(Ts)C̄

†
dD̄d

)∥∥∥
∞
‖dd[k + 1]− dd[k]‖∞. (5.65)

Also, we have

‖dd[k + 1]− dd[k]‖∞ = ‖f ((k + 1)Ts, xd[k + 1])− f (kTs, xd[k])‖∞ ≤ γdx(Ts), (5.66)

where γdx(Ts) is defined in (5.17). From (5.65) and (5.66), and given the fact that ỹ(t) and d(t)

are piece-wise constant, one can obtain the bound in (5.58). �

Theorem 5.2. Consider the system in (5.1) and the controller in (5.21)-(5.24), subject to the
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condition in (5.8). If Ts satisfies (5.19), then

‖x‖L∞ < ρx, (5.67)

and

‖xref − x‖L∞ ≤ γx(Ts), ‖uref − u‖L∞ ≤ γu(Ts), (5.68)

where ρx is given in (5.25). Also, γx(·) and γu(·) are defined in (5.18) and (5.25) respectively.

Proof. Consider the reference system in (5.49) and define

x̃ref(t) = xref(t)− x(t), ỹref(t) = yref(t)− y(t),

ũref(t) = uref(t)− u(t), d̃ref(t) = dref(t)− d(t).

Then from (5.1) and (5.49) it follows

˙̃xref(t) = Amx̃ref(t) +Bm

(
ũref(t) + d̃ref(t)

)
, x̃ref(0) = 0

ỹref(t) = Cmx̃ref(t).
(5.69)

The continuous-time step-invariant equivalent of the control input in (5.24) is given by

uC(s) = C(s)
(
Kgr(s) +K(Ts)Ā

−1
d d̂(s)

)
, (5.70)

where d̂(s) is the Laplace transform of d̂(t) given by

d̂(t) = d̂d[k], t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0.

It follows

ũref(s) = uref(s)− uC(s) + uC(s)− u(s). (5.71)

Notice that C̄†dỹd[0] = 0. We have

uref(s)− uC(s) = −C(s)d(0)1−e−sTs

s + C(s)
(
K(Ts)C̄

†
dỹ(s)− d′(s)− d̃ref(s)

)
, (5.72)

where d′(s) is the Laplace transform of d′(t) defined in (5.60). Then from (5.69), (5.71) and (5.72)

one can obtain

x̃ref(s) = G(s)d̃ref(s)−
1− e−sTs

s
H(s)C(s)d(0) +H(s)C(s)

(
K(Ts)C̄

+
d ỹ(s)− d′(s)

)
+H(s) (uC(s)− u(s)) .

(5.73)

The condition in (5.8) implies that ‖x(0)‖∞ = ‖x0‖∞ < ρr. Then we have ‖x(0)‖∞ < ρx. In

addition, x(t) is continuous. Therefore, if the bound in (5.67) does not hold, there exists a time
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τ1 > 0 such that

‖x(t)‖∞ < ρx, ∀t ∈ [0, τ1),

‖x(τ1)‖∞ = ρx,

which implies that

‖xτ1‖L∞ = ρx. (5.74)

Using Lemma 5.3 and the definition in (5.70), the following bound holds

‖(uC − u)τ1‖L∞ ≤ γC(Ts), (5.75)

where γC(·) is defined in (5.17).

For all k ∈ Z≥0 and t ∈ [kTs, (k + 1)Ts), we have

d̃ref(t) =f(t, xref(t))− f(t, x(t)) + f(t, x(t))− f(kTs, x(kTs)). (5.76)

It follows ∥∥∥d̃refτ1

∥∥∥
L∞
≤ Lρr

∥∥∥x̃refτ1

∥∥∥
L∞

+ γdx(Ts), (5.77)

where γdx(Ts) is given in (5.25). In addition, from Lemma 5.5 we have∥∥∥(K(Ts)C̄
†
dỹ − d

′)τ1

∥∥∥
L∞
≤ γ0(Ts). (5.78)

Then from (5.73)-(5.78) we can obtain the following bound∥∥∥x̃refτ1

∥∥∥
L∞
≤
‖G(s)‖L1

γdx(Ts)+‖H(s)‖L1
γC(Ts)+‖H(s)C(s)‖L1

γ0(Ts)+Tsρd0

1−Lρr‖G(s)‖L1

. (5.79)

Since the condition in (5.19) holds, we have∥∥∥x̃refτ1

∥∥∥
L∞

< γ̄1. (5.80)

Therefore

‖xτ1‖L∞ < ρr + γ̄1 = ρx,

which contradicts (5.74), thus proving (5.67). From (5.79) the first inequality in (5.68) also holds.

In the following, we show that the second inequality is true. By combining (5.71), (5.72), (5.75),

(5.77), (5.78) and (5.80), we have

‖ũref(s)‖L∞ ≤‖C(s)‖L1
(γ0(Ts) + Lρrγx(Ts) + γdx(Ts)) + γC(Ts) + Tsρd1 ,

where ρd1 is defined in (5.25). Therefore the second inequality in (5.68) is true. This concludes the

proof. �
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Remark 5.4. For MIMO systems that satisfy the condition in (5.20), Theorem 5.1 and Lemmas

5.1-5.3 imply that the bounds in (5.68) can be made arbitrarily small as the sampling time Ts tends

to zero. Therefore the closed-loop sampled-data system uniformly recovers the performance of the

reference system defined in (5.49).

5.4. Experimental Study: A Quadrotor Flight Test under Zero-Dynamics Attack

To verify the main results of this chapter, we implemented the proposed controller for trajectory

tracking of a Crazyflie quadrotor in x-y plane. Also, the effectiveness of the multirate controller is

compared with a standard L1 adaptive control, which is implemented with uniform sampling time

in [114]. In this experiment, we consider PID as the baseline control, augmented with L1 adaptive

output-feedback to improve the tracking performance and robustness of the closed-loop system.

Then a zero-dynamics actuator attack is injected into the control input channel. In the following,

the flight test results are provided to demonstrate the capability of the proposed multirate adaptive

controller in timely detection and mitigation of actuator attacks.

In the multirate trajectory tracking control setup the pitch and roll command signals are

sent to the quadrotor from Simulink with the sampling period of Ts = 0.03sec, and the position

measurement signal from Vicon is received with N = 3 times faster rate at the sampling period

of Ts
N = 0.01sec. For comparison we also implemented the L1 controller with uniform rate of

Ts = 0.03sec. The rest of the closed-loop system parameters are chosen the same for the singlerate

and multirate implementations. The desired dynamics and the low-pass filter are chosen as

M(s) =

[
4

s2+1.5s+4
0

0 4
s2+1.5s+4

]
, C(s) =

 2.53

(s+2.5)3 0

0 2.53

(s+2.5)3

 . (5.81)

In this experiment the pitch angle command navigates the quadrotor in x-axis direction, while

the roll angle command controls the y-axis position. Therefore the dynamics governing the position

of the quadrotor are decoupled in x and y directions. Using Matlab system identification toolbox

and by collecting input/output data, the following transfer functions for the model of quadrotor

dynamics with the baseline PID controller from the reference commands Rx and Ry to the actual

x-axis and y-axis positions X and Y are obtained

X(s)

Rx(s)
=

1.276s2 + 12.33s+ 7.058

s4 + 3.762s3 + 8.984s2 + 14.75s+ 7.013
, (5.82)

Y (s)

Ry(s)
=
−2675s3 + 4.167s2 + 3.556s+ 13.39

s4 + 1.449s3 + 7.796s2 + 5.325s+ 11.92
. (5.83)

We notice that if the transfer functions in (5.82) and (5.83) are sampled at a single rate with

sampling time Ts = 0.03sec, the discrete-time plants have unstable zeros at zx = −1.06 and
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zy = 1.66 respectively. These unstable zeros can be used to devise an attack signal in the form of

d[k] = [εxz
k
x , εyz

k
y ]>, (5.84)

where εx = 10−20 and εy = 5 × 10−177 are small constants. Also, zx = −1.06 and zy = 1.66 are

the unstable sampling zeros for the discrete-time model of quadrotor dynamics in (5.82) and (5.83)

respectively. Using the multirate control approach these unstable zeros can be removed.

