
c© 2019 Yihan Gao

EXTRACTING AND UTILIZING HIDDEN STRUCTURES IN LARGE DATASETS

BY

YIHAN GAO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Assistant Professor Aditya Parameswaran, Chair
Professor Kevin Chang
Associate Professor Hari Sundaram
Assistant Professor Jiannan Wang, Simon Fraser University

ABSTRACT

The hidden structure within datasets — capturing the inherent structure within the data

not explicitly captured or encoded in the data format — can often be automatically extracted

and used to improve various data processing applications. Utilizing such hidden structure

enables us to potentially surpass traditional algorithms that do not take this structure into

account. In this thesis, we propose a general framework for algorithms that automatically

extract and employ hidden structures to improve data processing performance, and discuss

a set of design principles for developing such algorithms. We provide three examples to

demonstrate the power of this framework in practice, showcasing how we can use hidden

structures to either outperform state-of-the-art methods, or enable new applications that

are previously impossible. We believe that this framework can offer new opportunities for

the design of algorithms that surpass the current limit, and empower new applications in

database research and many other data-centric disciplines.

ii

To my father, whose love and support helped me get through difficult times.

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Aditya Parameswaran for his tremen-

dous help during my years under his supervision. His valuable research insights have made

this thesis possible, and I will also benefit from the life experiences he shared with me for

the rest of my career.

I would like to thank Dr. Kevin Chang, Dr. Hari Sundaram, and Dr. Jiannan Wang, for

taking their valuable time to be on my thesis committee and for providing helpful suggestions

on various issues.

I would also like to thank all my friends who have given me a variety of advice on thesis

writing during the past year. Their suggestions have improved the quality of this work in a

number of ways.

Finally, I would like to thank all the anonymous reviewers of my papers. Their suggestions

have greatly improved the quality of my prior papers, which is reflected in this work.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Outline . 3

CHAPTER 2 THE GENERAL FRAMEWORK . 4
2.1 Design Principles for the Structure Hypothesis Space 5
2.2 Common Design Patterns . 7

CHAPTER 3 EXTRACTING STRUCTURE FOR COMPRESSION 9
3.1 Preliminaries . 11
3.2 Bayesian Network Structure Extraction . 13
3.3 SquID: Supporting Complex Attribute Types 15
3.4 Precision-Aware Compression & Decompression 20
3.5 Discussion: Examples, Optimality, and Streaming 26
3.6 Experiments . 31
3.7 Bibliographical Notes . 38
3.8 Conclusion . 39

CHAPTER 4 EXTRACTING STRUCTURE FOR ORGANIZATION 40
4.1 Structure Hypothesis Space . 42
4.2 Overview of the Datamaran Algorithm . 45
4.3 The Generation Step . 47
4.4 The Pruning Step . 51
4.5 Structure Refinement . 53
4.6 Regularity Score Function . 55
4.7 Theoretical Analysis . 56
4.8 Experiments . 57
4.9 Bibliographical Notes . 71
4.10 Conclusion . 75

CHAPTER 5 EXTRACTING STRUCTURE FOR INSIGHT DISCOVERY 78
5.1 The Calibration Property of Conditional Probabilities 79
5.2 Approaches for Relational Learning . 92
5.3 Preliminary Experiments . 96
5.4 Discussion . 99

CHAPTER 6 CONCLUSION . 101

REFERENCES . 102

v

CHAPTER 1: INTRODUCTION

Most real-world datasets are intrinsically structured: their data contents encode real world

objects and/or their relationships, which necessarily follows the natural orders that restrict

the data contents in various ways. Another reason for structure is the programmatic gen-

eration of data, where the data is restricted to a fixed structure encoding semantics of the

application as specified by the programmer. These restrictions, when properly captured,

summarized and formally expressed, become the structures of datasets that can be used by

subsequent data processing applications. Dataset structures can be broadly categorized into

two types: explicit structures are straightforward implications of the data formatting (e.g.,

XML datasets follow a tree-style structure, or relational datasets consist of tuples with the

same schema), while hidden structures are statistical/logical restrictions on the actual data

contents, which are usually not as apparent, and require additional effort to be discovered

and extracted from the datasets.

Even though the general problem of extracting hidden structures from datasets has been

an active research topic for many years, most of the existing algorithms are designed for

consumption by human analysts, with applications primarily in the form of data summa-

rization or visualization. These algorithms can find useful, human-interpretable structures

such as association rules [1] or data point clusters [2] that provide analysis with insights

into the contents of the datasets, and thus deepen their understanding on the nature of

those datasets. For these algorithms, the data analysts serve as a bridge between the struc-

ture extraction algorithm and the actual application: the insights gained from the extracted

structures are manually encoded into the actual application programs, with the intention of

improving their efficiency/performance on similar datasets from the same source.

The above design philosophy is deeply rooted in the design of most existing structure ex-

traction algorithms. However, in recent years, many new applications have begun to include

structure extraction modules as part of their fully automated data processing pipelines. In

these applications, the discovered structures are automatically used to support downstream

data processing, without ever being exposed to any human during the process. Initially,

such a shifted paradigm resulted from the usage of increasingly complex structures (e.g.,

deep neural networks) that are difficult for human analysts to understand but provide su-

perior utility for subsequent data processing applications. However, some researchers have

now begun to realize another equally important benefit of not involving data analysts in

the process: since the discovered structures do not need to be exposed, it enables the usage

of structure extraction modules in applications that are traditionally fully automated. For

1

instance, Kraska et al. [3] have argued that in some cases “learned” indexing structures (e.g.,

neural networks) that are built specifically from the input dataset can potentially outperform

traditional B-tree based indexing structures.

Extracting hidden structures that are directly used in downstream data processing appli-

cations presents a very different set of requirements for algorithm design:

• The extracted structures do not need to be intuitively interpretable. Since the extracted

structures are never directly exposed to users, their simplicity or interpretability are

somewhat irrelevant. Complicated and unintuitive structures may in fact be preferable

if they have better modeling capabilities.

• The extraction procedure needs to be fully automated. Since human analysts can no

longer validate the extracted structures via manual inspection, the structure extraction

method needs to ensure that it can extract meaningful structures for any input dataset,

without requiring users to perform “quality checks” and adjustments.

• The structures need to be useful for subsequent data processing. We need to design the

structure extraction module in conjunction with the actual data processing method,

such that the extracted structures can be used naturally in the subsequent steps to

improve the overall effectiveness/efficiency of the application.

Therefore, designing structure extraction modules for automated data processing can be

drastically different from existing approaches, and an interesting research question would

be: are there any general philosophies/frameworks that can help us with the design of such

modules? In this thesis we try to answer this question by summarizing the common charac-

teristics of several example structure extraction algorithms for automated data processing.

As we shall see, to utilize automatically extracted hidden structures for data processing,

most algorithms will follow the generic two-step framework below:

• Extraction Step. During this step, we extract the hidden structure of datasets by

searching through the hypothesis space to identify the most appropriate candidate that

best fits the dataset.

• Data Processing Step. During this step, we utilize the extracted structure to ac-

complish the actual data processing task.

Among the two steps, the extraction step is usually the focus of algorithm design, while

the actual data processing step is relatively simple in most cases. Generally speaking, we

want to design the extraction step so that it can reliably extract the hidden structure of any

2

input dataset, which is achieved by properly choosing and limiting the structure hypothesis

space (i.e., the total collection of candidates that we want to consider as our extracted

structure) and developing efficient and effective learning methods for selecting from within

this hypothesis space. While the exact algorithm design is usually task dependent, there are

several general principles that are commonly applicable, and we shall explain them in detail

and discuss how they were applied in each of our example applications to lead us towards

our final algorithm design.

1.1 THESIS OUTLINE

The rest of this thesis is organized as follows: in Chapter 2, the general algorithmic

framework for hidden structure based data processing is presented, and we will list some

general design principles/patterns along with the reasoning behind them. In Chapter 3

and 4, two of our published works are presented as examples, and we will discuss how the

general principles were applied and affected our algorithm design. In Chapter 5, we will talk

about our ongoing work on relational data imputation; we will go through several different

approaches for this task, and present some preliminary results. Finally, we will conclude in

Chapter 6. Related works will be covered in the appropriate chapters.

Remark: Most of the contents in Chapter 3 was published in [4], and Chapter 4 primarily of

contents from [5]. Part of the contents in Chapter 5 was originally published in [6]. Readers

are welcome to skip directly to Chapter 3, 4 or 5 for more concrete examples, then revisit

the general principles in Chapter 2 as needed.

3

CHAPTER 2: THE GENERAL FRAMEWORK

Broadly speaking, structures can be viewed as constraints that restrict the value ranges

or forms of the data contents. By understanding the structures of datasets, one essentially

reduces the space of “valid” inputs to be considered, which is generally beneficial in the sense

that more specialized algorithms can be designed to achieve potentially better performance.

For instance, while binary compression algorithms can be used to compress any kind of

dataset, the specialized compression algorithms (e.g., for images or movies) usually perform

much better.

Traditional data processing applications often use only the explicit structure of datasets,

and are usually designed to optimize the worst-case time complexity. Consequently, these

algorithms can work reasonably well for any input dataset conforming to the corresponding

explicit structure, and their performance/efficiency variance is relatively low. While such an

approach has its own advantages, it completely gives up any opportunity to perform better

when the input datasets have other properties in addition to their explicit structure. In fact,

most real world datasets do have hidden structures that naturally result from the semantics

of their data contents. If we can identify and utilize these hidden structures in our data

processing procedures, we may be able to go beyond the limits of traditional approaches.

Unfortunately, even though hidden structures are clearly present in the datasets, they are

usually not directly accessible: for instance, functional dependencies in relational datasets

are often not explicitly described in the meta-data; the clustering property of data points

(i.e., that most data points are originally from a small number of clusters) that exists in many

datasets are also not expressed directly in most cases. Generally speaking, an extraction step

needs to be carried out first before hidden structures can be used in the data processing step,

and as a result most of the hidden structure based algorithms will follow the generic two-step

framework as shown in Figure 2.1.

Figure 2.1: General framework for hidden structure based algorithms

4

There are three major components that we need to make decisions on when designing algo-

rithms within such a framework: the structure hypothesis space, the extraction method, and

the data processing method. Intuitively, the structure hypothesis space captures what type of

hidden structures we want to discover from the datasets, and the extraction/data processing

method captures how we plan to extract/utilize these hidden structures. For clarity, the ter-

minologies used in this chapter are listed in Table 2.1 (with explanations) and demonstrated

via a simple example in Figure 2.2, in which the left hand side shows an example tabular

dataset with two functionally dependent columns, and the right hand side demonstrates 4 of

the concepts using this example. Here, the input space consists of all tabular datasets with

two numerical attributes X and Y , and the structure extraction algorithm tries to identify

the functional dependency relationship between them. The structure hypothesis space spec-

ifies Y = f(X, θ), the parametric form of functions considered in the structure extraction

algorithm, and Θ, the range of parameters. Each structure candidate, Y = f(X, θ0), is one

particular instantiation of parameters, and the extracted structure, Y = 0.5X + 0.5, is the

function (within the hypothesis space) that best fits the input dataset.

Concept Explanation

Input Space The collection of all datasets that can potentially
appear as input to the structure extraction algorithm

Input The specific dataset that appears as the input
Dataset to the algorithm (for one specific run)

Structure A hidden structure that could potentially
Candidate appear in an input dataset
Structure The collection of all possible structure candidates that

Hypothesis Space we are going to consider in the structure extraction algorithm
Extracted The structure candidate extracted from the structure
Structure hypothesis space using the input dataset
Extraction The procedure for searching over for the structure

Method hypothesis space to find the extracted structure
Data Processing The procedure for accomplishing the intended

Method data processing task using the extracted structure

Table 2.1: Terminology used in this Chapter

2.1 DESIGN PRINCIPLES FOR THE STRUCTURE HYPOTHESIS SPACE

Choosing an appropriate structure hypothesis space is the most critical step of the entire

structure extraction algorithm design. Ideally, the hypothesis space should be vast and com-

prehensive, while each individual structure candidate should be as precise and informative

as possible (i.e., restricting the value flexibility of the data contents). At the same time, we

need to take into account the feasibility of efficient extraction in practice. More specifically,

5

Figure 2.2: Example Tabular Dataset with a Functional Dependency

there are three general principles that we need to consider when designing the structure

hypothesis space:

• Representativeness. When designing the structure hypothesis space, it is important

to ensure that for any potential input dataset, there exists a structure candidate that

can capture its essential characteristics. For instance, structures that capture the cor-

relations between adjacent data entries would be always applicable for any continuous

time series signal. On the other hand, if we want to extract repetitive patterns as

structures, such an approach is only applicable if the input signal is actually periodic,

and the representativeness principle would be violated if the input space also contains

non-periodic signals.

• Learnability. While complex structures can be precise and informative for describing

the input dataset, it comes with the cost of being more difficult to extract: complex

structures are usually associated with a larger and more complicated structure hy-

pothesis space, which makes it much more difficult to search through/optimize over

this space. Generally speaking, the difficulty of extraction increases proportionally

with respect to the complexity of structure candidates, and it is necessary to limit the

complexity of the structure candidates when choosing the structure hypothesis space.

• Utility. It is also important to ensure that the extracted structure can be useful

for the subsequent data processing step. For many datasets, it is possible to capture

their structures from many different perspectives. However, not all of them would

contain all of the essential information necessary for the downstream data processing

task. Therefore, it is important to ensure that the structure candidates are capable of

capturing all of the relevant characteristics of the input dataset. For instance, if we

are detecting grammatical errors in natural language documents, then unigram (i.e.,

6

bag-of-word) structures will not help us much, since it ignores all of the dependencies

between adjacent words, which are critical for our application. In addition, the exact

representation of structure candidates should be designed in such a way that makes the

data processing step as easy as possible: we should always choose the most appropriate

structural form for capturing dataset characteristics, and a well-chosen structural form

can lead to significant efficiency improvements over a poorly-chosen one.

Figure 2.3: Structure Hypothesis Space Design Principles

These three principles are demonstrated in Figure 2.3 along with the relationships between

them. Generally speaking, the utility principle favors complex structure candidates and large

hypothesis spaces, while the learnability principle favors small structure hypothesis spaces

and simple candidates. The representativeness principle requires us to identify the type of

structures that are ubiquitous for the input space, and usually determines the basic form of

extracted structure. In most cases, it is easier to start from the representativeness principle,

and then try to balance between the utility and learnability principles afterwards.

2.2 COMMON DESIGN PATTERNS

While the details of each hidden structure based algorithm are task dependent, there

are several common design patterns for such algorithms, which are summarized from our

example applications and listed in the following:

• Use Universal Structures. The representativeness principle requires us to be able

to extract a proper hidden structure for most input datasets. For applications with a

large input space, the characteristics of input datasets can vary significantly from one

7

another, making it difficult to satisfy the representativeness requirement. One common

approach that we adopt in such scenarios is to use universal structures1, which are

highly flexible and can adapt to many different situations. Compared to the alternative

of considering multiple types of structures at once, universal structures allow us to

handle all scenarios in a consistent manner, reducing the engineering complexity.

• Use Sampling Technique for Structure Extraction. The structure extraction

algorithm’s overall efficiency depends on the amount of time we spend on both the

extraction and data processing steps. While the data processing step usually requires

a fixed amount of time (which only depends the size of input dataset), the amount of

time we spend on structure extraction is often flexible. Thus, tuning the total running

time of structure extraction step is key to achieving an optimal trade-off between

effectiveness and efficiency. One common way to achieve this is to use sampling:

intuitively, it is not necessary for us to use the entire input dataset for structure

extraction, and a subset is often sufficient. Sampling just the right amount of the

input dataset allows us to significantly improve overall efficiency while not sacrificing

the quality of extracted structure by much.

• Use Approximation Algorithms. Recall that the goal of the extraction step is

essentially to search over the structure hypothesis space and find the optimal candidate.

However, for large structure hypothesis spaces, searching over the entire space is often

too time consuming and impractical. One common technique to be used in such

scenarios is to adopt approximation algorithms: for the eventual purpose of improving

data processing, it is not really necessary to use the optimal structure. Rather, any

hidden structure that offers sufficient details would suffice. When the time budget is

limited and exhaustive search is impractical, approximation algorithms can be a good

alternative.

These design patterns are summarized from our example applications, and we will see how

these design patterns are applied in practice in later chapters, which should help readers

better understand the intuition behind them, so that they can successfully apply these ideas

in other applications as well.

1Universal structure is a concept in Machine Learning. Intuitively, it denotes the type of structure
that can approximate most other functions with carefully chosen parameters. Neural network is the most
well-known universal structure.

8

CHAPTER 3: EXTRACTING STRUCTURE FOR COMPRESSION

Today, data is being generated at an alarming rate from all sorts of activities ranging from

social media and commercial transactions to scientific simulations and internet-of-things.

Consequently, the volume of structured (relational) datasets is also growing rapidly. Having

effective compression for these relational datasets can significantly reduce their storage cost,

which would benefit most organizations, including companies, governments and universities.

While the task of generic data compression [7, 8] has been extensively studied in the past,

compression of tabular datasets has received limited attention. Generic algorithms (such as

Lempel-Ziv [7]) do not exploit the relational structure of the datasets at all. Some paper

provide partial solutions: Spartan [9] uses the relational structure by identifying functional

dependencies between attributes; ItCompress [10] finds the clustering structure of tuples in

the dataset to achieve better compression; column-based approaches [11] exploit the skewness

of attribute values instead.

Clearly, these existing papers on tabular dataset compression are attempting to identify

a certain type of hidden structure within the dataset. However, because of the flexibility

of relational formats, the input space is extremely large and we don’t really know what

kind of hidden structure would be most useful for any given dataset. Therefore, as we

have discussed in Chapter 2, a better strategy would be to use universal structures that are

flexible and can be adapted to approximate other structures. Universal structures for tabular

datasets are probabilistic models for the joint-distribution of multiple random variables: if

we think of each attribute as a random variable, then tuples in the input dataset will be their

joint-instantiations. Note that all other hidden structures we previously mentioned can be

expressed as special cases of this universal structure: functional dependencies can be viewed

as deterministic conditional distributions; clustering of tuples can be expressed via mixture

models; and skewness of attribute values can be denoted via skewed marginal distributions.

Probabilistic Graphical Models [12] (PGMs) are the canonical structures for capturing the

joint distribution of multiple random variables. PGMs use graphs (directed or undirected)

to capture the dependencies between random variables, and additional structures called

factors are used to compactly represent the distributional information. While there are many

different types of PGMs, Bayesian Networks are particularly suitable for our setting, since

its directed acyclic graph structure provides a natural order among attributes, allowing us to

employ a sequential encoding strategy. Our tabular dataset compression algorithm Squishis

based on this exact idea, wherein we extract the hidden Bayesian Network structure of the

input dataset and utilize this structure to compress the dataset via arithmetic coding [13].