Since a cyber attack, such as the zero-dynamics attack in (5.84), can involve unbounded signals

(implemented in cyber space), the feedback control algorithm by itself cannot mitigate the attack.

Therefore the controller should be integrated with a secure software/hardware architecture such as

Simplex structure [14–17]. This structure includes normal control environment and a backup secure

control environment. After a cyber attack is detected, the control is switched from normal mode

to the safe mode. An ideal control algorithm for Simplex architecture should detect the attack fast

enough and maintain the stability of the perturbed system. This Simplex structure can be achieved

using modern multicore processors and virtualization technology [115], which is out of the scope of

this research. A simple way to simulate the Simplex structure for this experiment is to remove the

attack signal as soon as it is detected.

In the following we consider a residual for attack detection that triggers switching to a safe

mode, which is calculated using the output prediction error. The one-time switch is triggered, once

the criteria ∥∥∥∥[ wỹ>d [k + 1], ỹ>d [k + 1]− ỹ>d [k]
]>∥∥∥∥

∞
> ∆, k ∈ N (5.85)

is met, where the output prediction error ỹd[k] is defined in (5.23), ∆ is the detection threshold,

and w ∈ R is a weighting coefficient. The residual is a weighted norm of the output prediction

error, and its rate of change is defined in 5.85. In the multirate approach ∆ = 0.03 is chosen,

while the threshold is ∆ = 0.02 for the singlerate control. Also, the weighting coefficient is selected

to be w = 0 in (5.85). Figure 5.1 shows the residuals over time calculated for multirate and

singlerate controllers. As shown in Figure 5.1, the thresholds are chosen above the level of errors

due to measurement noise or system uncertainties in order to reduce the number of false alarms.

For the same attack signals the multirate detection happens 0.45sec sooner than the singlerate

detection (Figure 5.1), which is sufficient enough to save the quadrotor from crash. Fast detection

is esspecially important to recover the stability in the case of exponentially growing attack signals.

In addition, Figure 5.2 shows the norm of the output prediction error ‖ỹd[k]‖∞ for multirate and

singlerate L1 controllers. In Figure 5.2 for multirate approach we can notice a change in the

profile of prediction error norm, when the attack signals start to grow to significant levels (after

t = 21.5sec). However, a change in the prediction error norm can be detected from t = 23.5sec in

Figure 5.2 for singlerate method. This indicates that the singlerate detection has a considerable

latency compared to the multirate detection in the case of zero-dynamics attacks. In addition, the

comparison of plots in Figure 5.2 reveals that the output prediction error norm is smaller under
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Figure 5.1: Calculated residual given by (5.85) for attack detection. (Left) Residual history over the
flight test interval. (Right) Residual history over the active attack interval. For each flight test the attack
signals are removed as soon as the residual exceeds the threshold (∆multirate = 0.03, ∆singlerate = 0.02).
The multirate L1 controller provides a 0.45sec faster detection compared to the controller with uniform rate.
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Figure 5.2: Norm of the output prediction error ‖ỹd[k]‖∞ for multirate L1 controller (Left), and for
singlerate L1 controller (Right). The active attack interval is marked in the plots. A change in the profile of
prediction error norm can be observed in the left figure during the active attack interval, while the profile
change in the right figure becomes noticeable with about 2sec delay.

multirate controller, which indicates a better performance in tracking the L1 reference system. The

rest of the flight test results are illustrated in Figures 5.3-5.5.
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Figure 5.3: A zero-dynamics attack signal of the form d[k] = [εxz
k
x , εyz

k
y ]> is injected at control input.

Figure 5.3 shows the zero-dynamics attack signals on pitch and roll commands, which become

noticeable at around t = 21.5sec and grow exponentially till t = 24.12sec, when the attack is

detected as the residual exceeds the threshold (Figure 5.1). After being detected, the attack signals

can be removed by switching to a secure computing platform, which performs as a backup for the

compromised controller software. The x and y trajectories of the quadrotor versus time are shown

in Figures 5.4 under augmented single-rate and multirate L1 adaptive controllers in two separate
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Figure 5.4: Response of the closed-loop quadtotor system to the sinosoidal reference command rd[k] =
[sin (0.2kTs) , cos (0.2kTs)− 1]> subject to the attack signal. (Left) The x-axis position of Crazyflie vs. time
measured by VICON system. (Right) The y-axis position of Crazyflie vs. time measured by VICON system.
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Figure 5.5: Quadrotor trajectory in x-y plane, under singlerate/multirate L1 controllers.

flight tests. Figure 5.5 shows the trajectory of the quadrotor in x-y plane. We can see that the

closed-loop system with single-rate controller crashes due to zero-dynamics attack, however the

system with multirate controller is robust to the attack.

Remark 5.5. The results of this experiment and choice of the threshold in (5.85) depend on the

quality of the measurement outputs and the level of noise in the motion capture system. In the flight

tests similar to above, false alarm cases can occur due to the inaccuracy in the measurements.
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CHAPTER 6

An Optimization Method for Design of the Filter in the Control Structure

As mentioned in Remark 3.3, the lowpass filter in L1 adaptive control architectures plays the

key role for performance and robustness tradeoff, [47]. The lowpass filter essentially decouples the

estimation from control, enabling to use fast estimation rates without losing robustness. While

partial guidelines are given in [47] for the full state-feedback architecture, the filter design problem

is still mostly open and challenging in many cases. A filter design method to trade off the filter

bandwidth and the time-delay margin is attempted in [104] using an LMI approach based on star-

norm optimization. In [105], µ-analysis and synthesis is used for the filter design in L1 adaptive

output-feedback architecture. Design schemes for an optimal trade-off between performance and

robustness, based on a randomized search for design parameters and coefficients of the filter in L1

adaptive controller are presented in [106]. A filter design method with a new stability condition is

proposed in [100], where a suitable parameterization of the lowpass filter makes the design problem

solvable in a standard H∞ optimization framework.

In this chapter an extended L1-norm stability condition is formulated, which includes a lower

bound on the time-delay margin. A mixed L1/H2 performance measure is used as the cost function

and the L1-norm stability condition is set as the constraint function. This mixed L1/H2 norm

optimization ensures satisfactory transient and steady-state responses. Since the optimization

problem involving L1-norm in continuous-time framework is non-convex, as explained in [47], and

analytical solutions result in irrational transfer functions as shown in [116, 117], we will solve

the equivalent problem in discrete-time framework. The equivalent multi-objective optimization

problem can be formulated as a numerically efficient linear/quadratic programming (LP/QP). For

discrete-time systems, general multi-objective optimal (GMO) control method is proposed in [118,

119] to address control problems involving L1/H2/H∞ norm objectives, and a MATLAB package

for synthesizing GMO problems is introduced in [120]. Earlier similar approaches can be tracked

in the treatment of `1-optimal control problem in [121] for MIMO discrete-time systems. A novel

synthesis method was developed in [122] using linear programming (LP) approach. In [123], a

discrete-time formulation for state-feedback L1 adaptive system and a filter optimization method

based on linear programming were proposed.

In this chapter, the Euler approximation is used to obtain the discrete-time generalized plant.

The resulting filter from the optimization algorithm is then converted back to continuous-time to

synthesize the L1 adaptive controller to meet robustness/performance trade-off criteria. Note that

solving the equivalent optimization problem in discrete-time results in a sub-optimal solution. It is

shown that the continuous-time compensator derived from the optimization setup for the discrete-

time equivalent system satisfies the norm constraints on the closed-loop continuous-time system,

and the performance metric tends arbitrarily close to the optimum using sufficiently small sampling
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time in the Euler approximation method.