9

However, there are several challenges in using Bayesian Networks and Arithmetic Cod-

ing for compression. First, we need to identify a new objective function for learning a

Bayesian Network, since conventional objectives like Bayesian Information Criterion [14] are

not designed to minimize the size of the compressed dataset. Another challenge is to de-

sign a mechanism to support attributes with an infinite range (e.g., numerical and string

attributes), since Arithmetic Coding assumes a finite alphabet for symbols, and therefore

cannot be applied to those attributes. To be applicable to the wide variety of real-world

datasets, it is essential to be able to handle numbers and strings. We have addressed these

challenges when developing Squish. As we shall see in this chapter, the compression rate

of Squish is near-optimal for all datasets that can be efficiently described using a Bayesian

Network. This theoretical optimality reflects in our experiments as well: Squish achieves a

reduction in storage on real datasets of over 50% compared to the nearest competitor.

Figure 3.1: Workflow of the Compression and Decompression Algorithm

Figure 3.1 illustrates the overall workflow of Squish, and the details will be described in

the rest of this chapter: in Section 3.1, we review the problem definition of tabular dataset

compression, and related concepts such as Bayesian Networks and arithmetic coding; in

Section 3.2, we discuss the details of Bayesian Network structure extraction; in Section 3.3,

we introduce the SquID mechanism for handling complex attributes, and discuss how it

is used in the actual compression step; in Section 3.4, we introduce the detailed encoding

and decoding procedures and discuss mechanisms for handling finite precision issue; in Sec-

tion 3.5, we use examples to illustrate the effectiveness of Squish and prove the asymptotic

optimality of the compression algorithm; experimental results are shown in Section 3.6 to

demonstrate the superiority of Squish compared to prior methods.

10

3.1 PRELIMINARIES

In this section, we formally define the problem of tabular datatset compression, and pro-

vide some background on Bayesian networks and arithmetic coding.

3.1.1 Problem Definition

Suppose our dataset consists of a single relational table T , with n rows (tuples) and

m columns (attributes). We want to design an encoding procedure A with its associated

decoding procedure B, such that A takes T as input to generate its compressed form C(T),

while B reconstructs T ′ from C(T) where T ′ is an approximation of T . The goal is to

minimize the file size of C(T) under the constraint that T ′ and T are close enough.

The closeness constraint of T ′ to T is defined as follows: For ith attribute of the table, if

it is numerical, then for each tuple t and the reconstructed tuple t′, |ti − t′i| ≤ εi, where εi

is the error threshold provided by the user. For non-numerical attributes, the original and

reconstructed attribute values must be exactly the same: ti = t′i. Note that our problem

definition subsumes lossless compression as a special case with εi = 0.

3.1.2 Bayesian Network

Bayesian networks [12] are widely used probabilistic models for the joint-distribution of

multiple random variables. Formally, each Bayesian Network B = (G, (M1, . . . ,Mn)) con-

sists of two components: the structure graph G = (V,E), and the conditional probability

models M1, . . . ,Mn. G is a directed acyclic graph with n vertices v1, . . . , vn corresponding

to n random variables (denote them as X1, . . . , Xn). Mi is the conditional probability model

describing the distribution of Xi conditioned on Xparent(i) = {Xj : j ∈ parent(i)}, where

parent(i) = {j : (vj, vi) ∈ E} is called the set of parent nodes of vi in G.

Figure 3.2 shows an example Bayesian Network with three random variables X1, X2, X3.

The structure graph G is shown at top of the figure and the bottom side shows the models

M1,M2,M3.

In Squish, attributes of the input datasets are associated with random variables, and

Bayesian Networks are used to model their joint probability distribution. Each tuple is

viewed as a joint-instantiation of all the random variables, or equivalently, a sample from

the probability distribution described by the Bayesian Network.

11

Figure 3.2: Bayesian Network Example

3.1.3 Arithmetic Coding

Arithmetic coding [13] is a state-of-the-art adaptive compression technique for a sequence

of dependent characters. Formally, arithmetic coding is defined by a finite ordered alphabet

A, and a probabilistic model for a sequence of characters that specifies the probability

distribution of each character Xk conditioned on all precedent characters X1, . . . , Xk−1. Let

{an} be any string of length n. To compute the encoded string for {an}, we first compute a

probability interval for each character ak:

[lk, rk] =[p(Xk < ak|X1 = a1, . . . , Xk−1 = ak−1),

p(Xk ≤ ak|X1 = a1, . . . , Xk−1 = ak−1)] (3.1)

We define the product of two probability interval as:

[l1, r1] ◦ [l2, r2] = [l1 + (r1 − l1)l2, l1 + (r1 − l1)r2] (3.2)

The probability interval for string {an} is the product of probability intervals of all the

characters in the string:

[l, r] = [l1, r1] ◦ [l2, r2] ◦ . . . ◦ [ln, rn] (3.3)

Let k be the smallest integer such that there exists a non-negative integer 0 ≤ M < 2k

satisfying:

l ≤ 2−kM, r ≥ 2−k(M + 1) (3.4)

Then the k-bit binary representation of M is the encoded bit string of {an}.
An example to demonstrate how arithmetic coding works can be found in Figure 3.3.

The three tables at the right hand side specify the probability distribution of the string

a1a2a3. The blocks at the left hand show the associated probability intervals for the strings:

for example, “aba” corresponds to [0.12, 0.204] = [0, 0.4] ◦ [0.3, 1] ◦ [0, 0.3]. As we can see,

12

arithmetic coding maps all possible strings to disjoint probability intervals, which ensures

that code words can not be the prefix of one another.

Figure 3.3: Arithmetic Coding Example

3.2 BAYESIAN NETWORK STRUCTURE EXTRACTION

Although the problem of learning Bayesian Networks has been extensively studied in

literature [12], most existing methods are not ideal for our compression purpose: (a) conven-

tional objectives like Bayesian Information Criterion (BIC) [14] are suboptimal for optimizing

compression ratio; (b) commonly used combinatorial search techniques are too slow in our

compression scenario, where efficiency is an equally important factor as compression rate. In

Section 3.2.1, we derive the correct objective function for optimizing the compression ratio.

In Section 3.2.2, we describe an efficient greedy algorithm for constructing good Bayesian

Network structures and explain why it fits well in our scenario.

3.2.1 Objective Function for Bayesian Network Learning

Suppose our dataset D consists of n tuples and m attributes (denoted as attr1, . . . , attrm).

Let B = (G, (M1, . . . ,Mm)) be a Bayesian network with m nodes that captures the joint

probability distribution of all attributes. The total description length of D using B is

S(D|B) = S(B) + S(Tuples|B), where S(B) is the description length of B, and S(Tuples|B)

is the total length of encoded binary strings of tuples {ti} (using arithmetic coding):

S(B) =
m∑
i=1

S(Mi) S(Tuples|B) =
∑
i

S(ti|B) (3.5)

13

Here S(ti|B) is the length of the code string of ti, which has the following decomposition:

S(ti|B) ≈ −
m∑
j=1

log2 Pr(aij|ai,parent(j),Mj)−
m∑
j=1

num(j) log2 εj + const (3.6)

in which aij is the value of attrj in ti, and parent(j) = {i : (i, j) ∈ G} is the set of parent

nodes of attrj (as defined in Section 3.1.2), num(j) is the indicator function of whether the

attrj is numerical or not, and εj is the maximum tolerable error for attrj. The reasoning

behind this decomposition will be explained in Section 3.3.2. The total description length

S(D|B) can then be decomposed as follows:

S(D|B) ≈
m∑
j=1

[S(Mj)−
n∑
i=1

log2 Pr(aij|ai,parent(j),Mj)]−n(
m∑
j=1

num(j) log2 εj+const) (3.7)

3.2.2 Greedy Structure Extraction

When optimizing Eqn (3.7), the second term (i.e., n(
∑m

j=1 num(j) log2 εj + const)) does

not really involve B. Thus for optimization purposes we only need to consider the first

summation. Denote each term in the summation as objj:

objj = S(Mj)−
n∑
i=1

log Pr(aij|ai,parent(j),Mj) (3.8)

Note that once the the network structure G is fixed, each individual objj will only depend

on Mj. In that case, optimizing S(D|B) is equivalent to optimizing each objj individually.

In other words, if we fix the graph structure G in advance, then the parameters of each Mj

can be learned separately.

The general problem of finding the exact optimal graph structure G for Bayesian Network

is NP-hard [12]. In Squish, we implemented a simple greedy procedure for this task. The

procedure starts with an empty seed set, and repeatedly finds new attributes with the lowest

objj, and adds these new attributes to the seed set. We also employed a sampling technique

to further improve the efficiency: we only estimate objj using a subset of tuples, which is

generally good enough for the purpose of comparing different graph structures.

The pseudo-code of the greedy procedure is shown in Algorithm 3.1, which has a worst

case time complexity of O(m4n). Here m is the number of columns and n is the total number

of tuples used for Bayesian Network learning. In practice, the running time is usually around

O(m3n), which is efficient enough for practical scenarios (with sampling technique employed).

14

Algorithm 3.1 Greedy Structure Learning Procedure
function LearnStructure

seed← ∅
for i = 1 to m do

for j = 1 to m do
parent(j)← ∅
while true do

best model scorej ← objj
best modelj ← parent(j)
for k ∈ seed do

parent(j)← parent(j) ∪ {k}
Compute the value of objj
if objj < best model scorej then

best model scorej ← objj
best modelj ← parent(j)

end if
end for
if best model have never been updated during the for loop then

break
else

parent(j)← best modelj
end if

end while
parent(j)← ∅

end for
Find j with minimum best model scorej
seed← seed ∪ {j}
parent(j)← best modelj

end for
end function

3.3 SQUID: SUPPORTING COMPLEX ATTRIBUTE TYPES

The SquID (short for Squish Interface for Data types) mechanism is introduced in

Squish to address two specific issues:

• Arithmetic Coding requires a finite alphabet for each symbol. However, it is natural

for attributes in a dataset to have infinite range (e.g., numerical/string attributes).

• In order to support user-defined data types, we need a mechanism for specifying the

probability distributions over such data type.

A SquID is a (possibly infinite) decision tree with probability values associated with its

edges, such that for every node v, the total probability of edges connecting v and v’s children

is equal to one. Figure 3.4 shows an example (infinite) SquID for numerical attribute, and

15

we can see that every edge is associated with a decision rule and a probability value: for

each non-leaf node v2k−1, the decision rules for edges (v2k−1, v2k) and (v2k−1, v2k+1) are x ≤ k

and x > k, with probability values 0.9 and 0.1 respectively.

Figure 3.4: SquID Example

SquID is the unified interface for all different types of attributes that are supported in

Squish, which allows us to use the same encoding & decoding procedure regardless of the

exact attribute type. It also controls the maximum tolerable error in lossy compression.

Denote A(v) be the set of attribute values corresponding to leaf node v:

A(v) = {a : starting from root, a will reach v by following decision rules} (3.9)

and let a(v) be the reconstructed attribute value for v, then the maximum reconstruction

error err is qual to supv∈T supa∈A(v) |a− a(v)| for SquID T . For instance, in Figure 3.4 we

have A(v2k) = (k − 1, k], and if we let a(v2k) = k − 0.5, then we will have err = 0.5.

3.3.1 Compressing Tuples via SquIDs

Suppose tuple t contains m attributes: t = (a1, . . . , am) and we assume without loss of

generally that parent(i) ⊆ {a1, . . . , ai−1}. Let us denote Ti to be the SquID associated with

ai (conditioned on aparent(i)). In the following, we explain how to compute the code string

of t using these SquIDs.

To begin with, let us associate all edges in each SquID with probability intervals. For

each non-leaf node v, consider all of its children nodes u1, . . . , uk, and denote the probability

values associated with the onnecting edges as p(v → ui). Using this notation, we define PIT

to be the following mapping from edges of SquID T to probability intervals:

PIT (v → ui) = [
∑
j<i

p(v → uj),
∑
j≤i

p(v → uj)] (3.10)

Now we can determine the code string of t. Let vj be the leaf node in Tj such that

16

aj ∈ A(vj), and denote the path from root to vj to be (uj1 → uj2 → . . . → ujkj → vj).

Then, based on the idea of arithmetic coding, the code string of tuple t can be derived from

the following probability interval:

[L,R] =PIT1(u11 → u12) ◦ . . . ◦ PIT1(u1k1 → v1)◦

PIT2(u21 → u22) ◦ . . . ◦ PIT2(u2k2 → v2) ◦ . . . ◦

PITm(um1 → um2) ◦ . . . ◦ PITm(umkm → vm) (3.11)

where ◦ is the probability interval multiplication operator (defined in Section 3.1.3).

3.3.2 SquIDs for Numerical Attributes

In Squish, we have implemented SquID for three primitive data types: (a) Categorical

attributes with finite range; (b) Numerical attributes, either integer or float number; (c)

String attributes. It is trivial to use SquID to represent the distributions of categorical

attributes, and the design for string attributes is also relatively straightforward (using k-

gram models).

For numerical attributes, we construct the SquID using the idea of bisection. Each node v

is marked with an upper bound vr and a lower bound vl, so that every attribute value in range

(vl, vr] will pass by v on its path from the root to the corresponding leaf node. Each node

has two children and a bisecting point vm, such that the two children have ranges (vl, vm]

and (vm, vr] respectively. The branching process stops when the range of the interval is less

than 2ε, where ε is the maximum tolerable error. Figure 3.5 shows an example SquID for

numerical attributes.

Figure 3.5: SquID for numerical attributes

Since each node represents a continuous interval, we can compute its probability using the

17

cumulative distribution function. The branching probability of each node is:

(Pr(left branch),Pr(right branch)) = (
Pr(vl < X ≤ vm)

Pr(vl < X ≤ vr)
,
Pr(vm < X ≤ vr)

Pr(vl < X ≤ vr)
) (3.12)

Clearly, the average number of bits that is needed to encode a numerical attribute depends

on both the probability distribution of the attribute and the maximum tolerable error ε.

The following theorem [4] provides a lower bound for the average number of bits required

for encoding numerical attributes:

Theorem 3.1. Let X ∈ X ⊆ R be a numerical random variable with continuous support

X and probability density function f(X). Let g : X → {0, 1}∗ be any uniquely decodable

encoding function, and h : {0, 1}∗ → X be any decoding function. If there exists a function

ρ : X → R+ such that:

∀x, y ∈ X , |x− y| < 2ε⇒ |f(x)− f(y)| ≤ ρ(x)f(x)|x− y| (3.13)

and g, h satisfies the ε-closeness constraint: ∀x ∈ X , |h(g(x))− x| ≤ ε. Then

EX [len(g(X))] ≥ EX [− log2 f(X)]− EX [log2(2ερ(X) + 1)]− log2 ε− 2 (3.14)

Furthermore, if g is the bisecting code described above, then

EX [len(g(X))] ≤ EX [− log2 f(X)]− log2 l + EX [max(log2 ρ(X) + log2 l, 0)] + 4 (3.15)

where l = minv(vr − vl) is the minimum length of probability intervals in the tree.

Proof. For any x ∈ X , define S(x) as S(x) = {y ∈ X : g(y) = g(x)}, then the probability

that g(x) is the code word is Pr(g(x)) =
∫
y∈S(x)

f(y)dy, and the entropy of g(x) is H(g(x)) =

EX [− log2 Pr(g(X))]. Since g(x) is uniquely decodable, the average length must be greater

than or equal to the entropy: EX [len(g(X))] ≥ H(g(x)). For the first part, since − log x is

decreasing function, it suffices to prove that

∀x ∈ X ,Pr(g(x)) ≤ (2ρ(x)ε+ 1)4εf(x) (3.16)

Note that due to closeness constraint, we have S(x) ⊆ [h(g(x)) − ε, h(g(x)) + ε], which

combined with the fact that |h(g(x))− x| ≤ ε, we have S(x) ⊆ [x− 2ε, x+ 2ε] and

Pr(g(x)) =

∫
y∈S(x)

f(y)dy ≤
∫ x+2ε

x−2ε

f(y)dy (3.17)

18

The right hand side can be upper bounded by∫ x+2ε

x−2ε

f(y)dy ≤ 4ε(2ερ(x) + 1)f(x) (3.18)

since by Equation (3.13),

∀y ∈ X , |x− y| < 2ε⇒ f(y) ≤ (2ερ(x) + 1)f(x) (3.19)

For the second part, by the property of Arithmetic Coding, we have

EX [len(g(X))] ≤ H(g(x)) + 2 (3.20)

We will prove

∀x ∈ X ,Pr(g(x)) ≥ min(
l

2
,

1

4ρ(x)
)f(x) (3.21)

Let us suppose Equation (3.21) is true for now, then we have

H(g(X)) =EX [− log2 Pr(g(x))]

≤EX [− log2 min(
l

2
,

1

4ρ(x)
)f(x)]

=EX [− log2 f(x)]− EX [log2 l + min(log2

1

2ρ(x)
− log2 l, 0)] + 1

≤EX [− log2 f(x)]− log2 l + EX [max(log2 ρ(x) + log2 l, 0)] + 2 (3.22)

To prove Equation (3.21), let v be the leaf node that x corresponds to, we consider two

cases:

1. If vr − vl < 1
2ρ(x)

, then

∀y ∈ [vl, vr], f(y) ≥ (1− (vr − vl)ρ(x))f(x) ≥ 1

2
f(x) (3.23)

thus we have

Pr(g(x)) ≥ 1

2
(vr − vl)f(x) ≥ 1

2
lf(x) (3.24)

2. If vr − vl ≥ 1
2ρ(x)

, then

∀y ∈ [x− 1

2ρ(x)
, x+

1

2ρ(x)
] ∩ [vl, vr], f(y) ≥ 1

2
f(x) (3.25)

19

Therefore,

Pr(g(x)) ≥ 1

2
f(x)len([vl, vr] ∩ [x− 1

2ρ(x)
, x+

1

2ρ(x)
]) (3.26)

Since x ∈ [vl, vr], [x− 1
2ρ(x)

, x+ 1
2ρ(x)

] covers at least 1
2ρ(x)

length of [vl, vr], therefore,

Pr(g(x)) ≥ 1

4ρ(x)
f(x) (3.27)

Since Pr(g(x)) is always greater than or equal to at least one of terms, it must always be

greater than or equal to the minimum of two. Thus Equation (3.21) is proved.

The tuple description length decomposition equation (i.e., Eqn (3.6)) in Section 3.2.1

was derived from Theorem 3.1, where we used the following approximation: len(g(X)) ≈
− log2 f(X)− log2 ε+ const. Compared to either the upper bound or lower bound in Theo-

rem 3.1, the only term we omitted is the term related to ρ(X), which is approximately zero

for most common distributions (e.g., uniform/Gaussian/Laplace) when ε is small [4].

Remark: Equation (3.13) is a mild assumption that holds for many common probability

distributions, including uniform, Gaussian, and Laplace distributions [15].

3.4 PRECISION-AWARE COMPRESSION & DECOMPRESSION

Although we have described the detailed procedure for encoding attributes using SquID,

but that procedure is only “theoretically applicable”: in practice, we cannot directly compute

the final probability interval of a tuple, since there could be hundreds of probability intervals

in the product, and the result can easily exceed the precision limit of a floating-point number.

In our actual implementation of Squish, we implemented a precision-aware encoding

module for handling the finite precision issue. Algorithm 3.2 shows the pseudo-code of this

precision-aware module, in which we leveraged two tricks to deal with the finite precision

problem:

• Section 3.4.1 describes the classic early bits emission trick [16].