With the proposed filter optimization method a trajectory tracking controller for the Crazyflie

quadrotor is discussed as an example. The Crazyflie 2.0 is an open-source micro quadrotor UAV

[124]. Due to its small size and lightweight, it is less intimidating to fly in the proximity of people.

Hence it can be used to deliver small household items like pills. Its small size however makes it

prone to aerodynamic uncertainty, and the relatively short battery discharging time introduces

more uncertainty into the system. These uncertainties make it an ideal testbed for the L1 adaptive

controller. Some previous studies using Crazyflie can be found in [125–127]. There were several

studies on the L1 adaptive controller design for quadrotors in [128–132], but no dedicated study

has been focused on filter optimization. For the Crazyflie quadrotor a baseline PD controller was

designed for each of the x and y direction, and a PID controller for z direction. With these baseline

controllers, three single-input-single-output (SISO) transfer functions from the position command

to position output were obtained via system identification (system ID). Based on these SISO transfer

functions, an L1 adaptive controller was designed for each direction. The closed-loop system was

then tested in a lab environment equipped with the Vicon Motion Capture System [133].

6.1. Analysis of the Reference System with Input Delay

In this chapter the analysis is limited to a single-input single-output (SISO) delayed system

y(s) = A(s)
(
e−sTdu(s) + d(s)

)
, (6.1)

where u(t) ∈ R is the input signal, y(t) ∈ R is the system output, A(s) is a strictly proper unknown

transfer function, and Td > 0 is an unknown input delay. Finally, d(s) is the Laplace transform of

the time-varying uncertainties and disturbances

d(t) = f (t, y(t)) , (6.2)

where f : R× R→ R is a nonlinear function representing uncertainties. To proceed, the following

assumptions are introduced.

Assumption 6.1. There exist constants L > 0 and L0 > 0, such that

|f (t, y1)− f (t, y2)| ≤ L |y1 − y2| , |f (t, y)| ≤ L |y|+ L0

hold uniformly in t ≥ 0.

Assumption 6.2. The unknown LTI plant A(s) in (6.1) can be modeled as

A(s) = P21(s)∆p(InA×nA − P11(s)∆p)−1P12(s)+P22(s) = fu

[ P11(s) P12(s)

P21(s) P22(s)

]
nA+1,nA+1

,∆p

 ,

(6.3)
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where ∆p is the unknown nA × nA matrix with ‖∆p‖L1
≤ 1 representing system parametric un-

certainties, P11(s), P12(s), P21(s) and P22(s) are known LTI transfer functions with dimensions

nA × nA, nA × 1, 1 × nA and 1 × 1 respectively. The notation fu(·) represents the linear upper

fractional transformation from [134].

The control objective is to design an adaptive output feedback controller u(t) such that the

system output y(t) tracks the desired response ym(t) given by ym(s) = M(s)r(s), where r(s) is

the Laplace transform of a given bounded continuous reference command r(t), and M(s) is a

minimum-phase stable transfer function.

Similar to previous chapters, the closed loop of the system in (6.1) with an L1 adaptive output-

feedback controller recovers the response of a continuous-time reference system as the sampling time

tends to zero. Here the closed-loop reference system, in which the uncertainties are compensated

for within the bandwidth of a low-pass filter C(s), is given by

yref(s) = M(s) (uref(s) + σref(s)) , (6.4)

uref(s) = C(s) (r(s)− σref(s)) , (6.5)

where

σref(s) =

(
e−sTdA(s)−M(s)

)
uref(s) +A(s)dref(s)

M(s)
, (6.6)

and dref(s) is the Laplace transform of dref(t) = f (t, yref(t)). We refer to the closed-loop system in

(6.4) - (6.6) as L1 reference system.

The controller design proceeds by considering a strictly proper transfer function C(s) such

that C(0) = 1. Further, the selection of C(s) and M(s) must ensure that

HTd
(s)

∆
=

A(s)M(s)

C(s)e−sTdA(s) + (1− C(s))M(s)
is stable, (6.7)

and that the following L1-norm condition holds

‖GTd
(s)‖L1

L < 1, (6.8)

where

GTd
(s)

∆
= HTd

(s) (1− C(s)) . (6.9)

Lemma 6.1. The closed loop reference system in (6.4) - (6.6), together with Assumptions 6.1 and

6.2, is bounded-input bounded-output (BIBO) stable, if C(s) and M(s) verify the L1-norm condition

in (6.8).

83



Proof. It follows from (6.5) and (6.6) that

uref(s) =
C(s)M(s)r(s)− C(s)A(s)dref(s)

C(s)e−sTdA(s) + (1− C(s))M(s)
, (6.10)

which, along with (6.4), yields

yref(s) = HTd
(s) (C(s)r(s) + (1− C(s)) dref(s)) . (6.11)

Moreover, Assumption 6.1 implies

‖yref‖L∞ ≤ ‖HTd
(s)C(s)‖L1

‖r‖L∞ + ‖GTd
(s)‖L1

(
L‖yref‖L∞ + L0

)
. (6.12)

It follows from (6.12) that

‖yref‖L∞ ≤
‖HTd

(s)C(s)‖L1
‖r‖L∞ + ‖GTd

(s)‖L1
L0

1− ‖GTd
(s)‖L1

L
. (6.13)

Since HTd
(s), GTd

(s) are strictly proper and stable, ‖yref‖L∞ is bounded, which completes the

proof. �

The stability condition in (6.8) is not easy to verify, since it depends on the unknown time

delay and the system’s parametric uncertainties. For the purposes of filter design, we derive the

modified L1-norm condition, which guarantees a lower bound for the time-delay margin.

Define

f1 (t, y)
∆
= f (t, y)− f (t, 0) , f0(t)

∆
= f (t, 0) . (6.14)

Let d1(t) = f1(t, y(t)) and d0(t) = f0(t) be time varying uncertainties and disturbances. From (6.2)

one can write

d(t) = d1(t) + d0(t) . (6.15)

Let

∆d(s) =
d1(s)

y(s)
, (6.16)

where d1(s) and d0(s) are the Laplace transforms of d1(t) and d0(t), respectively. Then, the

following holds

d(s) = d1(s) + d0(s) = ∆d(s)y(s) + d0(s) . (6.17)

Using Assumption 6.1 one can find the following upper bounds

‖∆d(s)‖L1
= sup
‖y‖L∞≤1

‖d1‖L∞
‖y‖L∞

≤ L, ‖d0‖L∞ ≤ L0. (6.18)

The input delay in the system (6.1) is typically unknown. We define the following uncertainty
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related to this time delay

∆Td
(s)

∆
=

1

s

(
e−sTd − 1

)
, (6.19)

where Td is the input time delay, and ‖∆Td
‖L1

= Td. For the purpose of filter design the optimiza-

tion variable is defined as

K(s)
∆
=

sC(s)

(1− C(s))M(s)
. (6.20)

Theorem 6.1. Let T ∗d be a positive constant. Given the system (6.1) with Assumptions 6.1 and

6.2, the reference system given by (6.4)-(6.4) is BIBO stable for all Td < T ∗d (i.e. T ∗d is a lower

bound on the time delay margin), if

‖Ψ(s)‖L1
< 1 , (6.21)

where

Ψ(s)
∆
=

 −T
∗
dK(s)Ω(s)P22(s) −LK(s)Ω(s)P22(s) −K(s)Ω(s)P21(s)

T ∗d Ω(s)P22(s) LΩ(s)P22(s) Ω(s)P21(s)

T ∗dP12(s)Ω(s) LP12(s)Ω(s) P11(s)− 1
sP12(s)K(s)Ω(s)P21(s)

 , (6.22)

and K(s) is defined in (6.20), Pij(s) (i, j = 1, 2) is given in Assumption 6.2, and Ω(s)
∆
=
(
1 + 1

sP22(s)K(s)
)−1

.

Proof. Substituting (6.3) and (6.17) into (6.4), we get

yref(s) = P21(s)∆pyp(s) + P22(s)
(
e−sTduref(s) + ∆d(s)yref(s) + d0(s)

)
, (6.23)

where

yp(s)
∆
= (I− P11(s)∆p)−1P12(s)

(
e−sTduref(s) + ∆d(s)yref(s) + d0(s)

)
.

Let

ys(s)
∆
= suref(s). (6.24)

Then using (6.19) and (6.24), one can rewrite (6.23) as

yref(s) = P21(s)∆pyp(s) + P22(s)

(
∆Td

(s) +
1

s

)
ys(s) + P22(s)∆d(s)yref(s) + P22(s)d0(s). (6.25)

Notice that yp(s) is given by

yp(s) = P11(s)∆pyp(s) + P12(s)

(
∆Td

(s) +
1

s

)
ys(s) + P12(s)∆d(s)yref(s) + P12(s)d0(s). (6.26)

Moreover, combining (6.4), (6.5), (6.20) and (6.24) yields

ys(s) = K(s)M(s)r(s)−K(s)yref(s).
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Defining Ω(s)
∆
=
(
1 + 1

sP22(s)K(s)
)−1

and using (6.23) and (6.25), one obtains

ys(s) =K(s)Ω(s)M(s)r(s)−K(s)Ω(s)P21(s)∆pyp(s)−K(s)Ω(s)P22(s)∆Td
(s)ys(s)

−K(s)Ω(s)∆d(s)yref(s)−K(s)Ω(s)P22(s)d0(s).
(6.27)

From (6.25) and (6.26), together with (6.27), it follows that

yref(s) =
1

s
P22(s)K(s)Ω(s)M(s)r(s) + Ω(s)P21(s)∆pyp(s) + Ω(s)P22(s)∆r(s)ys(s)

+ Ω(s)∆d(s)yref(s) + Ω(s)P22(s)d0(s),

yp(s) =
1

s
P12(s)K(s)Ω(s)M(s)r(s) +

(
P11(s)− 1

s
P12(s)K(s)Ω(s)P21(s)

)
∆pyp(s)

+

(
P12(s)− 1

s
P12(s)K(s)Ω(s)P22(s)

)
(∆Td

(s)ys(s) + ∆d(s)yref(s) + d0(s)) .

(6.28)

Now let

∆(s)
∆
=


1
T ∗d

∆Td
(s) 0 0

0 1
L∆d(s) 0

0 0 ∆p

 , Y (s)
∆
=

 ys(s)

yref(s)

yp(s)

 , U(s)
∆
=

[
d0(s)

r(s)

]
,

B(s)
∆
=

 −K(s)Ω(s)P22(s) K(s)Ω(s)M(s)

Ω(s)P22(s) 1
sP22(s)K(s)Ω(s)

P12(s)− 1
sP12(s)K(s)Ω(s)P22(s) 1

sP22(s)K(s)Ω(s)M(s)

 .
Notice that ‖∆(s)‖L1

≤ 1. One can rewrite (6.27) and (6.28) in a matrix form as follows

Y (s) = Ψ(s)∆(s)Y (s) +B(s)U(s). (6.29)

Since r(t) and d0(t) are bounded signals, the system in (6.29) is stable if (I−Ψ(s)∆)−1 is analytic

in right-half s-plane. Using small gain theorem, a sufficient condition for stability is given by

‖Ψ(s)∆(s)‖L1
< 1.

Since ‖∆(s)‖L1
≤ 1, the stability of the system in (6.29) follows from the condition in (6.21).

Next we show that the condition in (6.21) verifies ‖GTd
‖L1

L < 1 for all Td ≤ T ∗d by using a

contradiction argument (for simplicity, we assume r(t), d0(t) ≡ 0). Suppose it does not hold. Then

there exists Td ≤ T ∗d such that

‖GTd
(s)‖L1

L ≥ 1 , (6.30)

so that for some d(s), ‖d1(s)‖ ≤ 1 the following holds

‖GTd
(s)d1(s)‖L∞ ≥

‖d1(s)‖L∞
L

. (6.31)
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Combining (6.11) and (6.17) yields

yref = GTd
(s)d1(s). (6.32)

Moreover, it follows from (6.17), (6.32) and (6.29) that

 ys(s)

yref(s)

yp(s)

 = Ψ(s)


1
T ∗d

∆Td
(s)ys(s)

1
Ld1(s)

∆pyp(s)

 . (6.33)

Notice that ∥∥∥∥ 1

T ∗d
∆Td

(s)ys(s)

∥∥∥∥
L∞
≤
∥∥∥∥ 1

T ∗d
∆Td

(s)

∥∥∥∥
L1

‖ys(s)‖L∞ ≤ ‖ys(s)‖L∞ , (6.34)

and

‖∆pyp(s)‖L∞ ≤ ‖∆p‖L1
‖yp(s)‖L∞ ≤ ‖yp(s)‖L∞ . (6.35)

Finally, combining (6.34), (6.35) and (6.31) we get∥∥∥∥∥∥∥
 ys(s)

yref(s)

yp(s)


∥∥∥∥∥∥∥
L∞

≥

∥∥∥∥∥∥∥∥


1
T ∗d

∆Td
(s)ys(s)

1
Ld1(s)

∆pyp(s)


∥∥∥∥∥∥∥∥
L∞

, (6.36)

which contradicts ‖Ψ(s)‖L1
< 1. Therefore, ‖GTd

(s)‖L1
L < 1 holds for all Td ≤ T ∗d , which, along

with Lemma 6.1, implies that the reference system system is BIBO stable for each Td ≤ T ∗d . This

completes the proof. �

6.2. Optimization Problem and the Synthesis Method

In this section, the optimal filter design is formulated as a constrained optimization problem,

and then a synthesis procedure is presented to solve the optimization problem. In addition to

robust stability condition, which was introduced in the previous section, the performance criteria

for the trade-off of robust stability and robust performance are defined.
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Consider the following definitions

K(s) =
sC(s)

(1− C(s))M(s)
,

eref(s) = M(s)r(s)− yref(s) ,

uK(s) = K(s)eref(s), y(s) = uK(s),

us(s) = ∆Td
(s)ys(s) ,

dref(s) = ∆d(s)yref(s) ,

yp(s) = P12(s)(us(s) + dref(s)) + P11(s)up(s) +
1

s
P12(s)uK(s),

up(s) = ∆pyp(s),

∆(s) = diag

(
1

T ∗d
∆Td

,
1

L
∆d,∆p

)
,

where yref(s) is the reference output, defined in (6.4), and r(s) is Laplace transform of reference

command r(t). The matrices ∆p and Pij(s) of parametric uncertainties are defined in Assumption

6.2. Moreover, ∆Td
(s) is given in (6.19). Let Ze(t) and Zu(t) represent performance outputs defined

as

Ze(s) = We(s)eref(s), Zu(s) = Wu(s)
1

s
uK(s),

where We(s) and Wu(s) are the weight functions on the error signal and control input, respectively.

By minimizing the norm defined for weighted control input in the cost function, one can reduce

the undesirable control actuation. The corresponding generalized plant G(s) is given by

T ∗d ys

Lyref

yp

Ze

Zu

eref


=



0 0 0 0 T ∗d
LP22(s) LP22(s) LP21(s) 0 1

sLP22(s)

P12(s) P12(s) P11(s) 0 1
sP12(s)

−We(s)P22(s) −We(s)P22(s) −We(s)P21(s) We(s)M(s) − 1
sWe(s)P22(s)

0 0 0 0 1
sWu(s)

−P22(s) −P22(s) −P21(s) M(s) − 1
sP22(s)


︸ ︷︷ ︸

∆
=G(s)


us

dref

up

r

uK

 .