• Section 3.4.2 describes the new deterministic approximation trick

We also employed an existing technique [17] for exploiting the orderless of tuples in tabular

dataset to improve the compression. For completeness, the details of this technique will be

described in Section 3.4.3.

20

Algorithm 3.2 Encoding Algorithm
function ArithmeticCoding([l1, r1], . . . , [ln, rn])

code← ∅
It ← [0, 1]
for i = 1 to n do

It ← It � [li, ri]
while ∃k = 0 or 1, It ⊆ [k2 ,

k+1
2] do

code← code + k
It ← [2It.l − k, 2It.r − k]

end while
end for
Find smallest k such that

∃M, [2−kM, 2−k(M + 1)] ⊆ It
return code +M

end function

3.4.1 Early Bits Emission

Without loss of generality, suppose [L,R] = [l1, r1] ◦ [l2, r2] ◦ . . . ◦ [ln, rn]. Define [Li, Ri] as

the product of first i probability intervals: [Li, Ri] = [l1, r1]◦ [l2, r2]◦ . . .◦ [li, ri]. If there exist

positive integer ki and non-negative integer Mi such that 2−kiMi ≤ Li < Ri ≤ 2−ki(Mi + 1),

then the first ki bits of the code string of t must be the binary representation of Mi.

Define [L′i, R
′
i] = [2kiLi −Mi, 2

kiRi −Mi], then it can be verified that

code([L,R]) = code(Mi) + code([L′i, R
′
i] ◦ [li+1, ri+1] . . . ◦ [ln, rn]) (3.28)

Therefore, we can immediately output the first ki bits of the code string. After that, we

compute the product: [L′i, R
′
i] ◦ [li+1, ri+1] . . . ◦ [ln, rn], and we can recursively use the same

early bit emitting scheme for this product. In this way, we can greatly reduce the likelihood

of precision overflow.

3.4.2 Deterministic Approximation

For probability intervals containing 0.5, we cannot emit any bits early. In rare cases, such

a probability interval would exceed the precision limit, and the correctness of our algorithm

would be compromised.

To address this problem, we introduce the deterministic approximation trick. Recall that

the correctness of arithmetic coding relies on the non-overlapping property of the probability

intervals. Therefore, we do not need to compute probability intervals with perfect accuracy:

the correctness is guaranteed as long as we ensure these probability intervals do not overlap

21

with each other.

Formally, let t1, t2 be two different tuples, and suppose their probability intervals are:

PI(t1) = [l1, r1] = [l11, r11] ◦ [l12, r12] ◦ . . . ◦ [l1n1 , r1n1]

PI(t2) = [l2, r2] = [l21, r21] ◦ [l22, r22] ◦ . . . ◦ [l2n2 , r2n2] (3.29)

The deterministic approximation trick is to replace ◦ operator with a deterministic oper-

ator � that approximates ◦ and has the following properties:

• For any two probability intervals [a, b] and [c, d]:

[a, b] � [c, d] ⊆ [a, b] ◦ [c, d] (3.30)

• For any two probability intervals [a, b] and [c, d] with b − a ≥ ε and d − c ≥ ε. Let

[l, r] = [a, b] � [c, d], then:

∃k,M, 2−kM ≤ l < r ≤ 2−k(M + 1), 2k(r − l) ≥ ε (3.31)

In other words, the product computed by � operator is always a subset of the product

computed by ◦ operator, and � operator always ensures that the product probability interval

has length greater than or equal to ε after emitting bits. The first property guarantees the

non-overlapping property still holds, and the second property prevents potential precision

overflow. As we will see in Section 3.4.4, these two properties are sufficient to guarantee the

correctness of arithmetic coding.

3.4.3 Delta Coding

Notice that our compression scheme thus far has focused on compressing “horizontally”,

i.e., reducing the size of each tuple, independent of each other. In addition to this, we could

also compress “vertically”, where we compress tuples relative to each other. For this, we

directly leverage an algorithm developed in prior work. Raman and Swart [17] developed

an optimal method for compressing a set of binary code strings. This coding scheme (called

“Delta Coding” in their paper) achieves O(n log n) space saving where n is the number of

code strings. For completeness, the pseudo-code of a variant of their method that is used in

our system is listed in Algorithm 3.3.

In Algorithm 3.3, Unary(s) is the unary code of s (i.e., 0 → 0, 1 → 10, 2 → 110, etc.).

Delta Coding replaces the blog nc-bit prefix of each tuple by an unary code with at most 2

22

Algorithm 3.3 Delta Coding
function DeltaCoding(s1, . . . , sn)

// s1, . . . , sn are binary codes of t1, . . . , tn
Sort s1, . . . , sn
l← blog nc
If len(si) < l, pad si with trailing zeros
Let si = aibi where ai is l-bit prefix of si
s′i ← Unary(ai − ai−1) + bi
return {s′1, . . . , s′n}

end function

bits on average. Thus it saves about n(log2 n− 2) bits storage space in total.

3.4.4 Decompression

When decompressing, Squish first reads in the dataset schema and all of the model

information, and stores them in the main memory. After that, it scans over the compressed

dataset, extracts and decodes the binary code strings to recover the original tuples.

Algorithm 3.4 Decoding Algorithm
function Decoder.Initialization

Ib ← [0, 1]
It ← [0, 1]

end function
function Decoder.GetNextBranch(branches)

while not ∃br ∈ branches, Ib ⊆ It � PI(br) do
Read in the next bit x
Ib ← Ib ◦ [x2 ,

x+1
2]

end while
if Ib ⊆ It � PI(br), br ∈ branches then

It ← It � PI(br)
while ∃k = 0 or 1, It ⊆ [k2 ,

k+1
2] do

It ← [2It.l − k, 2It.r − k]
Ib ← [2Ib.r − k, 2Ib.r − k]

end while
return br

end if
end function

Algorithm 3.4 describes the procedure to decide the next branch. The decoder maintains

two probability intervals Ib and It. Ib is the probability interval corresponding to all the

bits that the algorithm has read in so far. It is the probability interval corresponding

to all decoded attributes. At each step, the algorithm computes the product of It and

23

the probability interval for every possible attribute value, and then checks whether Ib is

contained by one of those probability intervals. If so, we can decide the next branch, and

update It accordingly. If not, we continue reading in the next bit and update Ib.

As an illustration of the behavior of Algorithm 3.4, Table 3.1 shows the step by step

execution for the following example: t = (a1, a2, a3), [l, r] = [1
3
, 1

2
] ◦ [1

4
, 1

2
] ◦ [1

2
, 2

3
], code =

01100110.

Step It Ib Input Output

1 [0, 1] [0, 1]
2 [0, 1] [0, 1

2] 0
3 [0, 1] [1

4 ,
1
2] 01

4 [1
3 ,

1
2] [1

4 ,
1
2] 01 a1

5 [2
3 , 1] [1

2 , 1] 01 a1

6 [1
3 , 1] [0, 1] 01 a1

7 [1
3 , 1] [1

2 , 1] 011 a1

8 [1
3 , 1] [1

2 ,
3
4] 0110 a1

9 [1
3 , 1] [1

2 ,
5
8] 01100 a1

10 [1
2 ,

2
3] [1

2 ,
5
8] 01100 a1, a2

11 [0, 1
3] [0, 1

4] 01100 a1, a2

12 [0, 2
3] [0, 1

2] 01100 a1, a2

13 [0, 2
3] [1

4 ,
1
2] 011001 a1, a2

14 [0, 2
3] [3

8 ,
1
2] 0110011 a1, a2

15 [0, 2
3] [3

8 ,
7
16] 01100110 a1, a2

16 [1
3 ,

4
9] [3

8 ,
7
16] 01100110 a1, a2, a3

17 [2
3 ,

8
9] [3

4 ,
7
8] 01100110 a1, a2, a3

18 [1
3 ,

7
9] [1

2 ,
3
4] 01100110 a1, a2, a3

Table 3.1: Decoding Example

Notice that Algorithm 3.4 mirrors Algorithm 3.2 in the way it computes probability in-

terval products. This design is to ensure that the encoding and decoding algorithm always

apply the same deterministic approximation that we described in Section 3.4.2. Theorem 3.2

in the following proves the correctness of the algorithm:

Theorem 3.2. Let [l1, r1], . . . , [ln, rn] be probability intervals with ri − li ≥ ε where ε is

the small constant defined in Section 3.4.2. Let s be the output of Algorithm 3.2 on these

probability intervals. Then Algorithm 3.4 can always determine the correct branch from

alternatives using s as input:

PI(Decoder.GetNextBranch(branchi)) = [li, ri] (3.32)

24

Proof. First we briefly examine Algorithm 3.2. Define ai, bi, ci as follows:

ai = bi−1 � [li, ri] (b0 = [0, 1]) (3.33)

bi = [2kiai.l −Mi, 2
kiai.r −Mi] (3.34)

ci = ci−1 ◦ [2−kiMi, 2
−ki(Mi + 1)] (c0 = [0, 1]) (3.35)

where ki is the largest integer such that ai ⊆ [2−kiMi, 2
−ki(Mi + 1)].’

Then, we have the following observations:

• ai is the value of It after executing the first step of ith iteration of the loop, bi is the

value of It at the end of ith iteration of the loop, and ci is the probability interval

corresponding to code.

• s is the binary code of the probability interval cn◦bn. If we define PIs = [2−len(s)s, 2−len(s)(s+

1)], then PIs ⊆ cn ◦ bn ⊆ ci ◦ bi = ci−1 ◦ ai

We can prove the following statements by induction on the steps of Algorithm 3.4 (see

Table 3.1 for reference):

• During the procedure of determining ith branch, the value of It is:

– bi−1, during the first while loop.

– ai, after executing the first statement inside the if block.

– bi, at the end of the if block.

• During the procedure of determining ith branch, let d be the input that the algorithm

has read in. Define PId = [2−len(d)d, 2−len(d)(d+ 1)]. Then the value of Ib satisfies:

– PId = ci−1 ◦ Ib, during the first while loop.

– PId = ci ◦ Ib, at the end of the if block.

• Ib ⊆ It always holds.

The induction step is easy for most parts, we will only prove the nontrivial part that the

loop condition is satisfied before reaching the end of input. i.e., after certain steps we must

have Ib ⊆ It � [li, ri]. To prove this, note that

PIs ⊆ PId = ci−1 ◦ Ib PIs ⊆ ci−1 ◦ ai (3.36)

25

Therefore,

(ci−1 ◦ Ib) ∩ (ci−1 ◦ ai) 6= ∅ ⇔ Ib ∩ ai 6= ∅ (3.37)

Note that ai = bi−1 � [li, ri] = It � [li, ri] during the while loop. Thus for any other branch

[l′, r′], Ib 6⊆ It � [l′, r′] due to the fact that [l′, r′] ∩ [li, ri] = ∅. Also note that as we continue

reading new bits, PId = ci−1 ◦ Ib approaches PIs, thus eventually we would have:

ci−1 ◦ Ib ⊆ ci−1 ◦ ai ⇔ Ib ⊆ ai (3.38)

3.5 DISCUSSION: EXAMPLES, OPTIMALITY, AND STREAMING

In this section, we use three example types of datasets to illustrate how our compression

algorithm can effectively find compact representations. These examples also demonstrates

the wide applicability of the Squish approach. We then describe the overall optimality of

our algorithm. Finally, we discuss how to extend Squish into the streaming scenario (i.e.,

tuples arrive continuously over time).

3.5.1 Illustrative Examples

We now describe three types of datasets in turn.

Pairwise Dependent Attributes

Consider a dataset with 100 binary attributes a1, . . . , a100, where a1, . . . , a50 are inde-

pendent and uniformly distributed, and a51, . . . , a100 are identical copies of a1, . . . , a50 (i.e.,

ai+50 = ai).

Let us consider a tuple (x1, x2, . . . , x100). The probability intervals for the first 50 at-

tributes are [xi
2
, xi+1

2
] (i.e., [0, 1

2
] if xi = 0 and [1

2
, 1] otherwise). For the last 50 attributes,

since they deterministically depend on the first 50 attributes, the probability interval is

always [0, 1]. Therefore the probability interval for the whole tuple is:

[
x1

2
,
x1 + 1

2
] ◦ . . . ◦ [

x50

2
,
x50 + 1

2
] ◦ [0, 1] ◦ . . . ◦ [0, 1] (3.39)

It is easy to verify that the binary code string of the tuple is exactly the 50-bits binary string

x1x2 . . . x50 (recall that each xi is either 0 or 1).

We also need to store the model information, which consists of the probability distribution

26

of x1, . . . , x50, the parent node of x51, . . . , x100 and the conditional probability distribution

of xi+50 conditioned on xi.

Assuming all the model parameters are stored using an 8-bit code, then the model can be

described using 200 × 8 = 1600 bits. Since each tuple uses 50 bits, in total Squish would

use 1600 + 50n bits for the whole dataset, where n is the number of tuples. Note that our

compression algorithm achieves much better compression rate than Huffman Coding [18],

which uses at least 100 bits per tuple.

Dependent attributes exist in many datasets. While they are usually only softly dependent

(i.e., one attribute influences but does not completely determine the other attribute), our

algorithm can still exploit these dependencies in compression.

Markov Chain

Figure 3.6 shows an example dataset with 1000 categorical attributes, in which each

attribute ai depends on the preceding attribute ai−1, and a1 is uniformly distributed. This

kind of dependency is called a Markov Chain, and frequently occurs in time-series datasets.

Figure 3.6: Markov Chain Example

The probability interval of tuple t = (x1, . . . , x1000) is:

[
x1

4
,
x1 + 1

4
] ◦ g(x1, x2) ◦ g(x2, x3) ◦ . . . ◦ g(x999, x1000) (3.40)

where mapping g(x, y) is listed in Table 3.2.

y=1 y=2 y=3 y=4
x=1 [0, 2/3] [2/3, 7/9] [7/9, 8/9] [8/9, 1]
x=2 [0, 1/9] [1/9, 7/9] [7/9, 8/9] [8/9, 1]
x=3 [0, 1/9] [1/9, 2/9] [2/9, 8/9] [8/9, 1]
x=4 [0, 1/9] [1/9, 2/9] [2/9, 1/3] [1/3, 1]

Table 3.2: Mapping Probability Intervals of Markov Chain Example

27

On average, for each tuple our algorithm uses about

1000× (
2

3
log2

3

2
+ 3× 1

9
log2 9) ≈ 1443 bits (3.41)

while standard Huffman Coding [18] uses 2000 bits.

Time series datasets usually contain a lot of redundancy that can be used to achieve

significant compression. As an example, most electrocardiography (ECG) waveforms [19]

can be restored using a little extra information if we know the cardiac cycle. Our algorithm

offers effective ways to utilize such redundancies for compression.

Clustered Tuples

Figure 3.7 shows an example with 100 binary attributes: a1, . . . , a100. In this example, c

is the hidden cluster index attribute and all other attributes are dependent on it.

Figure 3.7: Clustered Tuples Example

If we compress the cluster index together with all attributes using our algorithm, we will

need about

H(ti) = 1 + 100× (0.2 log2

1

0.2
+ 0.8 log2

1

0.8
) ≈ 73 bits (3.42)

for each tuple. Note that it is less than the 100-bits used by the plain binary code.

Many real datasets have a clustering property. To compute the cluster index, we need to

choose an existing clustering algorithm that is most appropriate to the dataset at hand [2].

The extra cost of storing a cluster index is usually small compared to the overall saving in

compression.

28

3.5.2 Asymptotic Optimality

We can prove that Squish achieves asymptotic near-optimal compression rate for lossless

compression if the dataset only contains categorical attributes and can be described efficiently

using a Bayesian network:

Theorem 3.3. Let a1, a2, . . . , am be categorical attributes with joint probability distribution

P (a1, . . . , am) that decomposes as

P (a1, . . . , am) =
m∏
i=1

P (ai|parenti) (3.43)

such that

parenti ⊆ {a1, . . . , ai−1}, card(parenti) ≤ c (3.44)

Suppose the dataset D contains n tuples that are i.i.d. samples from P . Let M =

maxi card(ai) be the maximum cardinality of attribute range. Then Squish can compress

D using less than H(D) + 4n + 32mM c+1 bits on average, where H(D) is the entropy [20]

of the dataset D.

Proof. Since our compression algorithm searches for the Bayesian Network with minimum

description length, it suffices to prove that the size of compressed dataset using the correct

Bayesian Network is less than H(D) + 4n+ 32mM c+1.

Let S be the set of tuples in D such that its probability is less than 2−n:

S = {i ∈ [n] : P (ti) < 2−n} (3.45)

Then, the size of the compressed dataset can be expressed as:

compressed size ≤
∑
i∈S

(− log2 P (ti)− (log2 n− 2) + 2) + 2(n− |S|) + (BN description cost)

≤
∑
i∈S

(− log2 P (ti))− |S| log2 |S|+ 4n+ 32mM c+1 (3.46)

where we assume that the model parameters are stored using single precision float numbers.

On the other hand, since S deterministically depends on D, therefore by the chain rule of

entropy we have:

H(D) = H(D) +H(S|D) = H(D, S)

=H(S) +H(tS|S) +H(t[n]\S|S) ≥ H(tS|S) (3.47)

29

and since tS is a multi-set consisting of {ti : i ∈ S}, we have

H(tS|S) ≥ −|S|E[log2 P (t)|P (t) < 2−n]− |S| log2 |S| (3.48)

Combining these two directions, we conclude that

compressed size ≤ H(D) + 4n+ 32mM c+1 (3.49)

Thus, when n is large, the difference between the size of the compressed dataset using our

system and the entropy1 of D is at most 5n, that is only 5 bits per tuple. This indicates

that Squish is asymptotically near-optimal for this setting.

When the dataset D contains numerical attributes, the entropy H(D) is not defined,

and the techniques we used to prove Theorem 3.3 no longer apply. However, in light of

Theorem 3.1, it is likely that Squish still achieves asymptotic near-optimal compression.

3.5.3 Extension to a Streaming Scenario

So far, we have assumed that the entire tabular dataset is given at the beginning, it is also

possible to extend Squish to the data stream scenario wherein tuples arrive continuously

over time. In the following we briefly discuss a potential extension to a streaming case.

The simplest scenario is that all arriving tuples are i.i.d. samples from the same joint-

distribution. In this case, it is sufficient to learn a Bayesian Network structure using the

earliest arriving tuples, and then apply it to encode all later tuples. Since every tuple comes

from the same underlying distribution, the Bayesian Network learned from a subset of tuples

will apply equally well to other tuples.

However, the more common and complex scenario is when the underlying distribution

would also slowly drift away over time. In this case, the Bayesian Network structure learned

from the earliest arriving tuples will not naturally apply to the ones that arrive later, and

it becomes necessary for us to adapt the existing structure incrementally to handle the

distribution drifting phenomenon. The problem of learning Bayesian Network incrementally

have been studied in a few recent papers [21, 22], but it is not clear whether these methods

can be readily plugged into Squish, or we need to develop more efficient methods for our

scenario. We will leave the investigation of this issue for future work.