The LFT formulation of the closed-loop system can be written as

T (s) = fl (fu (G(s), ∆(s)) , K(s)) , (6.37)

where fu(·) and fl(·) denote linear upper and linear lower fractional transformations, respectively.

The LFT problem setup is shown in Figure 6.1.

To formulate the optimization problem, one needs to specify the performance criteria. Consider

minimization of theH2-norm of the transfer functions from the reference input r to the performance

output signals Ze and Zu, which ensures a zero steady-state tracking error (it corresponds to dc-
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Figure 6.1: The Reference output-feedback system with input delay and its LFT model.

gain condition for the filter design (i.e. C(0) = 1)). In addition, we add a weighted L1-norm of the

transfer function from the input us to the output ys (shown in Figure 6.1) to the cost function in

order to optimize the time-delay margin at the input.

As shown in Theorem 6.1, the closed-loop system is robustly stable in the presence of input

time delay Td ≤ T ∗d , input nonlinearities, subject to Assumption 6.1, and parametric uncertainties

of the plant A(s), if the L1-norm condition in (6.21) is satisfied. A combination of a mixed L1/H2

cost-function and L1 robust stability constraint ensures uniform bound on transient response and

zero steady-state error. Therefore the constrained optimization problem for filter design is proposed

as follows

inf
K(s) stabilizing

‖T44 (K(s))‖2H2
+ ‖T45 (K(s))‖2H2

+ c ‖T11 (K(s))‖L1
, s.t. ‖Ψ(K(s))‖L1

< 1,

(6.38)

where Tji : wi → vj is a mapping from the input wi (ith element of input vector w> = [us, dref , up, r])

to the output vj (jth element of output vector v> = [ys, yref , yp, Ze, Zu]). Note that in this for-

mulation the L1-norm constraint ensures stability of the closed-loop system in the presence of

three sources of uncertainties (i.e. input delay, input nonlinearities and disturbances, and system

parametric uncertainties). Dependent on the specific problem, if some of the uncertainties are not

present, the mapping Ψ can be reduced to a lower dimensional system.

Next we address the optimization problem in (6.38), in which we optimize over H2 performance

measure, while satisfying the robust stability constraint based on the L1-norm. Due to the chal-

lenges in the optimization problem, involving L1-norm in continuous-time framework [116, 117],

a problem equivalent to the one in (6.38) is solved in discrete-time framework. This equivalent

multi-objective optimization problem can be solved numerically through efficient linear/quadratic

programming (LP/QP,) [120]. First, the discrete-time MIMO open-loop transfer function G(z),

which approximates the generalized plant G(s), is obtained. Let K(z) be the z-transform of the

controller K(s) (as shown in Figure 6.1). We treat K(z) as the optimization variable. The op-

timization algorithm results in optimal controller, K∗(z), and is converted to continuous time to
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obtain K∗(s). Then the optimal filter is given by C∗(s) = K∗(s)M(s)/s
1+K∗(s)M(s)/s .

In this chapter Euler approximation method is used to convert a continuous-time LTI sys-

tem to discrete-time and vise-versa. Note that solving the equivalent optimization problem in

discrete-time results in a sub-optimal solution. In the sequel we show that the L1 and H2 norms

of continuous-time systems are bounded above by the `1 and H2 norms of discrete-time counter-

parts respectively. The norms of continuous-time system and discrete-time counterpart become

arbitrarily close using sufficiently small sampling time for the Euler approximation. This approach

also ensures that the continuous-time compensator derived from the optimization setup for the

discrete-time equivalent system satisfies the norm constraints on the closed-loop continuous-time

system, and the performance measure tends arbitrarily close to the optimum using sufficiently small

sampling time.

Theorem 6.2. Consider the stable strictly proper system G(s) with the system matrices (A, B, C)

and the Euler approximation system (EAS) G(z, τ) with the system matrices (I + τA, τB,C). Let

τ ∈ (0, τmax), where τmax
∆
= min

λ∈Λ

{
−2Re(λ)

|λ|2

}
, and Λ be the set of all eigenvalues of A. Then

(i) G(z, τ) is stable if and only if G(s) is stable for τ ∈ (0, τmax);

(ii) 1
τ ‖G(z, τ)‖2H2

≥ ‖G(s)‖2H2
for τ ∈ (0, τmax);

(iii) lim
τ→0

1
τ ‖G(z, τ)‖2H2

= ‖G(s)‖2H2
.

Proof. Consider the transformation z = 1 + τs corresponding to the Euler approximation method.

Let si be the pole of G(s) in the s-plane and zi = 1 + τsi be the corresponding pole of G(z, τ). The

stability of discrete-time system implies that all poles are in the open unit disk, i.e., |zi| < 1. For

τ ∈ (0, τmax), the transformation z = 1+τs maps all the left-half s-plane stable poles of G(s) to the

open unit disk in the z-plane, where τmax = min
λ∈Λ

{
−2Re(λ)

|λ|2

}
, and Λ is the set of all eigenvalues of A.

Therefore G(z, τ) is stable. On the other hand, since this transformation is a bijective mapping, the

converse argument also holds, i.e. stability of G(z, τ) implies the stability of G(s) for τ ∈ (0, τmax).

This proves (i).

Next we prove the claim in (ii). Using Euler approximation, the matrices of the discrete-time

system are written as

AD = I + τA, BD = τB, CD = C.

The H2-norms of G(z, τ) and G(s) are given by

‖G(z, τ)‖2H2
= trace

(
CDPDCD

>
)
, ‖G(s)‖2H2

= trace
(
CPC>

)
, (6.39)

where the positive definite matrices PD and P solve Lyapunov equations

ADPDA
>
D − PD +BDB

>
D = 0 , (6.40)
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PA+A>P +BB> = 0 , (6.41)

respectively. P is the unique solution for (6.41), since the pair (A, B) is controllable. In addition,

controllability of the pair (A, B) is equivalent to controllability of the pair (AD, BD) for all τ ≤ τmax.

Therefore, PD is also the unique solution for (6.40). From (6.39) it follows that

1

τ
‖G(z, τ)‖2H2

− ‖G(s)‖2H2
=

1

τ
trace

(
CDPDCD

>
)
− trace

(
CPC>

)
= trace

(
C∆PC>

)
, (6.42)

where ∆P = 1
τ PD − P . In order to ensure that the argument in (ii) holds, it suffices to show that

∆P in (6.42) is positive definite for all τ ≤ τmax. By using Euler approximation, Equation (6.40)

can be rewritten as

PDA
> +APD + τ

(
APDA

> +BB>
)

= 0. (6.43)

Since 1
τ PD = P + ∆P , it follows from (6.40) and (6.43) that

∆PA+A>∆P = −ADPDA
>
D. (6.44)

Notice that A is Hurwitz, and ADPDA
>
D is a positive definite matrix for each τ ≤ τmax. Therefore

∆P is a positive definite matrix. This proves the claim in (ii).

Finally, we will show that the argument in (iii) holds, by proving ‖∆P‖2 → 0 as τ → 0. Let

Sn (τ)
∆
=

n∑
k=0

pk (τ), τ ∈ (0, τmax) ,

where

pk (τ)
∆
= AkDBDB

>
D

(
A>D

)k
= τ2(I + τA)kBB>

(
I + τA>

)k
. (6.45)

Since the closed-form solution of PD for each τ ≤ τmax is given by

PD(τ) =

∞∑
k=0

AkDBDB
>
D

(
A>D

)k
,

lim
n→∞

Sn (τ) = PD (τ) for τ ∈ (0, τmax) holds. Notice that

‖Sm (τ)− Sn (τ)‖2 ≤
m∑
k=n

‖pk (τ)‖2 ,

which, together with (6.45), leads to

‖Sm (τ)− Sn (τ)‖2 ≤
m∑
k=n

∥∥∥∥τ2(I + τA)kBB>
(
I + τA>

)k∥∥∥∥
2

≤ τ2σ2
max (B)

m∑
k=n

λkmax

(
ADA

>
D

)
.