1By Shannon’s source coding theorem [20], there is no algorithm that can achieve compression rate higher
than entropy asymptotically.

30

3.6 EXPERIMENTS

In this section, we evaluate the performance of Squish against the state-of-the-art tabular

dataset compression algorithms SPARTAN [9] and ItCompress [10]. For reference we also

include the performance of gzip [7], a well-known generic compression algorithm. We use

the following four publicly available datasets:

• Corel (http://kdd.ics.uci.edu/databases/CorelFeatures) is a 20 MB dataset containing

68,040 tuples with 32 numerical color histogram attributes.

• Forest-Cover (http://kdd.ics.uci.edu/databases/covertype) is a 75 MB dataset con-

taining 581,000 tuples with 10 numerical and 44 categorical attributes.

• Census (http://thedataweb.rm.census.gov/ftp/cps ftp.html) is a 610MB dataset con-

taining 676,000 tuples with 36 numerical and 332 categorical attributes.

• Genomes (ftp://ftp.1000genomes.ebi.ac.uk) is a 18.2GB dataset containing 1,832,506

tuples with about 10 numerical and 2500 categorical attributes.2

The first three datasets have been used in prior papers [9, 10], and the compression

ratio achieved by SPARTAN, ItCompress and gzip on these datasets have been reported

in Jagadish et al.’s work [10]. We did not reproduce these numbers and only used their

reported performance numbers for comparison. For the Census dataset, the previous papers

only used a subset of the attributes in the experiments (7 categorical attributes and 7

numerical attributes), and we are unaware of the exact selection criteria. Therefore, we will

only report the comparison with gzip on this dataset.

For the Corel and Forest-Cover datasets, we set the error tolerance as a percentage (1%

by default) of the width of the range for numerical attributes as in previous works. For

the Census dataset, the compression is lossless. For the Genomes dataset, we set the error

tolerance for integer attributes to 0 and float-point numerical attributes to 10−8.

3.6.1 Compression Rate Comparison

Figure 3.8 shows the comparison of compression rate on the Corel and Forest-Cover

datasets. In these figures, X axis is the error tolerance for numerical attributes (% of the

2In this dataset, many attributes are optional and these numbers indicate the average number of attributes
that appear in each tuple.

31

width of range), and Y axis is the compression ratio, defined as follows:

compression ratio =
data size with compression

data size without compression
(3.50)

As we can see from the figures, Squish significantly outperforms the other algorithms.

When the error tolerance threshold is small (0.5%), Squish achieves about 50% reduction

in compression ratio on the Forest Cover dataset and 75% reduction on the Corel dataset,

compared to the nearest competitor ItCompress (gzip), which applies gzip algorithm on top

of the result of ItCompress. The benefit of not using gzip as a post-processing step is that

we can still permit tuple-level access without decompressing a larger unit.

The remarkable improvements that our system achieved in the Corel dataset reflects the

superiority of Squish for compressing numerical attributes, which is known to be a hard

problem [23] and none of the previous systems have effectively addressed it. In contrast,

our encoding scheme can leverage the skewness of the distribution and achieve near-optimal

performance.

(a) Forest Cover (b) Corel

Figure 3.8: Error Threshold vs Compression Ratio

Figure 3.9 shows the comparison of compression rate on the Census and Genomes datasets.

Note that in these two datasets, we set the error tolerance threshold to be extremely small,

so that the compression is essentially lossless. As we can see, even in the lossless com-

pression scenario, our algorithm still outperforms gzip significantly. Compared to gzip,

Squish achieves 48% reduction in compression ratio in Census dataset and 56% reduction

in Genomes dataset.

32

Figure 3.9: Compression Ratio Comparison

3.6.2 Compression Breakdown

As we have seen in the last section, Squish achieved superior compression ratio in all four

datasets. In this section, we use detailed case studies to illustrate the reason behind the

significant improvement over previous papers.

Categorical Attributes

Here we study the source of the compression in Squish for categorical attributes. We will

use three different treatments for the categorical attributes and see how much compression

is achieved for each of these treatments:

• Domain Code: We replace the categorical attribute values with short binary code

strings. Each code string has length dlog2Ne, where N is the total number of possible

categorical values for the attribute.

• Column: We ignore the correlations between categorical attributes and treat all the

categorical attributes as independent.

• Full: We use both the correlations between attributes and the skewness of attribute

values in our compression algorithm.

We will use the Genomes and Census dataset here since they consist of mostly categorical

attributes. We keep the compression algorithm for numerical attributes unchanged in all

treatments. Figure 3.10 shows the compression ratio of the three treatments:

As we can see, the compression ratio of the basic domain coding scheme can be improved

up to 70% if we take into account the skewness of the distribution in attribute values.

33

Figure 3.10: Compression Ratio Comparison for Categorical Attributes

Furthermore, the correlation between attributes is another opportunity for compression,

which improved the compression ratio by 50% in both datasets.

An interesting observation is that the Column treatment achieves comparable compression

ratio as gzip in both datasets, which suggests that gzip is in general capable of capturing

the skewness of distribution for categorical attributes, but unable to capture the correlation

between attributes.

Numerical Attributes

Here we study the source of the compression in Squish for numerical attributes. We use

the following five treatments for the numerical attributes:

• IEEE Float: We use the IEEE Single Precision Floating Point standard to store all

attributes.

• Discrete: Since all attributes in the dataset have value between 0 and 1, we use integer

i to represent a float number in range [i
107
, i+1

107
], and then store each integer using its

24-bit binary representation.

• Column: We ignore the correlation between numerical attributes and treat all at-

tributes as independent.

• Full: We use both the correlations between attributes and distribution information

about attribute values.

• Lossy: The same as the Full treatment, but we set the error tolerance at 10−4 instead.

34

We use the Corel dataset here since it contains only numerical attributes. The error

tolerance in all treatments except the last are set to be 10−7 to make sure the comparison

is fair (IEEE single format has precision about 10−7). All the numerical attributes in this

dataset are in range [0, 1], with a distribution peaked at 0. Figure 3.11 shows the compression

ratio of the five treatments.

Figure 3.11: Compression Ratio Comparison for Numerical Attributes

As we can see, storing numerical attributes as float numbers instead of strings gives us

about 55% compression. However, the compression rate can be improved by another 50%

if we recognize distributional properties (i.e., range and skewness). Utilizing the correlation

between attributes in the Corel dataset only slightly improved the compression ratio by 3%.

Finally, we see that the benefit of lossy compression is significant: even though we only

reduced the precision from 10−7 to 10−4, the compression ratio has already been improved

by 50%.

3.6.3 Running Time

In this section we evaluate the running time of Squish. Note that the time complexity

of the compression and decompression components are both O(nm), where m is the number

of attributes and n is the number of tuples. In other words, the running time of these two

components are linear to the size of the dataset. Therefore, the algorithm should scale well

to large datasets in theory.

Table 3.3 lists the running time of the five components in Squish. All experiments are

performed on a computer with eight3 3.4GHz Intel Xeon processors. For the Genomes

3The implementation is single-threaded, so only one processor is used.

35

dataset, which contains 2500 attributes—an extremely large number—we constructed the

Bayesian Network manually. Note that none of the prior works have been applied on a

dataset with the magnitude of the Genomes dataset (both in number of tuples and number

of attributes).

Forest Cov. Corel Census Genomes
Struct. Learning 5.5 sec 2.5 sec 20 min N/A
Param. Tuning 140 sec 15 sec 100 min 40 min

Compression 48 sec 6 sec 6 min 50 min
Writing to File 7 sec 2 sec 40 sec 7 min
Decompression 53 sec 7.5 sec 6 min 50 min

Table 3.3: Running Time of Different Components

As we can see from Table 3.3, our compression algorithm scales reasonably: even with

the largest dataset Genomes, the compression can still be finished within hours. Recall that

since our algorithm is designed for archival not online query processing, and our goal is

therefore to minimize storage as much as possible, a few hours for large datasets is adequate.

Random Access: Unlike gzip [7], Squish allows random access of tuples without de-

compressing the whole dataset. Therefore, if users only need to access a few tuples in the

dataset, then they will only need to decode those tuples, which would require far less time

than decoding the whole dataset.

Running Time Remark: Due to a suboptimal implementation of the parameter tuning

component in our current code, the actual time complexity of the parameter tuning com-

ponent is O(nmd) where d is the depth of the Bayesian network. Therefore, Table 3.3 may

not reflect the best possible running time of a fully optimized version of our compression

algorithm. Also, the running time of the parameter tuning component can be greatly re-

duced if we utilize sampling technique (as we did for structure learning). The only potential

bottleneck is structure learning, which scales badly with respect to the number of attributes

(O(m4)). To handle datasets of this scale, another approach is to partition the dataset

column-wise, and apply the compression algorithm on each partition separately. We plan to

investigate this in future work.

3.6.4 Sensitivity to Bayesian Network Learning

We now investigate the sensitivity of the performance of our algorithm with respect to the

Bayesian network learning. We use the Census dataset here since the correlation between

36

attributes in this dataset is stronger than other datasets, so the quality of the Bayesian

network can be directly reflected in the compression ratio.

Since our structure learning algorithm only uses a subset of the training data, one might

question whether the selection of tuples in the structure learning component would affect the

compression ratio. To test this, we run the algorithm for five times, and randomly choose

the tuples participating in the structure learning. Table 3.4 shows the compression ratio of

the five runs. As we can see, the variation between runs are insignificant, suggesting that

our compression algorithm is robust.

No. of Exp. 1 2 3 4 5
Comp. Ratio 0.0460 0.0472 0.0471 0.0468 0.0476

Table 3.4: Sensitivity of the Structure Learning

We also study the sensitivity of our algorithm with respect to the number of tuples used

for structure learning. Table 3.5 shows the compression ratio when we use 1000, 2000 and

5000 tuples in the structure learning algorithm respectively. As we can see, the compression

ratio improves gradually as we use more tuples for structure learning.

Number of Tuples 1000 2000 5000
Comp. Ratio 0.0474 0.0460 0.0427

Table 3.5: Sensitivity to Number of Tuples

3.6.5 Loss of Compressibility from Bayesian Network

Although Bayesian Network structure is a very commonly used model for capturing the

joint-distribution of multiple random variables, there are situations in which the Bayesian

Network structures cannot perfectly model the exact underlying distribution. In this section,

we investigate how much compressibility we could potentially lose from using a Bayesian

Network structure instead of full joint-distribution. Here, we synthetically generate several

datasets and compare the compression ratio of Squish with the dataset entropy (which, by

Shannon’s coding theorem [20], is the theoretical lower bound4 of the compression ratio).

We generated two sets of synthetic datasets using Hidden Markov Model (HMM) [24] (4

states, 32 possible observations, 50 columns, 1,000,000 tuples) and Boltzmann Machine [25]

(4 hidden units, 10 observed units/columns, 1,000,000 tuples) respectively. Figure 3.12 shows

4We remark that such a lower bound only holds asymptotically, and with a finite dataset size it is actually
possible to achieve slightly better compression compared to entropy.

37

(a) Hidden Markov Model (b) Boltzmann Machine

Figure 3.12: Compression Ratio: Squish vs. Theoretical Lower Bound

the ratio between Squish’s compression result and the entropy of these datasets. As we can

see, even though Squish cannot achieve the optimal compression ratio exactly, it is not too

far either: the compression ratio of Squish is only 29% and 3% worse on average compared

to the theoretical lower bound for both sets of datasets respectively, which demonstrates

that even in the cases where the true distribution cannot be perfectly captured by Bayesian

Networks, the compression result of Squish is still nearly optimal.

3.7 BIBLIOGRAPHICAL NOTES

Although compression of datasets is a classical research topic in the database research

community [23], the idea of exploiting attribute correlations (a.k.a. semantic compression) is

relatively new. Babu et al. [9] used functional dependencies among attributes to avoid storing

them explicitly. Jagadish et al. [10] used a clustering algorithm for tuples. Their compression

scheme stores, for each cluster of tuples, a representative tuple and the differences between

the representative tuple and other tuples in the cluster. These two types of dependencies

are special cases of the more general Bayesian network style dependencies used in Squish.

The idea of applying arithmetic coding on Bayesian networks was first proposed by Davies

and Moore [26]. However, their work only supports categorical attributes (a simple case).

Further, the authors did not justify their approach by either theoretically or experimentally

comparing their algorithm with other semantic compression algorithms. Lastly, they used

conventional BIC [14] score for learning a Bayesian Network, which is suboptimal, and their

technique does not apply to the lossy setting.

The compression algorithm developed by Raman and Swart [17] used Huffman Coding to

compress attributes. Therefore, their work can only be applied to categorical attributes and

can not fully utilize attribute correlation (the authors only mentioned that they can exploit

38

attribute correlations by encoding multiple attributes at once). The major contribution of

Raman’s work [17] is that they formalized the old idea of compressing ordered sequences by

storing the difference between adjacent elements, which has been used in search engines to

compress inverted indexes [27] and also in column-oriented database systems [11].

Bayesian networks are well-known general-purpose probabilistic models to characterize

dependencies between random variables. For reference, the textbook written by Koller and

Friedman [12] covers many recent developments. Arithmetic coding was first introduced by

Rissanen [28] and further developed by Witten et al. [13]. An introductory paper written

by Langdon Jr. [16] covers most of the basic concepts of Arithmetic Coding, including the

early bit emission trick. The deterministic approximation trick is original. Compared to the

overflow prevention mechanism in Witten et al.’s work [13], the deterministic approximation

trick is simpler and easier to implement.

3.8 CONCLUSION

In this chapter, we presented Squish, an hidden structure based compression algorithm

for tabular datasets. Squish follows the general framework we summarized in Chapter 2: the

Bayesian Network learning module corresponds to the extraction step, and the arithmetic

coding module corresponds to the data processing step. The algorithm design primarily

focuses on the details of the structure hypothesis space: (a) we used Bayesian Networks as

the basic structure form, which is much more representative than structures used in prior

papers; (b) the use of a greedy approximation algorithm and sampling technique allows us to

efficiently extract structures from the input dataset; (c) the SquID mechanism allows us to

handle different types of attributes consistently, making it easy for the extracted structure

to be utilized in the compression step. Due to the careful design of structure hypothesis

space, Squish is able to surpass prior compression algorithms [9, 10] that also use hidden

structures, achieving significantly better results.

39

CHAPTER 4: EXTRACTING STRUCTURE FOR ORGANIZATION

Log datasets, as generated by computer programs, contain a large volume of useful in-

formation including the behavior of users, the activities within systems and the usage of

resources over time. While this information can potentially be very valuable from an ana-

lytic standpoint, to summarize, cluster, or identify anomalies, they are unfortunately buried

in arbitrarily formatted log files, preventing them from being readily used. Most log datasets

are streams of log entries continuously generated by print statements scattered across the

computer program. These log entries are often implicitly structured (i.e., they follow a

predefined but unknown data format). Once we uncover their structures, we can easily im-

port the information within into a relational format. We can then infer relationships across

datasets, and put them to use to aid analysis, search, or browsing.

Even though techniques for extracting structures from text-formatted datasets have been

studied in many other contexts (e.g., from HTML files [29, 30], HTML lists [31], Network Pro-

tocols [32]), most existing techniques rely on the specific characteristics of the target dataset

(e.g., using the DOM tree structure for extraction from HTML files), which makes them not

readily applicable to log datasets. On the other hand, program synthesis techniques [33] are

general-purpose methods for devising transformation rules from provided examples and are

applicable in our context, but requires extensive user supervision. Fisher et al. [34] take one

step towards automation by only requiring users to provide record boundaries: they assume

that the data is already chunked (i.e., partitioned into small blocks such that each block

contains exactly one record) beforehand using external tools. This chunking step is assumed

to be a simple form of supervision (e.g., when each record contains exactly k lines), and their

work primarily focus on learning structure given these blocks as input. Recordbreaker [35]

is a simple automated implementation of Fisher et al.’s technique that assumes that each

record occupies exactly one line. Indeed, this is far too drastic an assumption to retain

applicability for log datasets, as we will see below.

Example 4.1 (Importance of Recognizing Multi-line Records). Consider the example log

dataset in Figure 4.1, where each record occupies multiple lines. One promising approach

to extract from such a dataset is to use an unsupervised extraction scheme such as Record-

Breaker [35] that extracts contents from each line independently, resulting in tables T1, T2, T3

as displayed, such that a multi-line record can be viewed to be a union of multiple single-line

records. While such a single-line extraction approach indeed can potentially “extract” all

relevant content, the association between records are completely lost in the generated tables.

The loss of record association information makes it very hard for users to interpret or utilize

40

such results.

Raw Dataset
Extracted Relational Dataset
by Recognizing Only Single-

Line Records

Desired Extraction

T₁

T₂

T₃

Figure 1: The Extraction Results of Single-line Extraction &
D�������� From Datasets Containing Multi-line Records

for example for keyword search or data integration, both of which
require join paths to be preserved. On the other hand, D��������
extracts these multi-line records correctly as single records.

Figure 2: Sample semi-structured log dataset crawled from
GitHub. The contents have been anonymized and only �rst
18 lines are shown here.

E������ 2 (I��������� �� R���������� M������� R�����
T����). Compared with extracting structure from dataset with clearly
de�ned cues, e.g., HTML tags, or record boundaries, there are some
unique challenges when dealing with log datasets. Consider an ex-
ample log dataset crawled from GitHub in Figure 2, in which there
are two types of records consisting of 7 and 9 lines respectively, ran-
domly interspersed with each other. Since the sequence of record types
can be arbitrary, it is no longer possible to identify the boundaries of
records using simple rules, rendering prior unsupervised log structure
extraction algorithms non-applicable2.

D��������: Automatic Log Structure Extraction. In this pa-
per, we present D��������3, an automatic log dataset structure
extraction algorithm.

2Note, although that while in this example, the boundaries of records are represented as the special
“——–” lines, an unsupervised chunker cannot utilize this information without human guidance
3Catamaran is a type of boat or raft meant to rapidly navigate large water bodies, such as lakes or
oceans.

At a high-level, the idea behind D�������� is simple: D������
��� identi�es the correct structure of the dataset by looking for
repeated patterns: we examine small portions of the dataset and
use a hash-table to �nd repeated patterns covering a signi�cant
fraction of the dataset. All such patterns are then evaluated via
some scoring function, such as the minimum description length [9]
(Note, however, that D�������� is general, and can adapt to any
scoring modality, not just minimum description length). Finally,
the best pattern is used to actually extract structured information
from the dataset.

However, a naive implementation of this algorithm, as we will
demonstrate, can lead to a huge blowup in the number of patterns
considered, and therefore the time taken for extraction; as a result,
D�������� requires careful design and engineering to bound the
computation at each step. We developed techniques to address the
following challenges we encountered when applying the above
high-level idea on log datasets:
• Unknown Record Endpoints. As described previously, identifying

the boundaries of records is not straightforward; while the end-
of-line character ‘\n’ is used for separating records in many
datasets, it could also appear within records (i.e., multi-line
records).

• Unknown Field Endpoints. When trying to detect repetitive pat-
terns, it is necessary to �rst separate the formatting characters
from the �eld values. This is not as easy in log datasets, due
to the fact that commonly used formatting characters (e.g., the
space character ‘ ’) can also appear within �eld values (e.g., text
�elds).