(6.46)

Since AD is stable,
∣∣λmax

(
ADA

>
D

)∣∣ < 1 holds, which yields λnmax

(
ADA

>
D

)
→ 0 as n→∞. Therefore,
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by taking limits of both sides in (6.46), it follows that for each τ ≤ τmax

‖Sm (τ)− Sn (τ)‖2 → 0 as n,m→∞,

which implies that the sequence {Sn (τ)} converges uniformly. Since Sn(τ) is continuous on the

interval (0, τmax), by applying Uniform limit theorem [135], it follows that PD (τ) is continuous on

(0, τmax). Hence

lim
τ→0

PD (τ) = lim
τ→0

lim
n→∞

Sn (τ) = lim
n→∞

lim
τ→0

Sn (τ) = 0.

Since A is stable,
∫∞

0

∥∥eAtA∥∥
2
dt <∞, and

‖∆P‖2 =

∥∥∥∥∫ ∞
0

eAtAPDA
>eA

>tdt

∥∥∥∥
2

≤
∥∥∥P 1/2

D

∥∥∥
2

∫ ∞
0

∥∥eAtA∥∥
2
dt ,

lim
τ→0

PD (τ) = 0 implies ‖∆P‖2 → 0 as τ → 0. This concludes the proof. Notice that Theorem

6.2 appears in [117] without the proof. In order to make this chapter self-contained, we proved

Theorem 6.2. �

Theorem 6.3. Consider the system

ẋ = Ax+B1w, x(0) = 0,

v̂ = C1x+D11w.
(6.47)

Assume that the corresponding Euler approximation system (EAS)

xk+1 = (I + τA)xk + τB1wk, x0 = 0,

v̂k = C1xk +D11wk
(6.48)

is asymptotically stable, and ∥∥∥T (EAS)
v̂w

∥∥∥
1

= sup
w∈`∞, ‖w‖≤1

x0=0

‖v̂k‖∞
∆
= µE (τ) . (6.49)

Then the system (6.47) is asymptotically stable and

‖Tv̂w‖L1
= sup

w∈L∞, ‖w‖≤1

x0=0

‖v̂(t)‖∞
∆
= µc ≤ µE (τ) . (6.50)

Conversely, if (6.47) is asymptotically stable, and ‖Tv̂w‖L1

∆
= µc, then for all µ > µc there exists

τ∗ > 0, such that for all 0 < τ ≤ τ∗ the EAS (6.48) is asymptotically stable, and
∥∥∥T (EAS)

v̂w

∥∥∥
1
≤ µ.

Proof. The proof of this theorem is given in [116]. �

Theorem 6.4. Consider the system in (6.47) and the corresponding Euler approximation system
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(EAS) in (6.48). Let {τi} be a strictly decreasing sequence, such that lim
i→∞

τi = 0, and let µi = µE(τi)

denote the `1-norm defined in (6.49). Then the sequence {µi} is non-increasing, and lim
i→∞

µi = µc,

where µc = ‖Tv̂w‖L1
denotes the L1-norm defined in (6.50).

Proof. The proof of this theorem can be found in [116]. �

In the multi-objective approach of GMO control synthesis method multiple signal measures

are used to evaluate the performance of the controller, which allows for consideration of different

sources of uncertainties in control systems [120]. The problem formulation of this control synthesis

method [120] is presented in the sequel.

Consider the system shown in Figure 6.2, where G(z) = [Gvw(z) Gvu(z); Gyw(z) Gyu(z)] is

the generalized discrete-time linear time-invariant open-loop transfer matrix from [w; u] to [v; y],

and K(z) is the controller. The signals w, v, u, and y are the exogenous input, regulated output,

control input and measured output respectively, and r is a given scalar reference input, while S is

the time-response output.

Figure 6.2: Closed-loop System

Let R̂(z) denote the closed-loop transfer matrix from w to v. From [136] the set of all the

achievable closed-loop maps is given by{
R̂(z) = Gvw(z) +Gvu(z)K(z)(I−Gyu(z)K(z))−1Gyw(z) |K(z) stabilizing and structured

}
.

In the sequel, R̂i(z) (i = 1, ..., 6) denotes the closed-loop transfer matrix from wi to vi, and Ri(k) is

the corresponding time-domain response, such that R̂i(z) =
∑∞

k=0R
i(k)z−k. R̂7(z) is the transfer

function from r to S. The general multi-objective optimization (GMO) problem, as formulated

in [120], can be stated as follows:

Given the plant G(z), constants ci > 0, i = 1, ..., 6, and two sequences {atemp (k)}∞k=0 and
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{btemp (k)}∞k=0, solve the following problem:

inf
K stabilizing and structured

{
c1

∥∥R1 (K)
∥∥

1
+ c2

∥∥R2 (K)
∥∥2

2
+ c3

∥∥∥R̂3 (K)
∥∥∥
H∞

}
subject to∥∥R4 (K)

∥∥
1
≤ c4,∥∥R5 (K)

∥∥2

2
≤ c5,∥∥∥R̂6 (K)

∥∥∥
H∞
≤ c6,

atemp(k) ≤ S(k) ≤ btemp(k), k = 0, 1, 2, ...,

where {S(k)}∞k=0 denotes the time response of the closed-loop system due to the exogenous reference

input r with wi = 0, i = 1, ..., 6.

6.3. Experimental Study: Optimizing the Position Controller for A Quadrotor

In this section the trajectory tracking control of Crazyflie is presented. In this scheme we

consider PD/PID controllers as baseline controllers and augment those with L1 adaptive output-

feedback to enhance the performance and robustness of the quadrotor’s trajectory tracking. For

the design of the filter, we apply the filter optimization method presented in Section 6.2. Moreover,

flight test results are presented to compare the trajectory tracking performance of the quadrotor

system with and without augmented L1 controller.

6.3.1. Introduction to the Quadrotor and the Test Environment

The Crazyflie used in this study is shown in Figure 6.3 with additional frame and markers. It

is equipped with an onboard auto-pilot, which receives attitude and thrust command and generates

corresponding output. This auto-pilot will be used in the controller design. It is valid to assume

that these channels work independently, and that command in one attitude will be followed without

affecting other attitudes. Table 6.1 lists a few specifications of this platform. For more information

about the Crazyflie refer to [124] and previous studies [125,126].

Figure 6.3: Crazyflie 2.0 with frame and markers
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Figure 6.4: Test environment setup

Mass 27g

Size (W×H×D) 92 × 92 × 92mm

Max Recommended Payload 15g

Table 6.1: Basic Specifications of Crazylie 2.0 [137]

The flight test was conducted at the Intelligent Robotics Laboratory under the Coordinated

Science Laboratory of University of Illinois, Urbana-Champaign. The setup of the lab is shown

in Figure 6.4. The controller is implemented in Simulink. Simulink models communicate with

the Robot Operating System (ROS) to send the control signals to the UAV. The Vicon Motion

Capture System, which has been widely used in quadrotor flight test [138,139], is used to measure

the position and attitude of the UAV and then send the measurements to Simulink model via ROS.

To enable the Vicon measurement, a frame was designed and 3D-printed with four markers installed

on it, as shown in Figure 6.3.