• Complex Structure. There are often complex structures within
records: for example, if a record contains a list of values, the
number of values can vary from record to record, which makes
even the underlying formatting vary between records, and there-
fore the same pattern not applying across the dataset. Indeed,
like our example demonstrates, multiple record types may also
exist within the dataset. Furthermore, substructures could also
exist within the structures via nesting. This makes detecting
repetitive patterns substantially more di�cult.

• Redundant Structure. During the early stages of extraction we
often �nd a number of di�erent repetitive patterns; of which
most are completely useless (e.g., the trivial pattern that extracts
the entire dataset). The number of such patterns can blow up
very quickly as the structure becomes complex: for example, the
date component YYYY-MM-DD can be identi�ed as either a single
�eld or three di�erent �elds, and di�erent combinations of such
kind of choices would yield exponentially many patterns. We
need an e�cient method for �ltering out most of the low-quality
patterns without evaluating them.

• Structure Semantics. Structure extraction is not simply about
identifying patterns that can partition the identi�ed records into
formatting components (or delimiters), and various pieces of
information to be extracted, as the ultimate goal is to transform
the log datasets into structured relational datasets. Finding an
appropriate structure for this purpose (i.e., making sure that
resulting structured datasets are interpretable to users) requires
not only a good scoring metric, but also well-designed structure
re�nement techniques.

Figure 1: The Extraction Results of Single-line Extraction &
D�������� From Datasets Containing Multi-line Records

for example for keyword search or data integration, both of which
require join paths to be preserved. On the other hand, D��������
extracts these multi-line records correctly as single records.

Figure 2: Sample semi-structured log dataset crawled from
GitHub. The contents have been anonymized and only �rst
18 lines are shown here.

E������ 2 (I��������� �� R���������� M������� R�����
T����). Compared with extracting structure from dataset with clearly
de�ned cues, e.g., HTML tags, or record boundaries, there are some
unique challenges when dealing with log datasets. Consider an ex-
ample log dataset crawled from GitHub in Figure 2, in which there
are two types of records consisting of 7 and 9 lines respectively, ran-
domly interspersed with each other. Since the sequence of record types
can be arbitrary, it is no longer possible to identify the boundaries of
records using simple rules, rendering prior unsupervised log structure
extraction algorithms non-applicable2.

D��������: Automatic Log Structure Extraction. In this pa-
per, we present D��������3, an automatic log dataset structure
extraction algorithm.

2Note, although that while in this example, the boundaries of records are represented as the special
“——–” lines, an unsupervised chunker cannot utilize this information without human guidance
3Catamaran is a type of boat or raft meant to rapidly navigate large water bodies, such as lakes or
oceans.

At a high-level, the idea behind D�������� is simple: D������
��� identi�es the correct structure of the dataset by looking for
repeated patterns: we examine small portions of the dataset and
use a hash-table to �nd repeated patterns covering a signi�cant
fraction of the dataset. All such patterns are then evaluated via
some scoring function, such as the minimum description length [9]
(Note, however, that D�������� is general, and can adapt to any
scoring modality, not just minimum description length). Finally,
the best pattern is used to actually extract structured information
from the dataset.

However, a naive implementation of this algorithm, as we will
demonstrate, can lead to a huge blowup in the number of patterns
considered, and therefore the time taken for extraction; as a result,
D�������� requires careful design and engineering to bound the
computation at each step. We developed techniques to address the
following challenges we encountered when applying the above
high-level idea on log datasets:
• Unknown Record Endpoints. As described previously, identifying

the boundaries of records is not straightforward; while the end-
of-line character ‘\n’ is used for separating records in many
datasets, it could also appear within records (i.e., multi-line
records).

• Unknown Field Endpoints. When trying to detect repetitive pat-
terns, it is necessary to �rst separate the formatting characters
from the �eld values. This is not as easy in log datasets, due
to the fact that commonly used formatting characters (e.g., the
space character ‘ ’) can also appear within �eld values (e.g., text
�elds).

• Complex Structure. There are often complex structures within
records: for example, if a record contains a list of values, the
number of values can vary from record to record, which makes
even the underlying formatting vary between records, and there-
fore the same pattern not applying across the dataset. Indeed,
like our example demonstrates, multiple record types may also
exist within the dataset. Furthermore, substructures could also
exist within the structures via nesting. This makes detecting
repetitive patterns substantially more di�cult.

• Redundant Structure. During the early stages of extraction we
often �nd a number of di�erent repetitive patterns; of which
most are completely useless (e.g., the trivial pattern that extracts
the entire dataset). The number of such patterns can blow up
very quickly as the structure becomes complex: for example, the
date component YYYY-MM-DD can be identi�ed as either a single
�eld or three di�erent �elds, and di�erent combinations of such
kind of choices would yield exponentially many patterns. We
need an e�cient method for �ltering out most of the low-quality
patterns without evaluating them.

• Structure Semantics. Structure extraction is not simply about
identifying patterns that can partition the identi�ed records into
formatting components (or delimiters), and various pieces of
information to be extracted, as the ultimate goal is to transform
the log datasets into structured relational datasets. Finding an
appropriate structure for this purpose (i.e., making sure that
resulting structured datasets are interpretable to users) requires
not only a good scoring metric, but also well-designed structure
re�nement techniques.

Figure 1: The Extraction Results of Single-line Extraction &
D�������� From Datasets Containing Multi-line Records

for example for keyword search or data integration, both of which
require join paths to be preserved. On the other hand, D��������
extracts these multi-line records correctly as single records.

Figure 2: Sample semi-structured log dataset crawled from
GitHub. The contents have been anonymized and only �rst
18 lines are shown here.

E������ 2 (I��������� �� R���������� M������� R�����
T����). Compared with extracting structure from dataset with clearly
de�ned cues, e.g., HTML tags, or record boundaries, there are some
unique challenges when dealing with log datasets. Consider an ex-
ample log dataset crawled from GitHub in Figure 2, in which there
are two types of records consisting of 7 and 9 lines respectively, ran-
domly interspersed with each other. Since the sequence of record types
can be arbitrary, it is no longer possible to identify the boundaries of
records using simple rules, rendering prior unsupervised log structure
extraction algorithms non-applicable2.

D��������: Automatic Log Structure Extraction. In this pa-
per, we present D��������3, an automatic log dataset structure
extraction algorithm.

2Note, although that while in this example, the boundaries of records are represented as the special
“——–” lines, an unsupervised chunker cannot utilize this information without human guidance
3Catamaran is a type of boat or raft meant to rapidly navigate large water bodies, such as lakes or
oceans.

At a high-level, the idea behind D�������� is simple: D������
��� identi�es the correct structure of the dataset by looking for
repeated patterns: we examine small portions of the dataset and
use a hash-table to �nd repeated patterns covering a signi�cant
fraction of the dataset. All such patterns are then evaluated via
some scoring function, such as the minimum description length [9]
(Note, however, that D�������� is general, and can adapt to any
scoring modality, not just minimum description length). Finally,
the best pattern is used to actually extract structured information
from the dataset.

However, a naive implementation of this algorithm, as we will
demonstrate, can lead to a huge blowup in the number of patterns
considered, and therefore the time taken for extraction; as a result,
D�������� requires careful design and engineering to bound the
computation at each step. We developed techniques to address the
following challenges we encountered when applying the above
high-level idea on log datasets:
• Unknown Record Endpoints. As described previously, identifying

the boundaries of records is not straightforward; while the end-
of-line character ‘\n’ is used for separating records in many
datasets, it could also appear within records (i.e., multi-line
records).

• Unknown Field Endpoints. When trying to detect repetitive pat-
terns, it is necessary to �rst separate the formatting characters
from the �eld values. This is not as easy in log datasets, due
to the fact that commonly used formatting characters (e.g., the
space character ‘ ’) can also appear within �eld values (e.g., text
�elds).

• Complex Structure. There are often complex structures within
records: for example, if a record contains a list of values, the
number of values can vary from record to record, which makes
even the underlying formatting vary between records, and there-
fore the same pattern not applying across the dataset. Indeed,
like our example demonstrates, multiple record types may also
exist within the dataset. Furthermore, substructures could also
exist within the structures via nesting. This makes detecting
repetitive patterns substantially more di�cult.

• Redundant Structure. During the early stages of extraction we
often �nd a number of di�erent repetitive patterns; of which
most are completely useless (e.g., the trivial pattern that extracts
the entire dataset). The number of such patterns can blow up
very quickly as the structure becomes complex: for example, the
date component YYYY-MM-DD can be identi�ed as either a single
�eld or three di�erent �elds, and di�erent combinations of such
kind of choices would yield exponentially many patterns. We
need an e�cient method for �ltering out most of the low-quality
patterns without evaluating them.

• Structure Semantics. Structure extraction is not simply about
identifying patterns that can partition the identi�ed records into
formatting components (or delimiters), and various pieces of
information to be extracted, as the ultimate goal is to transform
the log datasets into structured relational datasets. Finding an
appropriate structure for this purpose (i.e., making sure that
resulting structured datasets are interpretable to users) requires
not only a good scoring metric, but also well-designed structure
re�nement techniques.

Figure 1: The Extraction Results of Single-line Extraction &
D�������� From Datasets Containing Multi-line Records

for example for keyword search or data integration, both of which
require join paths to be preserved. On the other hand, D��������
extracts these multi-line records correctly as single records.

Figure 2: Sample semi-structured log dataset crawled from
GitHub. The contents have been anonymized and only �rst
18 lines are shown here.

E������ 2 (I��������� �� R���������� M������� R�����
T����). Compared with extracting structure from dataset with clearly
de�ned cues, e.g., HTML tags, or record boundaries, there are some
unique challenges when dealing with log datasets. Consider an ex-
ample log dataset crawled from GitHub in Figure 2, in which there
are two types of records consisting of 7 and 9 lines respectively, ran-
domly interspersed with each other. Since the sequence of record types
can be arbitrary, it is no longer possible to identify the boundaries of
records using simple rules, rendering prior unsupervised log structure
extraction algorithms non-applicable2.

D��������: Automatic Log Structure Extraction. In this pa-
per, we present D��������3, an automatic log dataset structure
extraction algorithm.

2Note, although that while in this example, the boundaries of records are represented as the special
“——–” lines, an unsupervised chunker cannot utilize this information without human guidance
3Catamaran is a type of boat or raft meant to rapidly navigate large water bodies, such as lakes or
oceans.

At a high-level, the idea behind D�������� is simple: D������
��� identi�es the correct structure of the dataset by looking for
repeated patterns: we examine small portions of the dataset and
use a hash-table to �nd repeated patterns covering a signi�cant
fraction of the dataset. All such patterns are then evaluated via
some scoring function, such as the minimum description length [9]
(Note, however, that D�������� is general, and can adapt to any
scoring modality, not just minimum description length). Finally,
the best pattern is used to actually extract structured information
from the dataset.

However, a naive implementation of this algorithm, as we will
demonstrate, can lead to a huge blowup in the number of patterns
considered, and therefore the time taken for extraction; as a result,
D�������� requires careful design and engineering to bound the
computation at each step. We developed techniques to address the
following challenges we encountered when applying the above
high-level idea on log datasets:
• Unknown Record Endpoints. As described previously, identifying

the boundaries of records is not straightforward; while the end-
of-line character ‘\n’ is used for separating records in many
datasets, it could also appear within records (i.e., multi-line
records).

• Unknown Field Endpoints. When trying to detect repetitive pat-
terns, it is necessary to �rst separate the formatting characters
from the �eld values. This is not as easy in log datasets, due
to the fact that commonly used formatting characters (e.g., the
space character ‘ ’) can also appear within �eld values (e.g., text
�elds).

• Complex Structure. There are often complex structures within
records: for example, if a record contains a list of values, the
number of values can vary from record to record, which makes
even the underlying formatting vary between records, and there-
fore the same pattern not applying across the dataset. Indeed,
like our example demonstrates, multiple record types may also
exist within the dataset. Furthermore, substructures could also
exist within the structures via nesting. This makes detecting
repetitive patterns substantially more di�cult.

• Redundant Structure. During the early stages of extraction we
often �nd a number of di�erent repetitive patterns; of which
most are completely useless (e.g., the trivial pattern that extracts
the entire dataset). The number of such patterns can blow up
very quickly as the structure becomes complex: for example, the
date component YYYY-MM-DD can be identi�ed as either a single
�eld or three di�erent �elds, and di�erent combinations of such
kind of choices would yield exponentially many patterns. We
need an e�cient method for �ltering out most of the low-quality
patterns without evaluating them.

• Structure Semantics. Structure extraction is not simply about
identifying patterns that can partition the identi�ed records into
formatting components (or delimiters), and various pieces of
information to be extracted, as the ultimate goal is to transform
the log datasets into structured relational datasets. Finding an
appropriate structure for this purpose (i.e., making sure that
resulting structured datasets are interpretable to users) requires
not only a good scoring metric, but also well-designed structure
re�nement techniques.

Figure 4.1: Sample multi-line record dataset, along with the single-line extraction results

Example 4.2 (Importance of Recognizing Multiple Record Types). Consider the example

log dataset in Figure 4.2, in which there are two types of records (A and B) consisting of 7 and

9 lines respectively, randomly interspersed with each other. Since the sequence of record types

can be arbitrary, it is no longer possible to identify the boundaries of records using simple

rules, rendering prior unsupervised log structure extraction algorithms non-applicable1.

In this chapter, we present Datamaran [5], an automatic log dataset structure extraction

algorithm. At a high-level, Datamaran follows the general framework in Chapter 2: we

first identify the optimal structure of the dataset, then use it to extract the data contents

within the log dataset and then import them into structured format. However, due to the

extreme efficiency requirement of this task, the design of both the structure hypothesis space

and the extraction method are highly nontrivial, as we shall see in the rest of this chapter:

in Section 4.1, we present the design of structure hypothesis space in Datamaran and

discuss the intuition behind this design; Section 4.2 – 4.6 are dedicated to the details of the

Datamaran algorithm for finding the optimal structure candidate within this hypothesis

space; in Section 4.7, we present a theoretical analysis of Datamaran; in Section 4.8, some

experimental results are shown to demonstrate the utility of Datamaran.

1Note, although that in this example, the boundaries of records are represented as the special “——–”
lines, an unsupervised chunker cannot utilize this information without human guidance

41

Record
A1

Record
B1

A1

B1

A2

B2

B3

A3

A4

Sample
Log
File

……

Figure 4.2: Sample log dataset from GitHub with contents anonymized

4.1 STRUCTURE HYPOTHESIS SPACE

Establishing the structure hypothesis space for log dataset formats is tricky since the

concept of a log dataset is itself ill-specified and does not indicate clear characteristics or

structures. In the following, we first need to identify the defining characteristics of common

log datasets encountered in practice. The concept of a log dataset is defined via the following

series of definitions:

Definition 4.1 (Record Template/Instantiated Record). A record template is a string that

contains one or more instances of the field placeholder character—a special type of character,

denoted as ‘F’—along with other characters. An instantiated record generated from a record

template is a string constructed by replacing field placeholder characters in the record template

with strings containing no field placeholder characters.

Definition 4.2 (Structure Template). A structure template is a regular expression [36]

for record templates. We say the record template RT can be generated from the structure

template ST iff the regular expression of ST matches the string form of RT .

Definition 4.3 (Log Dataset). A log dataset D = {T, S} consists of two components: the

textual component T and the structural component S. S = {ST1, ST2, . . . , STk} is a collec-

tion of structure templates, and T is a text dataset with the following structure: T can be

partitioned into several blocks separated by the end-of-line character ‘\n’, and each block is ei-

ther an instantiated record generated from one of the structure templates in S, or corresponds

to a noise string with no structure.

42

(a) Record Templates (b) Structure Templates

(c) Log Datasets

Figure 4.3: Log Dataset Illustration

These definitions are illustrated in Figure 4.3. Intuitively, a structure template captures

minor variations in the structure of records within a dataset via a regular expression: as

shown in Figure 4.3(b), the example structure template captured minor differences in the

record templates such as one, two, or three arguments within parentheses.

Based on these definitions, in order to complete the structure hypothesis space design, we

need to restrict the set of valid structure templates that we want to consider (since the set of

all regular expressions is obviously too large to allow efficient extraction). Generally speak-

ing, the structure hypothesis space should have good representativeness (i.e., flexible enough

to be applicable for most log datasets). In addition, the complexity level of structure tem-

plates should offer a good trade-off between utility and learnability (i.e., more complicated

structures offer finer-grained extraction but are more costly to extract). In Datamaran,

the structure templates are restricted to have the following tree-style form:

Assumption 4.1 (Tree-Style Structure Candidates). We only consider structure templates

with one of the following forms:

1. Array: ({regexA}x)*{regexA}y

where {regexA} is another regular expression satisfying Assumption 4.1, and x and y

are different characters.

2. Struct: {regexA}{regexB}{regexC}....

where {regexA}{regexB}{regexC}.... is a sequence of regular expressions, and each

43

Figure 4.4: Structural Form Assumption

of them is either a simple string or another regular expression satisfying Assump-

tion 4.1.

Assumption 4.1 states that records in log datasets are laid out from left to right, with

nesting. Formally, the Array-type regular expression is intended to characterize lists of

objects. For example, the structure template [F,F,F,...,F] can be represented by a prefix

character ’[’ and an array-type regular expression "(F,)*F]". Based on Assumption 4.1,

each structure template essentially follows a special tree-style form. Figure 4.4 illustrates

the associated tree form of an example structure template F,F,F,"(F,)*F",F,F,F\n. As

we can see, the root node in this tree is a Struct node, while the node in the middle (2nd

node in level 2) is an Array node with two children nodes: the left one is the repetitive

regular expression, and the right one denotes the separating/terminating characters.

Figure 4.5: Extracted Relational Dataset

We can store all extracted records in a relational format based on Assumption 4.1, which

is demonstrated in Figure 4.5: the instantiated records (left hand side) are generated from

the structure template in Figure 4.4, and the right hand side depicts two representations

for the relational dataset. Datamaran can generate either representation, both of which

contain all of the extracted information, and can be utilized by downstream applications.

44

Figure 4.6: Parser for Example Structure Template

Remark: Assumption 4.1 is adapted from the record structure assumption in [34]. The

two major differences are: (a) we removed the union-type node in Fisher’s original design to

allow more efficient extraction; (b) the array-type nodes are enhanced with separating and

terminating characters to facilitate efficient parsing: the tree-style structure form allows one

to implement a LL(1) parser, which only requires a single linear scan over the whole dataset.

Figure 4.6 demonstrates this parsing procedure for a simple example structure template.

4.2 OVERVIEW OF THE DATAMARAN ALGORITHM

Most prior unsupervised structure extraction algorithms [34, 35, 31] assume that the

record boundaries are known beforehand. These algorithms are usually based on the idea of

summarization, in which they take all the examples generated from the structure template

as input, and then try to find the structure template by seeking out the common patterns

among records. However, in many real-world log datasets, the record boundaries are usually

unknown, which makes these algorithms not directly applicable. Furthermore, the task of

finding record boundaries itself is also not easy: without knowing the record characteristics

first, it is very difficult to pinpoint the exact location of record boundaries, especially with

the presence of heavy noise.

Given the difficulty associated with identifying record boundaries, a different approach is

used by Datamaran: Datamaran first generates a large collection of structure template

candidates directly from the dataset (without actually identifying the record boundaries),

45

and then evaluates the most promising ones to find the optimal structure template. Fig-

ure 4.7 illustrates the conceptual differences between Datamaran and prior approaches

such as RecordBreaker [35]. Concretely, Datamaran algorithm consists of the following

three steps, as illustrated in Figure 4.8:

• Generation. The first step is to generate a large collection of candidate structure tem-

plates directly from the log dataset. To achieve this, we first extract a large collection

of structure templates from potential records (i.e., consecutive lines in the dataset),

then insert these structure templates into a hash-table to find repeated ones.

• Pruning. The second step is to prune out most of the candidates found in the previous

step, such that we only need to evaluate a small number of candidates to find the

optimal one. To achieve this, we designed an assimilation score function, which is

used to filter out all of the redundant structure templates derived by removing some

structural details from the true structure templates. We then retain the candidates

with highest assimilation score for the final evaluation.

• Evaluation. During the final step, we evaluate the remaining candidates using a

MDL [37] based regularity score function2 to find the optimal one.

The primary algorithmic contributions of Datamaran are the implementations of gener-

ation and pruning step: (a) for the generation step, extracting structure templates directly

from potential records is highly nontrivial due to the possible variations of field values and

record template structures (see Assumption 4.1); (b) for the pruning step, the assimilation

score function requires careful design: it has to be simple enough so that we can evaluate it

efficiently, while being effective enough to be able to prune out most of the low-quality redun-

dant candidates. Our final design is based on several iterations, and is not straightforward

at first glance.

Notation. Table 4.1 lists the notations used in Datamaran. The first 3 symbols are

parameters in Datamaran, while the last 5 symbols represent dataset-dependent values.

We will describe each of these parameters later on.

2The exact design of the regularity score is not the primary focus of Datamaran. In fact, we assume
that the regularity score function is given, and we can access it through a function call. In this sense, the
primary contribution of Datamaran is an efficient and scalable method to optimize any reasonable scoring
function.

46

Figure 4.7: The difference between Datamaran and earlier work

Symbol Description

M The number of structure templates retained after pruning

L The maximum span of records (i.e., the maximum
number of lines each record can span)

α The minimum coverage threshold for records

n The total number of lines in the dataset

K The number of structure templates retained after generation

Tdata The total size of the dataset

Sdata The amount of data sampled during all three steps

c The number of special characters (i.e., characters
in RT-CharSet-Candidate) appearing in the dataset

Table 4.1: Notation Summary

4.3 THE GENERATION STEP

In the generation step, we generate a large collection of structure template candidates

directly from the input log dataset. More concretely, we will generate all structure templates

that cover a sufficient percentage of the original log dataset. The correctness of the generation

step relies on the following coverage assumption:

Assumption 4.2 (Coverage Threshold). The coverage of every structure template STi ∈ S
should be at least α%. The coverage of structure template ST is defined as the total length

(i.e., total number of characters) of the instantiated records of ST .

In order to find all structure templates with at least α% coverage, Datamaran makes an

additional assumption regarding the structure templates:

Assumption 4.3 (Non-Overlapping). For any structural template ST and any character c,

one of the following is true:

• for any record template RT generated from ST , c /∈ RT .

47

Figure 4.8: The Workflow of Datamaran

• for any instantiated record R generated from ST , no field values of R contains c.

Alternatively, let RT-CharSet denote the set of characters in record templates, while F-

CharSet denotes the set of characters in field values. Then for any structure template ST ,

there exists two disjoint character sets A(ST) and B(ST), such that for any instantiated

record R of ST , we have RT-CharSet(R) ⊆ A(ST) and F-CharSet(R) ⊆ B(ST).

With Assumption 4.3, the following five step approach can be used to generate all structure

templates with at least α% coverage:

1. Enumerate possible values of RT-CharSet (i.e., the character set in the record tem-

plates), and for each such value of RT-CharSet, run through steps 2-5.

2. Enumerate all O(nL) pairs of end-of-line characters ’\n’ that are close to each other

(i.e., at most L lines are between them) in the textual component T . For each such

pair, treat the content between each pair as an instantiated record, and run steps 3-4.

3. Extract the record template from the instantiated record using the value of RT-

CharSet.

4. Reduce the record template into a structure template (with the form defined in As-

sumption 4.1).

48

Figure 4.9: The Generation Step Workflow

5. Store all of the structure templates generated in step 4 within a hash-table, and then

find the ones that satisfy the coverage threshold assumption.

Figure 4.9 illustrates the workflow of the generation step. The basic idea behind the

generation step is very simple: we first enumerate all possible record boundaries (Step 2),

then extract structure templates from the contents between them (Step 3, 4), and finally

use a hash-table to find the ones with sufficient coverage (Step 5). Assumption 4.3, which

states that RT-CharSet ∩ F-CharSet = ∅, allows us to extract record templates directly from

instantiated records (Step 3). Using this assumption, we can separate the field values from

formatting characters after enumerating possible values of RT-CharSet (Step 1).

Finding the optimal RT-CharSet. We implemented two searching procedures in Data-

maran for finding the optimal RT-CharSet. Both searching procedures require RT-CharSet-

Candidate, the set of characters that can potentially be in RT-CharSet, as an input.

Suppose there are c different characters in RT-CharSet-Candidate that appeared in the

dataset. The exhaustive search would enumerate all 2c subsets. On the other hand, the

greedy search procedure would only enumerate O(c2) of them. The greedy search procedure

operates in the following way: initially, RT-CharSet is set to be empty; then in each step,

one of the characters in RT-CharSet-Candidate is added to RT-CharSet; the decision for

choosing which character to add is made greedily by choosing the character generating the

structure template with highest approximation score.

The following example helps illustrate the two searching procedures. Consider a dataset

with the following structure template: [F:F:F] F(F,F). There are 7 special characters in

total: []:(),(space character). Thus, the exhaustive search would enumerate 128 possible

49

subsets for this example. As for the greedy search, it starts from the empty set and gradually

adds new characters into it:

• in the first step, it enumerates all the subsets containing only one character, and

computes the corresponding structure templates (i.e., invoking steps 2-5).

• it then decides which subset to proceed based on which one has the structure template

with the highest approximation score (for this example, it is “F:F:F”).

• then in the second step, it enumerates all 6 subsets consisting of the character ‘:’ and

one additional character.

• this procedure repeats until either the subset is full or we can no longer find any

structure template with at least α% coverage.

It is easy to see that, for this example, the maximum number of subsets that the greedy

search would have enumerated is 29 (also counting the empty subset here). On the other

hand, the exhaustive search would have enumerated 128 subsets. Note that if the field values

do not contain any special characters in RT-CharSet-Candidate, then the correct RT-CharSet

would contain all characters in RT-CharSet-Candidate that appeared in the dataset. In this

case, the greedy search procedure is guaranteed to find the correct RT-CharSet since it will

always consider the full subset at the end of the searching procedure.

Extracting Record Template From Instantiated Record. The non-overlapping as-

sumption (Assumption 4.3) states that there exists two disjoint sets of characters A and B,

such that for any instantiated record R, RT-CharSet(R) (i.e., the record template charac-

ter set) is a subset of A, and F-CharSet(R) (i.e., the field value character set) is a subset

of B. By this assumption, the record template can be uniquely extracted from any of its

instantiated records given the value of A and B.

For example, ifA = { ’,’, ’\n’ }, then the instantiated record 1,2,3,45,6,78,9,a,bc\n

can be transformed into the record template F,F,F,F,F,F,F,F,F\n by replacing characters

not in A with the field placeholder.

Reducing Record Templates to Structure Templates. We identify the correspond-

ing minimum structure template that can generate each extracted record template. This is

achieved by repeatedly reducing repeated patterns into array regular expressions. For exam-

ple, the record template F,F,F,F,F,F,F\n is reduced into the structure template (F,)*F\n.

If there are conflicting reduction steps (i.e., reduction steps that cannot be performed si-

multaneously), we choose one of them arbitrarily. The reduction process only guarantees to

50

find a minimal structure template (i.e., structure template that cannot be reduced further),

which means that not all instantiated records are reduced back to the same structure tem-

plate. As a result, the coverage estimate during the generation step is an underestimate.

However, in our experiments, the initial coverage estimate is usually still well above the α%

threshold, thereby not affecting the correctness of the generation step.

Sampling Technique. In the actual implementation of Datamaran, sampling is used

instead of simply scanning through the entire dataset in both the generation and evaluation

step. For large datasets, scanning the whole dataset during these steps is not feasible: the

total number of whole dataset scans is equal to the number of RT-CharSets enumerated in

the generation step plus M in the evaluation step. Our sampling implementation is cache-

aware: we sample several large chunks of data and concatenate them in the memory. Both

the generation/evaluation steps are performed on the concatenated chunks instead.

Pseudocode. The pseudocode of the generation step can be found in Algorithm 4.1. The

two searching procedures correspond to function GreedySearch and ExhaustiveSearch respec-

tively. The function GenST finds structure templates with at least α% coverage given the

value of RT-CharSet.

4.4 THE PRUNING STEP

Even with the coverage threshold assumption, there are often far too many structure

template candidates remaining after the generation step. As a result, it is impossible to

evaluate the MDL regularity score for every single one. In the pruning step, we identify a

small promising subset of these candidates to be evaluated in the final evaluation step, and

discard the rest. To achieve this, we use assimilation score function to order the structure

templates, so that only the top ones need to be evaluated explicitly in the evaluation step.

The assimilation score estimates the amount of data “assimilated” by the structure template

(i.e., the amount of data that can be explained by the structure template). Therefore,

structure templates with a higher assimilation score are more likely to also have a higher

regularity score.

Before we describe the actual design of our assimilation score function, it is helpful to

first understand why there are so many structure templates remaining after the generation

step. It turns out that most of the redundant structure templates come from two sources

as demonstrated in Figure 4.10: (a) when the structure template consists of multiple lines

(line 1-5 in Figure 4.10 left), any subset of such a structure template would also be captured

by the generation step as a legitimate structure template (line 2-4 in Figure 4.10 right); (b)

51

when the structure template uses multiple types of characters to separate the field values,

simpler structure templates can be recognized if some of those characters are treated as field

values as illustrated in Figure 4.10 (bottom).

Figure 4.10: Two sources of redundancies: (1) subsets of multi-line structure templates; (2)
structural parts recognized as field values.

Therefore, a good assimilation score should be able to distinguish both types of redundan-

cies, and rank the true structure template(s) higher than the redundant ones. At the same

time, it should be relatively lightweight to compute. To achieve this, our first component

uses the coverage value of structure templates, which has already been computed during the

generation step.

However, while the coverage value can effectively distinguish the first source of redun-

dancy, it is not capable of distinguishing the second one. To address this shortcoming,

we introduce another component into the assimilation score: the Non-Field-Coverage term,

which is defined as the total coverage of the structure template minus the total coverage

of all field values of the structure template (i.e., the total length covered by field values in

the instantiated records). This term computes the total coverage achieved by “non-field”

characters in the template, and can effectively distinguish the second source of redundancy.

The final assimilation score function used in Datamaran is the following, which filters out

all structure templates with either low coverage or low non-field-coverage:

Assimilation(S) = Cov(S)×Non Field Cov(S) (4.1)

52

4.5 STRUCTURE REFINEMENT

In order to further improve the extraction accuracy of Datamaran, we developed two

techniques to refine the structure templates. These techniques are applied to all of the top

M structure templates during the evaluation step: we revise these structure templates, and

compare the revised structure templates against the original ones, using the regularity score

function, replacing them if the score is improved.

Array Unfolding

During the generation step, all of the records are transformed into minimal structure

templates, which allowed us to detect repetitive patterns within the dataset. However, there

are cases where the minimum structure template is not the optimal structure template.

For instance, in comma-separated values files (*.csv files), all of the records have the form

"F,F,F,....,F,F\n" (i.e., a fixed number of field values separated by commas). There are

two possible structure templates for these records: the plain struct-type "F,F,F,....,F,F\n"

and the array-type "(F,)*F\n". The plain struct-type template offers a better semantic in-

terpretation in this case (since it implies that the field values are of different types), and also

leads to a better regularity score.

More generally, because of the structure template reduction procedure (step 4 in the gen-

eration step), when the optimal structure template is not a minimal structure template, only

its reduced form will be found during the generation step. To address this, we designed the

array unfolding technique: for each array-type regular expression in the structure template,

we attempt to unfold it by expanding it into a struct-type. Figure 4.11 demonstrates this

process: the array-type regular expression at the top of the figure will be unfolded into one

of the struct-type regular expression at the bottom of the figure. If any of these unfolded

structure templates has a better score than the original one, the unfolding would be finalized.

Figure 4.11: Array Unfolding

Partial unfolding, another unfolding mechanism implemented in Datamaran, is also

53

demonstrated in Figure 4.11. Here, we expand the array-type regular expression while

retaining the non-deterministic array-type suffix. Partial unfolding is used to handle the

cases where regular field values are “mixed in” with text field values, as in the following

example:

Apr 24 04:02:24 srv7 snort shutdown succeeded

Apr 24 04:02:24 srv7 snort startup succeeded

Apr 24 14:44:28 srv7 Disabling nightly yum

In this example, the first four fields are regular fields, but the last one is a free-text field.

The ideal structure template for this example is F F F F (F)*F\n, which can be obtained

by applying partial unfolding to the minimum structure template (F)*F\n.

Structure Shifting

Typically, the regularity score function evaluates the quality of structure templates using

statistics such as coverage value or minimum description length. For most cases, these kinds

of score functions can distinguish good structure templates from bad ones. However, there

is one ambiguity among structure templates that such a regularity score would fail to detect:

the cyclic shifting of structure templates. Figure 4.12 illustrates this: the regularity score of

the shifted structure template (right hand side in Figure 4.12) and the score of the correct

structure template (left hand side in Figure 4.12) are usually approximately equal to each

other.

Figure 4.12: Structure Shifting

The structure shifting mechanism in Datamaran is designed to distinguish such ambi-

guities: for each structure template, we consider all possible shifted variants, and then find

the position of first occurrence for each one of them. We then pick the one with the earliest

first occurrence, which intuitively is most likely the correct structure.

54

4.6 REGULARITY SCORE FUNCTION

The design of Datamaran is independent of the choice of the regularity scoring function:

we can plug in any reasonable scoring function into Datamaran, and the algorithm would

function as before. However, for completeness, we will present the details of the regularity

score function that we use in our implementation in this section. The regularity score

function we implemented is based on the minimum description length principle [37]: we

design a record generation procedure from the structure template, and the regularity score

is equal to the total amount of information needed for describing all the instantiated records

using the structure template, plus the additional information needed to describe the noise

blocks. Describing the record using the structure template is straightforward given the

structural form assumption (Assumption 4.1):

• For arrays, we first describe the number of blocks, then each block individually.

• For structs, we describe each component individually.

• For fields, the description scheme depends on its value type.

For the field value description, we associate each field in the structure template with one

of the following four value-types: enumerated type, integer, real number, or string. The

description schemes for field values depend on the data-type—which can be determined by

analyzing the field values in the group; the details of these schemes are listed as follows:

• The enumerated type fields are described using dlog2 n valuee bits, where n value is

the total number of unique values in this field.

• The integer fields are described using dlog2(max value−min value+ 1)e bits, where

max value and min value are the upper bound and lower bound of the field value,

which can be determined by scanning through the dataset.

• The real number fields are described using dlog2[(max value−min value)×10exp+1]e
bits, where max value and min value are the same as above, and exp is the maximum

number of digits after the decimal point.

• The string fields are described directly using (len(s) + 1)× 8 bits, where len(s) is the

length of the field value. The +1 term is to include the end-of-string ’\0’ character,

and each character needs 8 bits to describe.

55

Using the description schemes above, the total description length can be computed as

D(dataset) = len(ST) × 8 + 32 + m +
∑m

i=1 D(blocki). The first len(ST) × 8 bits de-

scribe the the structure template, and the next 32 + m bits describe the total number of

blocks in the dataset and whether each block is a noise block or a record. D(blocki) is the

description length of ith block: for noise blocks, it is simply the block length times 8; for

record blocks, we compute its description length accordingly.

The pseudocode for computing the description score can be found in Algorithm 4.2, with

the following 3 steps:

1. extract all the instantiated records from the dataset.

2. estimate the data-type parameters from the extracted records.

3. compute the description length using the formulae above.

4.7 THEORETICAL ANALYSIS

Time Complexity

Table 4.2 lists the time complexity of the three steps in Datamaran respectively3. An

explanation for the symbols can be found in Table 4.1. Note that for large datasets, we

would utilize sampling for both the generation and evaluation step (details in Section 4.3),

and therefore Sdata is upper-bounded by a large constant. In such cases, the running time

of our algorithm is dominated by the actual data extraction procedure.

Step Time Complexity

Generation Step O(SdataL2c) or O(SdataLc
2)

Pruning Step O(K logK)
Evaluation Step O(MSdata)
Data Extraction O(Tdata)

Table 4.2: Time Complexity of the Three Steps in Datamaran

Correctness Guarantee

Datamaran is designed to tolerate noise blocks and variations within record structures

and field values. Here we characterize three conditions that are sufficient for guaranteeing

the correctness of Datamaran:

3There are two variants of the search procedure for enumerating RT-CharSet in the generation step as
described in Section 4.3.

56

Theorem 4.1. For a log dataset D = {T, S} with only T observed, if the following conditions

are all met:

(a) One of the structure templates in S (denote it as ST0) has the highest coverage and

non-field-coverage (defined in Section 4.4) among all structure templates.

(b) For at least α% of the instantiated records, the minimum structure template is ST0.

(c) ST0 has the best regularity score among all structure templates.

Then Datamaran is guaranteed to return ST0 as the optimal structure template.

Proof. First of all, condition (b) ensures that ST0 can be found during the generation step.

Then, using condition (a), we can ensure that ST0 to be the top structure template during

the pruning step. Finally, condition (c) ensures that ST0 will be chosen during the evaluation

step. Combining all arguments, we can see that Datamaran is guaranteed to return ST0

as the optimal structure template.

For most practical settings, condition (b) is automatically met. Condition (c) requires a

carefully designed score function, which is not the focus of Datamaran. As for condition

(a), intuitively it requires the structure templates in S to be sufficiently different from each

other, and the field values and noise blocks are sufficiently random. If all of these conditions

are satisfied, then Theorem 4.1 would guarantee the correctness of Datamaran.

4.8 EXPERIMENTS

In this section, we present experimental results that evaluate the performance of Data-

maran. Three sets of experiments are conducted serving different purposes:

• Manually Collected Log Datasets (Section 4.8.1). We collected 25 datasets,

including the entire set of 15 datasets used by Fisher et al. [34] and 10 from other

sources. These datasets cover a wide variety of structural formats and possess differ-

ent characteristics (e.g., file size or structural complexity). We use these datasets to

demonstrate the effectiveness and stability of Datamaran across the board.