6.3.2. Quadrotor Modeling and Baseline Controller design

Let F denote an inertial coordinate system defined by axes x, y, and z. Let rF denote the

position vector of center of mass of the quadrator in F , and ψ, φ and θ be Z-X-Y Euler angles.

At hovering state the speed of the UAV is zero, so are the pitch and roll angles θ and φ. At

an equilibrium corresponding to hovering state, under the assumption of small perturbations, the

linearized equations of motion take the following form [138]:

r̈F =

g(∆θ cosψ + ∆φ sinψ)

g(∆θ sinψ −∆φ cosψ)
∆u
m

 , (6.51)
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where m is the mass of the UAV, g is the gravitational acceleration, and ψ is the yaw angle. Also,

∆φ and ∆θ indicate perturbations from the equilibrium angles. We define another coordinate

system denoted by Ft with axes xt, yt and zt, as shown in Figure 6.5. The transformation matrix

R from F to Ft is given by

R =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1



Figure 6.5: Coordinate Systems

Assuming a constant yaw angle ψ = ψ0, the linearized equation of motion in (6.51) can be

rewritten as

r̈Ft = Rr̈F =

g∆θ

g∆φ
∆u
m

 . (6.52)

From (6.52) it can be seen that the motions in xt, yt and zt directions are decoupled. The yaw

angle can be regulated at a desired angle ψdes(t) = ψ0 by implementing a PD controller. With

the motion in xt, yt and zt axes decoupled, well-tuned PD/PID controllers with negative feedback

are designed for each axis. The objective of the baseline control law is twofold. First, it yields

a satisfactory position control of quadrotor for tracking a desired position command rdes(t) =

[xdes(t), ydes(t), zdes(t)]
> in F . At the same time it renders a stable closed-loop system, on which

system ID will be done to obtain approximate transfer functions for filter optimization. The gains

of the baseline controller have been well tuned in order to achieve a reasonable position tracking

performance. However, due to nonlinearities and uncertain parameters, the tracking performance

of baseline PD/PID controllers is limited.

With these PD/PID controllers and using the linearized equation of motion in (6.52) the
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required attitude angles and thrust can be obtained by

θcmd = ∆θcmd =
kd,xėxt + kp,xext

g

φcmd = ∆φcmd = −
kd,yėyt + kp,yeyt

g

u = u0 + ∆ucmd = mg +m

(
kd,zėzt + kp,zezt + ki,z

∫
eztdt

)
,

where [ext , eyt , ezt ]
> = R(rdes − rF ) are tracking errors represented in Ft, and kp,x, kp,y, kp,z, kd,x,

kd,y, kd,z and ki,z are PID control gains. The onboard auto-pilot can follow the angle command

generated by the outer loop trajectory tracking controller relatively fast. Therefore, we can assume

a time scale decoupling between the outer loop off-board controller and the onboard auto-pilot.

Augmented with the baseline control law derived above, the closed-loop system receives posi-

tion command in terms of rdes(t). Then the command is transformed into body frame commands,

and position outputs are generated independently. Under the assumption of small attitude angles

the motions in three axes are decoupled; each of these motions is governed by a separate dynam-

ic equation, indicating that three SISO subsystems are generated. For these SISO subsystems a

SISO transfer function for each direction describes the relationship between the input and the out-

put. Next system identification is carried out for each direction to obtain an approximate transfer

function from position command input to position output.

Figure 6.6: Diagram of quadrotor system stabilized with baseline PD/PID controllers, which are imple-
mented in an offboard computer.

6.3.3. Transfer Functions of SISO Subsystems

For L1 adaptive controller design and filter optimization, the closed loop of the quadrotor with

the baseline PD/PID controllers (P in Figure 6.6) is approximated by a transfer function P0. In the

system ID procedure, sinusoidal position command inputs with different frequencies were applied

to the system in x, y, and z directions, and the corresponding position outputs were measured. A
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From xdes to x (From ydes to y)
−0.3611s + 6.435
s2 + 3.174s + 6.41

From zdes to z
1.009s + 6.168

s2 + 2.017s + 6.275

Table 6.2: Transfer functions from position input to position output in x, y and z directions.

transfer function for each direction was then obtained based on the input and the output signals.

Here we assume that the system is symmetric with respect to x and y axes. Therefore the transfer

functions in x and y directions are assumed to be the same. Table 6.2 shows the transfer functions

obtained from system ID. They will be used in the subsequent design.

6.3.4. Reference System Optimization

Next an L1 adaptive output feedback controller is designed for trajectory tracking control of

Crazyflie and implemented in an off-board computer. The closed loop of the quadrotor system

with the baseline controller is augmented with an outer-loop L1 controller, as shown in Figure 6.7.

Using the transfer functions, obtained by system ID (Table 6.2), the L1 controller is optimized

and augmented to improve the trajectory tracking performance and robustness of the closed-loop

system.In order to account for uncertain parameters and weak coupling effects in the plant P , we

assume bounded perturbation for plant dynamics in each direction. The uncertain model of the

plant with additive perturbation is given by

Figure 6.7: Closed-loop diagram of PD/PID-controlled quadrotor system augmented with L1 adaptive
controller implemented in an offboard computer.

P (s) = P0(s) + ∆P (s) = fu

([
03×3 L

I3×3 P0(s)

]
, ∆p(s)

)
, ‖∆p(s)‖ ≤ 1, (6.53)

where

L = diag (Lx, Ly, Lz) , ∆p(s) = diag

(
1

Lx
∆px(s),

1

Ly
∆py(s),

1

Lz
∆pz(s)

)
,

and P0(s) approximates the dynamics of the closed loop of the quadrotor system with the baseline

controller, ∆p(s) is the additive uncertainty whose upper bound is specified by L, T ∗ is the lower
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bound on the time-delay margin at the control input. The structure of the L1 reference system

for the trajectory tracking control of Crazyflie is shown in Figure 6.8. The formulation in (6.53)

Figure 6.8: Reference system design for trajectory tracking control of Crazyflie.

for modeling of the system allows to approximate the closed-loop system with three decoupled

subsystems, shown in Figure 6.8. Then for each of these decoupled subsystems we design a SISO

L1 adaptive controller. In the following, the procedure for filter design for the L1 controller in x

direction is illustrated. The LFT model of L1 reference system for x direction is shown in Figure

6.9, where the generalized plant Gx(s) is defined as follows

Figure 6.9: LFT model of the closed-loop L1 reference system for x direction.
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
T ∗dysx

yδx

Zex

Zux

erefx

 =


0 0 0 T ∗d
Lx 0 0 Lx

s

−Wex(s)P0x(s) −We Wex(s)Mx(s) −1
sWex(s)P0x(s)

0 0 0 1
sWux(s)

−P0x(s) −1 Mx(s) −1
sP0x(s)


︸ ︷︷ ︸

∆
=Gx(s)


usx

uδx

xdes

uKx

 . (6.54)

The reference system Mx(s) is given by

Mx(s) =
10

s+ 10
.

In the LFT setup, as shown in Figure 6.9, the uncertainty ∆x(s) and the optimization variable

Kx(s) are defined as follows

∆x(s)
∆
=

[
1
T ∗d

∆Tdx
(s) 0

0 1
Lx

∆px(s)

]
, Kx(s)

∆
=

sCx(s)

(1− Cx(s))Mx(s)
,

where ∆Tdx
(s)

∆
= 1

s (e−sTdx − 1).

Next we obtain the discrete-time MIMO generalized plant Gx(z), equivalent to Gx(s) defined

in (6.54), using the Euler approximation method. The sampling time of τ = 0.005s is chosen for

this system. We define

Rx(z) = fl (Gx(z),Kx(z) ) ,

where Kx(z), the z-transform of Kx(s), is the optimization variable. Then the optimization problem

is given by

inf
Kx(z)

{
‖Rx

33(z)‖2H2
+ ‖Rx

43(z)‖2H2
+ cx‖Rx

11(z)‖`1
}
, s.t.