• GitHub Log Datasets (Section 4.8.2). We crawled a collection of 100 log datasets

automatically from public GitHub repositories. These datasets reflect the properties

of real-world data lakes. We use these datasets to study the properties of data lakes

“in the wild”, as well as the utility of Datamaran in such settings.

57

• User Study (Section 4.8.3). we conducted a user study on five representative log

datasets, wherein the participants were asked to transform them into the desired target

structure, starting from (a) our results, (b) the extraction results of RecordBreaker [35],

and (c) the raw datasets as three different tasks. Their experience on each task is

reported to reflect the utility of Datamaran in practice.

Datamaran Settings: Datamaran is implemented in C++ and compiled under Visual

Studio 2015. The default values for the three parameters in Datamaran are: α = 10%

(the coverage threshold parameter); L = 10 (the upper bound of record span); M = 50 (the

number of remaining structure templates after the pruning step). These default values are

used in all of our experiments except for our parameter sensitivity experiments.

RecordBreaker [35] Settings: Despite our best attempts, we were unable to install or

run the open-source version of RecordBreaker [35]. Therefore, we decided to faithfully

reimplement RecordBreaker in C++ for our comparison. At the first step, RecordBreaker

relies on a lexer to break up each record into tokens. We use the open source software Flex [38]

as the lexer in our implementation. Accordingly, users need to write a Flex specification file

tailored to their dataset in order to obtain a better tokenization scheme. We will compare

against RecordBreaker in Section 4.8.2 and Section 4.8.3.

Experiment Settings: All experiments were conducted on a 64-bit Windows machine with

8-core Intel Xeon 3.40GHz CPU and 8GB RAM. All executions are single-threaded.

4.8.1 Manually Collected Datasets

Fisher et al. [34] used 15 manually collected datasets to demonstrate the effectiveness

of their structure extraction method, and we followed this tradition by applying Data-

maran on the same set of datasets. Furthermore, since Fisher’s collection lacks large or

complex datasets (i.e., datasets with multiple types of records or multi-line records), we also

collected 10 additional datasets from the internet (e.g., the stack exchange data dump [39])

as well as from our genomics collaborators.

Table 4.3 lists the sources and characteristics of the 25 manually collected datasets4. The

first 15 datasets are from Fisher et al.’s paper [34] (marked with “*” in Table 4.3).

Some example extraction results of Datamaran are demonstrated in Figure 4.13, along

with the results of RecordBreaker [35]. From the experiments, we see that Datamaran can

successfully extract structures from all manually collected datasets. The extraction results

are also finer grained (compared to RecordBreaker), which is generally better for practical

4For crash log datasets, there are two valid structures with max record span 1 and 3 respectively

58

Data source File size(MB) # of rec. types Max rec. span

*transaction records 0.07 1 1

*comma-sep records 0.02 1 1

*web server log 0.29 1 1

*log file of Mac ASL 0.28 1 1

*Mac OS boot log 0.02 1 1

*crash log 0.05 1 1(3)

*crash log (modified in [34]) 0.05 1 1(3)

*ls -l output 0.01 1 1

*netstat output 0.01 2 1

*printer logs 0.02 1 1

*personal income records 0.01 1 1

*US railroad info 0.01 1 1

*application log 0.06 1 1

*LoginWindow server log 0.05 1 1

*pkg install log 0.02 1 1

Thailand district info 0.19 1 8

stackexchange xml data 20 1 1

vcf genetic format 167.4 1 1

fastq genetic format 29.9 1 4

blog xml data 0.06 1 10

log file (1) 0.03 2 9

log file (2) 0.01 1 3

log file (3) 0.19 2 1

log file (4) 0.07 2 10

log file (5) 0.09 1 4

Table 4.3: Sources and characteristics of manually collected datasets.

purposes. These experiments demonstrated the effectiveness of Datamaran on a wide range

of datasets with different properties.

Running Time

Here we study the efficiency of Datamaran. We first run Datamaran on the 25 datasets

using the default parameters to study the connection between the characteristics of datasets

(size/structural complexity) and the running time of Datamaran. Then, we vary the

parameters to study their impact on the efficiency of Datamaran.

Running Time vs. Dataset Size: Figure 4.14(a) depicts the impact of the size of the

dataset on the running time of Datamaran (using either exhaustive search or greedy

search). The running time on small datasets (less than 50MB) is dominated by the gener-

ation and evaluation step. For these datasets, the average running time is 17 seconds for

greedy search and 37 seconds for exhaustive search. It takes about 7 minutes for Datama-

59

(a) Raw File(A) (b) Raw File(B)

(c) Datamaran(A) (d) Datamaran(B)

(e) RecordBreaker(A) (f) RB(B1) (g) RB(B2) (h) RB(B3)

Figure 4.13: Example Extraction Results of Datamaran and RecordBreaker

ran to process the largest dataset here (with size 167MB), where the majority of the running

time is spent on running the LL(1) parser [40] for the actual data extraction. Note that the

running time of the three major steps of Datamaran is not affected by dataset size for

large datasets (as discussed in Section 4.7). As we can see in Figure 4.14(a), the extraction

time is already dominated by the running time of LL(1) parser [40] (which is a necessary

step for all structure extraction algorithms) even when the dataset is only moderately large

(i.e., about 167MB). Further, this step is easily parallelizable. Therefore, we conclude that

Datamaran is efficient enough in practice.

Running Time vs. Structural Complexity: Figure 4.14(b) depicts the impact of the

structural complexity of the dataset on the running time of Datamaran. The structural

complexity of datasets are characterized using the total number of structure templates with

at least 10% coverage. In general, it takes a longer time for Datamaran to extract datasets

60

(a) Running Time vs. Dataset Size (b) Running Time vs. Structural Complexity

Figure 4.14: Running Time vs. (a) Dataset Size and (b) Structural Complexity. x axis in
(b) is the number of structure templates with at least 10% coverage.

with higher structural complexity, and the efficiency benefits of greedy search is more sig-

nificant on these datasets.

Running Time vs. Parameters: Figure 4.15 shows the impact of parameters on the

running time of Datamaran (exhaustive search). Recall that M is the number of remaining

structure templates after pruning step. As we can see in the left figure, the value ofM directly

affects the overall running time, and this effect is more significant for larger datasets. In

the right figure, we can see that changing parameters α or L also affect the efficiency of

Datamaran.

Note that if we evaluate all structure templates with at least α% coverage (i.e., skipping

the pruning step by setting M = ∞), the average running time would be longer than 6

minutes even for small datasets. Therefore, it is necessary to use assimilation score to prune

out structure templates.

Figure 4.15: The impact of parameters on the running time.

Parameter Sensitivity

Here we evaluate the impact of parameters by checking whether Datamaran can find

61

the optimal structure template (i.e., the structure template with best regularity score, this

is found by evaluating the regularity score of every structure template with at least α%

coverage). Figure 4.16 shows the percentage of datasets in which Datamaran can find the

optimal structure template on different parameter combinations. As we can see, Datama-

ran is very robust with respect to the parameter settings: for example, changing the value of

parameter M from 50 to 1000 only increased the likelihood of finding the optimal structure

by about 10%. Figure 4.16 also verifies the effectiveness of the assimilation score in practice:

for 40% of the datasets, the optimal structure also has the best assimilation score.

Figure 4.16: The percentage of datasets in which Datamaran can find the optimal structure
on different parameters

Note that it is not necessary for Datamaran to find the optimal structure, and the metric

used in this section is solely for comparison purposes. Based on the results throughout this

section, we suggest using the following default parameter configuration in practice: α = 10%,

L = 10, M = 1000.

4.8.2 GitHub Datasets

GitHub contains a large quantity of log datasets generated by programmers across the

world. We collected 1005 of such datasets by uniformly sampling from the first 1000 search

results using the following three criteria: (a) files end with “.log” (b) with length greater

than 20000 (c) contains one of the following keywords6 : “db”, “2016”, “system”, “query”,

“user”. The datasets are sampled before any follow-up analysis is conducted, so it represents

an unbiased subset of the whole dataset.

5The scale is limited to 100 since we have to manually inspect the datasets and the extraction results.
Datamaran can be automatically applied to thousands of datasets without any problem.

6GitHub search function requires at least one search keyword, and we used multiple keywords to improve
the diversity of our selection.

62

Label Description

S (Single-line) Dataset consists of only single-line records.
M (Multi-line) Dataset contains records spanning multiple lines

NI (Non-Interleaved) Dataset consists of only one type of records.
I (Interleaved) Dataset contains more than one types of records.

NS (No Structure) Dataset has no structure or its structure does
not follow Assumption 4.1, 4.2 or 4.3.

Table 4.4: GitHub Dataset Labels

(a) Characteristics (b) Accuracy

Figure 4.17: GitHub Datasets: Characteristics and Accuracy

Dataset Characteristics

The sampled datasets are categorized based on three criteria:

• whether the dataset contains multi-line records

• whether the dataset consists of multiple types of records

• whether the dataset has any structure at all

There are five possible labels of datasets based on the above criteria, which are listed in Ta-

ble 4.4. The distribution of labels among the 100 sampled log files is shown in Figure 4.17(a),

from which we can draw the following conclusions:

• Validity of Structural Assumptions: 89% of datasets follow the structure assump-

tions in Datamaran (Assumption 4.1, 4.2 and 4.3). Note that among the remaining

11%, 10% of the datasets have no structure at all (nothing can be extracted from these

datasets), and only 1% dataset have structure that cannot be described within our

framework. These statistics suggest that our structural assumptions are well-justified

for log datasets.

• Necessity for Multi-line Record Handling: 31% of datasets contains at least one

type of record spanning multiple lines. The optimal structure in these datasets cannot

be successfully extracted if the extraction system cannot handle multi-line records.

63

• Necessity for Interleaved Records Handling: 32% of datasets contains more than

one type of records. If the extraction system cannot recognize the existence of multiple

types of records, only one type of record can be extracted (the rest will be regarded as

noise), resulting information loss.

Evaluation Criteria

Recall that the structure extraction problem is not well-posed, and the validity of the

extracted structure solely depends on the end-user. For many datasets, there are usu-

ally multiple structures that can potentially be deemed as valid. For example, the dataset

[01:05:02] 192.168.0.1 has at least the following 4 valid structure templates:

[F] F\n [F] F.F.F.F\n [F:F:F] F\n [F:F:F] F.F.F.F\n

Thus, it is not possible to directly compare the extracted structure with a manually

labeled structure. Here we define the following evaluation criteria: for each dataset, we first

identify several different types of records within the dataset, then identify as many intended

extraction targets as possible for each type of record (i.e., observable fields with potentially

interesting information). The extraction is considered successful if both of the following two

criteria are met: (a) all of the record boundaries and record types are correctly identified;

(b) for each type of intended extraction target, we can select several fields from the structure

template, such that all of the intended extraction targets (of this type) can be reconstructed

by concatenating the selected fields from the corresponding record. Figure 4.18 demonstrates

an example successful extraction, in which we have two types of intended extraction targets

(i.e., time and IP address), and Datamaran returns the structure template as shown in the

middle of the figure. In this example, the extraction is considered successful because both

types of intended extraction targets can be reconstructed by concatenating field values at

specific positions for all extracted records. If, instead, the targets were extracted together,

reconstructing them via concatenation would not be possible.

Extraction Accuracy

We applied Datamaran to extract structured information from GitHub datasets. Fig-

ure 4.17(b) shows extraction accuracy for different types of datasets (based on the above

evaluation criteria). Overall, Datamaran successfully extracted structure from 85 datasets.

The accuracy is 95.5% if we exclude datasets with no structure.

As we can see in Figure 4.17(b), Datamaran achieved 100% accuracy on single-line non-

interleaved datasets, the simplest type of dataset. The accuracy of Datamaran for the

other three types of datasets are 85.7%, 92.3% and 94.4% for exhaustive search, and 78.6%,

64

Figure 4.18: Successful and Unsuccessful Extraction Examples

76.9%, 83.3% for greedy search. Therefore, we conclude that Datamaran is effective for

most of the log datasets in practice.

Figure 4.17(b) also shows the extraction accuracy of RecordBreaker [35] with default

configurations and parameters for comparison. As we can see, RecordBreaker performs

very poorly on log datasets with accuracy 56.8% and 7.1% on S(NI) and S(I) respectively

and 0% on M(NI) and M(I), for a total of 29.2% accuracy, which is not very surprising:

RecordBreaker is originally designed for well-structured datasets, and cannot handle the

noise-heavy log datasets very well. Furthermore, the resulting structure templates depend

a lot on the Flex configurations and the tuning of two parameters in RecordBreaker (i.e.,

MaxMass and MinCoverage). This is because Flex configurations decide the quality of

tokenization, while the other two parameters determine the datatype (i.e., struct, array or

union) for a given list of records. However, there are no generic configurations or parameter

values that work for all datasets, which makes RecordBreaker less desirable in an unsupervised

setting and incomparable to Datamaran.

Figure 4.17(a) and Figure 4.17(b) also demonstrates why prior work such as Record-

Breaker [35] is not well-suited for extracting structure from log datasets: for any dataset

containing multi-line records, the task of partitioning such dataset into collection of records

is nontrivial (due to the presence of noise & the fact that record span is unknown). From

Figure 4.17(a), we see that at least 31% of datasets cannot be handled by RecordBreaker [35]

as demonstrated by M(NI) and M(I) in Figure 4.17(b).

Causes for Inaccurate Extraction

There are primarily two causes for inaccurate extraction from GitHub log datasets. There

are 4 log files where even the exhaustive search version of Datamaran failed to find a valid

structure. In the following, we list the two causes for these inaccurate extractions.

65

Fail to recognize “long” records: The maximum range of records is set to be 10 lines

during the experiments. In some datasets, there are some extremely “long” records that

exceeds this limit. If we increase the range limit, the efficiency of Datamaran would suffer.

As the records in practice can be arbitrarily long, we are still unaware of methods that can

completely solve this problem.

The greedy approach for interleaved datasets: In Datamaran, we handle interleaved

datasets by repeatedly applying the algorithm on the dataset. However, this greedy proce-

dure does not always find the correct structure for interleaved dataset. Instead, sometimes

we would find structure templates with characteristics of multiple types of records. The

following example demonstrates this phenomenon: Suppose we have two types of records

with templates: F: F F F\n and F: F F F F F F\n, then Datamaran could potentially

settle on the wrong structure template F: (F)*F\n, when this generic structure template

has a lower regularity score compared to the two correct record templates.

4.8.3 User Study

To further evaluate the quality of the structure extracted by Datamaran, we conducted a

user study on five representative log datasets, comparing our results against the raw datasets

as well as the extracted results of RecordBreaker.

Study Design

Our user study simulates the following scenario, where a participant is presented with

a log file, and they want to extract some information of interest, prior to analysis. One

straightforward way to do so is to import the log file into a spreadsheet tool like Microsoft

Excel, and then use Excel functionalities to extract this information. Alternatively, the

participant can first use either Datamaran or RecordBreaker to extract the structure, and

then refine the results using Excel to obtain the desired structure and filter out anything that

is not of interest. We will compare these three methods (i.e., from the raw log file, from the

result of Datamaran/RecordBreaker) in our user study, and an optimal extraction result

is created based on our best judgement so that we can quantify the manual effort taken to

reach the desired extraction result. For each dataset, we show the raw log file as well as the

extraction results of Datamaran and RecordBreaker to the participants, and ask them to

transform each file into the desired target structure.

Methodology

The user study consists of three phases:

66

(1) Introduction phase: We first show the participants an example of the raw file, extrac-

tion results from Datamaran and RecordBreaker, along with the target file, denoted as R,

A, B and T respectively. Then, we introduce four popular Excel data wrangling function-

alities that may be used for transforming those three files into the target file, Concatenate,

Split, FlashFill and Offset. Concatenate and Split are straightforward; Flashfill autocom-

pletes columns from a few user examples [41]; and Offset can be used to copy contents every

K rows while skipping the (K − 1) rows in-between.

(2) Quiz phase: We present five folders to the participant, one for each dataset, where

each folder contains the raw file (R), two extraction files (A and B) and the target file (T).

One dataset is a single-line dataset while the other four are multi-line datasets. For each

dataset, the participant is asked to transform R, A and B into T using the functionalities7

in Excel. The whole process takes around one and half hours per participant.

(3) Survey phase: we conduct a survey to understand the participant’s experience in

structure extraction using the raw file R and the two extraction files (A and B).

Detail of introduction phase: in the introduction phase, we give an tutorial on the usage

of four common data wrangling features in Excel: Concatenate, Split, FlashFill and Offset

in Microsoft Excel. The functionality of each operation is listed as follows:

(a) Concatenate merges the strings from multiple cells into a combined string.

(b) Split splits a string into multiple cells via delimiters.

(c) Offset can be used to copy contents every K rows while skipping the (K − 1) rows

in-between. For example, offset(B$1, (row() − 1) × 5, 0, 1, 1) refers to the cell with

(row()− 1)× 5 row offset and 0 column offset from the reference cell B$1, where row()

is the row id. By specifying this formula, Excel extracts content every 5 rows and skips

the 4 rows in between. In our user study, Offset helps reconstruct records spanning

multiple rows.

(d) FlashFill is different from the above cell-based operations, and is content-based. It can

automatically fill the data if it detects a pattern between input examples and the original

data in Excel. In some sense, the functionalities of FlashFill subsume those provided

by both Concatenate and Split. However, compared to Split which splits each column

into multiple columns simultaneously, FlashFill can only fill in one column at a time.

7The participant can use any functionality in Excel, not limited to the ones we teach in the introduction
phase.

67

Furthermore, FlashFill sometimes detects the wrong pattern, but by providing a few

more examples, FlashFill can correct the mistake and provide the correct results.

The complexity for using each operation is not uniform: Concatenate, Split and FlashFill

are very easy to use, while Offset requires more thought and effort in writing the formula

since it involves the manipulations over multiple rows and is not very intuitive.

Detail of quiz phase: in the quiz phase, among the representative five datasets we present

to the participants, one of them is a single-line dataset while the other four are multi-line

datasets. Among the four multi-line datasets, two of them have a regular pattern, while the

other two have noise. The raw dataset R, the extracted result using Datamaran A and

the target result T is stored in a single file each, while there may be multiple files for the

extracted results using RecordBreaker due to ”union” structure type in their algorithm. We

output the extraction results using RecordBreaker into multiple files if it recognizes multiple

structures.

Participants: Six users participated in our study, including four graduate students from

Computer Science and one graduate student from Electrical and Computer Engineering.

Three out of six work with data very often (daily), one often (weekly) and one rarely (yearly

or fewer). In addition, every participant has used spreadsheets and scripting language(s),

like Python and Matlab, for data analysis, while two participants had also used business

analytics tools like Tableau and Power BI.

Results

For each dataset, we recorded the action sequences performed by each participant during

the transformation. In total, there are 6 × 3 × 5 = 90 sequences (six participants, three

file types, and five datasets). Each sequence is depicted by a horizontal line in Figure 4.19,

where each colored circle denotes a specific operation8 performed by the participant, as

shown in the legend. The x-axis is the operation’s index in the sequence, and y-axis shows

the participant id and the file type. For instance, R.u1 refers to the first participant (u1)

and the task is to transform the raw file (R) into the target file.