∥∥∥∥∥
[
Rx

11 Rx
12

Rx
21 Rx

22

]∥∥∥∥∥
`1

< 1, (6.55)

where Rx
ij(z) is the transfer function between the ith output and the jth input. By choosing the

weighting functions Wux(s) and Wex(s) (in the generalized plant (6.54)) and the coefficient cx in

(6.55), one can define the cost-function such that a specific control design requirement is achieved

for x direction. In a similar procedure we formulate the filter optimization problem for SISO L1

adaptive controllers in y and z directions. Since we assumed that the system is symmetric with

respect to x and y directions, the L1 controller design for y direction is the same as for the x

direction. The weighting functions Wuz(s) and Wez(s) and also the coefficient cz can be specified

to define the optimization problem (similar to (6.55)) for filter design corresponding to z direction.
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The reference model for z direction is given by

Mz(s) =
10

s+ 10
.

In the sequel, the scenario for filter optimization problem is illustrated. Here we aim to improve

the tracking performance, while maintaining the closed loop robustness to input time-delay and

uncertainties. Therefore we minimize the tracking error within the feasibility set of solutions,

defined by the `1-norm constraints of the optimization problem. A natural strategy is to select a

relatively large weight on the tracking error signal. Therefore we choose Wex = Wey = Wez = 100,

Wux = Wuy = Wuz = 0.1 and cx = cy = cz = 0. The lower bound on the time-delay margin is

selected to be T ∗d = 0.1sec. The uncertainty bounds are considered to be Lx = Ly = Lz = 0.3.

Note that the optimization procedure results in high-order transfer functions. We use Hankel

SVD model reduction method to obtain lower order filters. The reduced-order optimized filters are

given by

C∗x(s) = C∗y(s) =
0.0609s3 + 4.463s2 + 24.69s + 25.36

s4 + 4.493s3 + 52.24s2 + 61.77s + 25.36
, (6.56)

C∗z (s) =
−0.169s3 + 73.5s2 + 64.8s + 368.4

s4 + 35.35s3 + 315s2 + 479.1s + 368.4
. (6.57)

Figure 6.10 illustrates the flight test results. The reference tracking response of the closed-

loop system to step command in x, y and z directions is shown. As shown in Figure 6.10, the L1

adaptive controller with optimized filter is significantly improving the tracking performance in z

direction. The closed loop with augmented L1 controller has smaller overshoot after takeoff and

smaller settling time, yielding a faster convergence to the desired trajectory. In the subplot of the

z direction (vertical position) the last 10 seconds of the flight test show that the quadrotor with

augmented L1 controller could safely land without the need to switch off the motors. For the PID

controller, as we can observe, this task could not be achieved easily due to the ground effects, and the

quadrotor remains at a small altitude above the ground. In addition, augmentation of the optimized

L1 adaptive controller provides moderate improvements in x and y directions. Figure 6.10 shows

that the well-tuned baseline controller has some bias with the reference command, which might be

caused by the uncertain battery position after each battery change, among some other uncertainties,

while augmentation of the optimized L1 controller eliminates the bias, and the trajectory has less

fluctuations. Plots on the right show the outputs of the L1 adaptive controllers. The reader can

see how the reference inputs were modified by the L1 adaptive controllers to guarantee a better

tracking performance in each direction.

It is worth mentioning that the design of L1 adaptive controller only requires an approximate

model of the system. The robustness and performance requirements can be met by proper selection

of the cost function and parameters for optimization of the filter in L1 adaptive controller using

the systematic method described in this chapter.
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Figure 6.10: Flight test results: (Left) response of the closed-loop system to step reference inputs for x,
y and z directions. (Right) L1 adaptive control input. The positions are measured via Vicon system.
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CHAPTER 7

Conclusion and Future Research

In this dissertation a sampled-data (SD) approach is developed for resilient and secure control

of autonomous CPSs using the L1 adaptive output-feedback control structure. The SD design

facilitates the implementation of control laws on digital computers in CPSs, where the input/output

signals are available at discrete time instances with different sampling rates.

The SD output-feedback controller design with uniform rate is considered in Chapter 3, while

Chapter 4 extends the results to a multi-rate scheme for a class of nested, uncertain, MIMO systems,

with possibly non-minimum phase zeros, subject to reference command saturation. Also, the

multirate design allows the zero-dynamics attacks to be detected. A navigation and control problem

is formulated for autonomous systems using a multi-level control structure, in which the high-level

reference commands are limited by a saturation function, while the low-level controller tracks the

reference by compensating for disturbances and uncertainties. In Chapter 4, we have assumed that

a feasible mission is computed (i.e. the desired trajectory in (4.9) is given). Mission re-planning

and trajectory generation are critical functionalities for autonomous CPSs that can be integrated

into the proposed multi-level control framework in the future work. By extending the multi-level

structure to include global missions, local goals and low-level tasks, the safety of an autonomous

CPS can be addressed in the presence of large uncertainties. We have dealt with the problem

of robust design for the low-level controller (low-level task), as well as the reference command

generation within an operational safety envelop (local goals). However, the mission control (global

mission) has not been discussed in this dissertation. Large uncertainty mitigation requires mission

adaptation and selection of a new trajectory that is still possible, given the remaining capabilities of

the system. As shown in Figure 1.2, such multi-level approach can be integrated with the Simplex

architecture for safe and secure navigation and control of an autonomous air vehicle in the presence

of possible failures/attacks.

Chapter 5 extends the L1 adaptive SD control to the under-actuated systems with non-

minimum-phase zeros. For only a certain class of MIMO systems that satisfy the condition in

(5.20), the limiting properties of the proposed controller have been proven as the sampling time

tends to zero (it guarantees the control performance). In the future work the results can be ex-

tended to a more general class of systems, and the condition in (5.20) can be relaxed. This can be

achieved by modifying the output predictor (observer) in the control structure. Given the decou-

pling property of L1 adaptive controller, which allows for modification of the observer, the proposed

solution is promising to address the problem.

In this dissertation, the experimental results for trajectory tracking control of a Crazyflie

quadrotor, subject to stealthy zero-dynamics attacks, were provided in Chapter 5. The estimation

loop in the multirate L1 controller can quickly detect any abnormal behavior, while the control
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loop recovers the stability of the perturbed quadrotor. A simple way to simulate the Simplex

structure for this experiment is to remove the malicious code as soon as the attack is detected.

The Simplex structure can be implemented using modern multicore processors and virtualization

technology [115], which is beyond the scope of this research. In the future experiments, the proposed

autopilot algorithm can be programmed on a quadrotor equipped with an embedded multicore

processor with hardware-assisted virtualization technology. Also, security of the quadrotor flight

can also be examined against other types of adversarial activities, such as sensor/actuator spoofing,

corruption of safety programs (e.g., virtual geo-fence [115]) and hacking of quadrotor’s position data.

In Chapter 6, the filter optimization problem for L1-adaptive output-feedback controllers is

addressed. We showed that the filter design could be cast as a convex optimization problem

allowing for efficient solutions using linear/quadratic programming (LP/QP). A trade-off scheme is

established between performance and robustness in L1-adaptive control architecture by optimizing

a mixed L1/H2-norm problem. The GMO optimization algorithm, which is used in this chapter,

relies on the finite impulse response (FIR) approximation of the discretized system. If the length of

the FIR approximation is large, the GMO algorithm suffers from computational complexities due

to the large dimension of the corresponding optimization problem. Also, the order of the optimized

filter can become very large, which is not desirable. For example, in systems with fast and slow

modes the length of FIR for a reasonable approximation may be large. Therefore application of this

method may be limited for such systems. Model reduction techniques can be utilized to address

this problem.
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