As shown in Figure 4.19, participants took more operations to transform the raw file (if

no failure occurred) as opposed to extracted files using Datamaran and RecordBreaker.

This verifies the usefulness of automated extraction tools. Furthermore, participants always

took the least number of steps to reach the target file T when using Datamaran, with

no failure. On the contrary, they were often unable to transform the raw file R and the

extracted file using RecordBreaker B, as shown in Figure 4.19(b,d-e). This occurred mostly

8We ignore the simple operations like Delete, Copy, Paste.

68

Figure 4.19: Sequence of Operations for Transformation

when the records span multiple-lines and when the dataset is noisy. Next, we will discuss

the findings for each dataset briefly. More details can be found in our technical report [42].

Dataset 1 is a single-line dataset, and the extraction results of both RecordBreaker and

Datamaran are much better structured than the raw file. Compared to R and B, A took

the smallest number of steps in order to be transformed to T , as illustrated in Figure 4.19(a).

When it comes to multi-line record datasets, i.e., datasets 2-5, Datamaran exhibits a much

more substantial advantage over RecordBreaker and the raw file. First, when there is noise or

incomplete records in the dataset (dataset 4 and 5), participants needed to either manually

filter the incomplete records one by one, or write some sophisticated code to remove the noise

and reconstruct the records. This step is often laborious or hard to implement. Second,

RecordBreaker treats each single line as a record unit, and would recognize each line as a

different structure, which are then stored into different files. Hence, the participants often

found themselves losing context for reconstructing the records when each record spanned

multiple files. As a consequence, participants often failed to transform B and R into T after

some trials, as shown by the black circles in Figure 4.19(b,d-e). Due to the context missing in

B, participants could only figure out that they failed to reconstruct the rows after a number

of operations, as illustrated in Figure 4.19(e).

The major findings from Figure 4.19 are summarized as follows:

(a) Starting from the extracted results of RecordBreaker/Datamaran helps the participant

”fast-forward” to the desired target structure, compared to the raw file R.

(b) The extracted results of Datamaran are already in a very fine-grained clean format,

requiring very simple operations, i.e., Concatenate or FlashFill, to concatenate the fine-

grained results to the most desirable target format T .

(c) For multi-line datasets, it is hard to obtain information from both the raw file R and the

69

results of RecordBreaker B, as evidenced by the failure (black circle) in Figure 4.19.

Survey and Interview

Most participants (5/6) reported that A (Datamaran) is very easy to use, requiring

only merging (i.e., Concatenate and FlashFill) and deleting operations most of the time.

But some participants also complained that A still requires a bunch of manual work, like

repeating Concatenate. This is because the extracted result of Datamaran is very fine-

grained. The large number of repeating operations on Concatenate or FlashFill is captured

in Figure 4.19(d). On the other hand, all participants (6/6) complained that the raw file

is hard to begin with, since it looks messy and is difficult to find the pattern inside. In

addition, participants were not satisfied with the extracted results by RecordBreaker, since

they were annoyed by the multi-file and multi-line merge operations like Offset. On average,

participants rated the difficulty of performing transformation from A, B, and R to T as 1.8,

7.8, and 9.3 respectively, where 1 indicates the easiest and 10 indicates the most difficult.

In particular, one participant (u4) said the following-“For A, it is ready to use, involving

mostly merge and delete operations. For B, there is lots of extra operations. It’s hard to

carefully use Offset to merge lines and merging across rows could be painful and error prone.

For R, it is impossible to do manually. I prefer to write code, but need to make sure the

code is bug free.” Another participant (u6) said the following–“No major difficulty for A.

Each row corresponds to exactly one record. For B, there is information lost during pro-

cessing, hard (impossible?) to join disparate partially processed items together. R requires

significant manual effort to identify anomalous records before automatic techniques can be

applied to put data in structured format.” There were also some limitations identified for

Datamaran (A). One participant (u1) said the following–“For A, it only involves single

file operators, easier to track, but still a lot of manual work. For B, it requires cross file

operations, difficult to track, and sometimes you end up choosing sub-optimal operations.

For R, it is unstructured, need to create tuple using Offset first, most laborious among the

three.”

Summary: All participants ranked the extracted results by Datamaran (A) easiest to

use, and the raw file R most difficult to use. This is mostly because the structure in the

raw file is unclear, while Datamaran provides very clear structure. From the user study,

we conclude that Datamaran has better extraction result than RecordBreaker, and both

tools are a better starting point than the raw file.

Limitations: However, since our user study is limited to the comparison between two auto-

mated structure extraction tools, i.e., Datamaran and RecordBreaker, and one supervised

70

extraction feature in Microsoft Excel, i.e., FlashFill, it remains to be seen whether unsuper-

vised tools can perform comparably well as other more advanced supervised tools. Also, the

many concatenate operations (e.g., assembling IPs from fragments) can be tedious. For such

domain-specific data types. Datamaran should be enhanced with type awareness (e.g., for

phone numbers, IPs, URLs).

4.9 BIBLIOGRAPHICAL NOTES

Datamaran is related to the vast bodies of work on general information extraction, as well

as the more limited work on log dataset extraction, and string transformation. Sarawagi [43]

provides an excellent summary of the information extraction area.

Example-Driven HTML Wrapper Induction. There has been a long line of work on

inducing or learning a “wrapper” to extract content from HTML pages, e.g., [44, 30, 45, 46,

47, 29]. The majority of these papers crucially rely on both the web-page structure in the

form of the DOM, as well as on text (e.g., extract the piece of text immediately following

“Price:”). Examples are provided in the form of entities that belong to the concept class

that are to be extracted, or in the form of explicit annotations (e.g., this location contains an

item of interest to be extracted). Often, the eventual relational schema is known in advance.

Some papers do not rely on the HTML structure, opting instead to use NLP [48, 49]. In our

case, we do not require any seed entities or annotations.

Unsupervised HTML Wrapper Induction. A few papers attempt to extract from

HTML pages directly, without requiring any training examples [50, 51, 52, 53, 54, 55, 56].

In the following, we discuss the core ideas of these papers and explain why their ideas cannot

be applied to log datasets without substantial modification.

First, we briefly summarize the contents of these papers as follows:

• Roadrunner [51] takes a collection of HTML pages as input, and the output of their

algorithm is a minimal union-free regular expression that generates all the pages in the

collection. Their algorithm repeatedly applies pairwise reduction on each page and the

current template to reduce all of them into a single regular expression.

• ExAlg [50] takes a collection of HTML pages as input, and their output is a minimal

page template (which also has tree-style form and is very similar to union-free regular

expression). Their algorithm relies on the idea of using equivalence classes (i.e., sets of

tokens that appear exactly the same number of times in each page) to identify tokens

71

that have the same role in the template. Additionally, tree structures are used to

differentiate multiple roles of the same type of tokens.

• TEX [53, 52] takes a collection of documents as input, and their output is a collection

of field value lists. Their algorithm works by searching for the longest shared pattern

among all documents in the collection, and this shared pattern is then used to partition

the documents in the collection to create finer grained collections (on which their

algorithm can be applied recursively). Their algorithm does not guarantee that all

the field values of the same type will be included in a single list, and their lists can

also have different sizes. As a result, their output cannot be easily converted into a

relational format.

• MDR [54, 55] takes a single HTML page as input, and identifies boundaries of data

records as well as the record templates for each record type within that HTML page.

Their algorithm first identifies several data regions, such that each data region contains

exactly one type of record and no noise. Then it identifies record boundaries and data

fields using tree alignment. A data region is identified by enumerating the region

boundary and the span of each “generalized node” (i.e., the number of tag nodes each

such generalized node contains).

• FiVaTech [56] takes a collection of HTML pages as input, and uses tree alignment

to find the optimal template that generates all pages in the collection.

From the above descriptions, we can see that there are primarily five major techniques

used in these papers, and each of them rely on some characteristics of HTML pages that do

not exist in log datasets:

• Equivalence Class Identification. Equivalence classes are sets of tokens that appear

exactly the same number of times in each document. Finding such equivalence classes

requires the input to be a collection of documents to begin with. However, a log

dataset is initially one single document, and we need to know at least a subset of actual

record boundaries in order to partition the log dataset into a collection of documents.

Furthermore, the equivalence class technique requires each document in the collection

to be noise-free, but most real-world log datasets are very noisy.

• Tree Alignment. A tree alignment method is used to compute the tree template of

multiple tree-style records. Performing tree alignment requires the documents to have

tree-structures to begin with: while tree structures arise naturally from HTML pages,

log datasets do not have tree-structures initially.

72

• Token Role Differentiation. ExAlg [50] relies on the tree-paths of tokens to dif-

ferentiate their roles in the template. This technique requires the documents to have

tree-structures to begin with. Similar to the discussion of “Tree Alignment” technique,

log datasets do not have tree-structure typically.

• Shared Pattern Identification. The implicit assumption in the shared pattern

identification approach is that the collection is “uniform” and noise-free: that is, even

though the structural form of each document in the collection is relatively flexible (e.g.,

“ABB. . . BC”, where A,B,C are record types), all of the documents in the collection

must have exactly the same form (i.e., starting from A, followed by any number of

Bs, and ends with C). Similar to the discussion of “Equivalence Class” technique, log

datasets cannot be easily partitioned into such collections.

• Data Region Identification. Identifying the data region requires the input docu-

ment to actually have multiple data regions, such that within each data region, there

is only one type of “generalized node” and is otherwise noise-free. Note that each

generalized node can contain multiple types of records, but all generalized nodes must

have the same format (e.g., ABABAB. . . is a legitimate data region, in which A and

B are two different types of records, and AB is the generalized node in the region).

Unfortunately, log datasets do not have such a property, since in a log dataset different

types of records can appear in an arbitrary order (e.g., ABAABABB).

Table 4.5 summarizes the techniques used by each method and the assumptions made for

the input documents. The four key assumptions are: (a) Partial Record Boundaries (PRB);

(b) Non-Interleave (NI); (c) Noise-Free9 (NF); (d) Tree-Structure (TS). As we can see, all

these methods make multiple assumptions that do not hold for log datasets, and as a result

there is no easy way to adapt these techniques for log dataset structure extraction.

Method Core Techniques PRB NI NF TS

Roadrunner [51] Tree Alignment Y Y Y Y
ExAlg [50] Equivalence Class & Token Role Y Y Y Y

TEX [53, 52] Shared Pattern Identification Y Y Y N
MDR [54, 55] Data Region & Tree Alignment N Y Partial Y
FiVaTech [56] Tree Alignment Y Y N Y

Table 4.5: Unsupervised Wrapper Induction: Techniques and Assumptions.

However, we remark that it might be possible that some of these techniques can poten-

tially be adapted and integrated into Datamaran to further improve its effectiveness. For

9MDR requires each data region to be noise-free, but noise can appear between data regions.

73

example, a tree alignment technique can be potentially integrated into the generation step

to further enhance recall. We leave the exploration of such possibilities as future work.

Extracting Structure From Other Media. There is work [32, 57, 58, 59] on extract-

ing structure from other types of media (i.e., other than text-formatted log datasets). The

extraction strategies adopted by these papers crucially rely on characteristics of the tar-

get dataset type. For instance, in security research [32, 57], the network traces consist of

continuous communication between server and client, best modeled as a deterministic state

machine (i.e., messages between server and client represent transitions in the global state),

and reliant on indicators that signal the start of a new message, e.g., the presence of an IP

address; in either case, the record boundaries are clear. On the other hand, in the field of

natural language processing [58, 59], the structure is usually restricted to local context (i.e.,

within each sentence), and can be captured using probabilistic language models. In partic-

ular, Cohen et al. [58] employs language models from other languages to learn the structure

of a new language, while Spitkovsky et al. [59] uses clustering based on local context (neigh-

boring words to a given word) to infer dependency structures to inform a sentence parser,

where parsing is delimited based on periods. In our case, the fundamental characteristics

of log datasets are captured in Definition 4.3, and our whole extraction strategy revolves

around this definition.

Extraction from Web Documents. There has been some work on extraction from

other forms of documents, or portions of Web documents, typically leveraging example

concepts [60] or a knowledge-base [61, 62, 63] to extract entities and attributes from text

files.

List extraction, i.e., extraction from lists on the web is another area that has seen some

work [31, 64, 65, 66]. Some of these papers require both the eventual relational schema as

well as candidate examples to be provided [65, 66]. Some papers attempt fully-automated

list extraction [31, 64, 55]. These papers make the crucial assumption of each record corre-

sponding to a single list item, making it easy to extract the boundaries of the records. Our

space of datasets—log files—do not admit any such assumption.

Log Dataset Extraction and Transformation. Wrangler [67] supports the interactive

specification of log dataset cleaning operations, drawing from the transformations in Raman

et al. [68]. Instead of operator specification, other work relies on user-provided input-output

examples [69, 41, 33, 70, 71] to transform one semi-structured dataset to another. In our

case, we do not require any intervention from the user. The PADS project [34] relies on a

user-provided chunker and tokenizer to identify the boundaries of records/field values, while

RecordBreaker is a line-by-line unsupervised implementation, with a fixed lexer configuration

74

which makes it inflexible for real log datasets. Recent work by Raza and Gulwani [72] describe

an automatic text extraction DSL for single-line extraction, generalizing to both web-pages

and text documents.

Other work clusters event logs [73, 74] by treating the lines of the log dataset as data

points and assigning them to clusters. Compared to our work, these papers do not attempt

to identify the structure within records, and they do not consider the possibility of multi-line

records.

4.10 CONCLUSION

The structure hypothesis space design in Datamaran represents a careful balance be-

tween learnability and utility: note that Fisher et al.’s work [34] already includes a tree-style

structure that is very similar to Assumption 4.1. However, the crucial difference is that we

removed the union-type node from Fisher’s original design, which significantly reduced the

complexity of the structure hypothesis space. In our experiments, we have seen that Fisher’s

original structure design not only caused a severe learnability issue (the extraction algorithm

described in [34] does not really work for complex structures based on our experiments), but

also makes it difficult to import the contents into relational format. On the other hand, the

removal of union-type structure does not really hinder the effectiveness of our method, and

the procedure for importing data into relational format also becomes much more natural as

a result.

Even though the assumptions in Datamaran, especially Assumption 4.3, may seem too

restrictive, they are still an acceptable compromise we came up with to work around the

difficulties, and they actually do not hinder the algorithm’s utility by too much. For most

real-world log datasets, there are more than one valid structure template that can be used

for parsing the dataset, and among all the valid structure templates, usually at least one of

them would satisfy both assumptions. Therefore, Datamaran can still work effectively as

long as it can find one structure template that satisfies all assumptions.

75

Algorithm 4.1 The Generation Step
function GenST(char set)

n← Total Number of Lines
for i← 1 to n do

for j ← i+ 1 to i+ L do
5: left boundary ← i

right boundary ← j
r ← ExtractRecord(left boundary, right boundary)
rt← ExtractRecordTemplate(r, char set)
st← GenerateStructureTemplate(rt)

10: k ← ComputeHashKey(st)
cov(k)← cov(k) + length(r)
st set(k)← st set(k) ∪ {r}

end for
end for

15: Find all hash keys with more than α% coverage.
return the associated structure templates.

end function
function ExhaustiveSearch(char candidates)

ST set← ∅
20: for char set ⊆ char candidates do

ST set← ST set ∪GenST(char set)
end for
return ST set

end function
25: function GreedySearch(char candidates)

char set← ∅
ST set← ∅
repeat

new best char set← ∅
30: best f ← 0

for c ∈ char candidates \ char set do
new char set← char set+ c
new ST set← GenST(new char set)
ST set← ST set ∪ new ST set

35: for st ∈ new ST set do
if AssScore(st) > best score then

best score← AssScore(st)
new best char set← new char set

end if
40: end for

end for
char set← new best char set

until no structure template has at least α% coverage
return ST set

45: end function

76

Algorithm 4.2 The MDL Regularity Score Function
function EvalST(ST)

(RecordBlocks,NoiseBlocks)← ParseData(ST)
Determine the data types of field values
Learn the distributional parameters

5: TotalDL← len(ST)× 8 + 32 +NumBlocks
for record ∈ RecordBlocks do

RT ← GetRecordTemplate(record)
TotalDL← TotalDL+D(RT |ST)
TotalDL← TotalDL+D(record|RT)

10: end for
for block ∈ NoiseBlocks do

TotalDL← TotalDL+ len(block)× 8
end for
return TotalDL

15: end function

77

CHAPTER 5: EXTRACTING STRUCTURE FOR INSIGHT DISCOVERY

Relational datasets often have missing values encoded as NULLs. Filling in such NULL

values can greatly enhance the completeness of the dataset, and also provide insights into

missing entries that are impossible to observe (e.g., due to the limitations of data gathering,

or because they represent hypothetical scenarios). Unfortunately, most existing work on

predicting missing values target specific scenarios (e.g., the dataset contains only a single

table [75], or has a star-style schema [76]), and there aren’t many papers investigating the

design of generic algorithmic procedure for arbitrary relational datasets. In practice, data

analysts usually start by identifying the core characteristics of the target dataset, and then

design a specialized algorithm that utilizes the identified characteristics: for example, if we

want to predict the missing entries of social network user profiles, we can rely the fact that

people connected with each other in the network usually have similar ages, live in the same

place, or share some other similarities. This can indicate to the designer how the dataset and

prediction task must be constructed. While such a strategy often works extremely well in

general, it requires the algorithm designer to have both a good understanding of the dataset

semantics, as well as the knowledge of various prediction techniques developed in literature,

so that they can adapt suitable ones for the task at hand.

A good prediction algorithm that works over a collection of arbitrary relational datasets

can serve as an affordable alternative to the specialized prediction algorithm developed by

professional data analysts. It can be useful in scenarios that demand automation at the cost

of slightly reduced accuracy (e.g., for performing an exploratory investigation on external

datasets in a collaborative research scenario). However, the development of such an algorithm

is much more challenging, due to the fact that the characteristics of datasets are unknown to

the prediction algorithm. It is immediately clear that a hidden-structure extraction phase is

necessary for such an algorithm, and there are two separate but equally important challenges

for designing this prediction algorithm:

• How do we evaluate the quality and trustworthiness of predictions? As

the hidden structure extraction step operates in an automated fashion, sometimes the

algorithm will not be able to discover any meaningful structure, and the predictions

will have low accuracy as a result. In such a case, it is important to inform the users

so that they are aware of the situation. In other words, the algorithm should be able

to evaluate the reliability of predictions, and quantify it in a meaningful manner.

• What are the hidden structures that are capable of capturing important

characteristics for helping with the prediction task? In order to choose a

78

good structure hypothesis space for a hidden-structure based algorithm, we need to

first summarize the dataset characteristics that are potentially useful for our purpose.

However, this step is not very straightforward as we are considering the input space

of all possible relational datasets (which can have arbitrarily complex schema). There

are simply too many possibilities one can think of: for instance, while correlation

often happen between attributes within the same tuple, in the previously mentioned

social network prediction task, correlations occur between attributes of different tuples.

Because of the extreme flexibility of relational data model, summarizing the most

prevalent and essential characteristics of datasets is often challenging.

These two challenges will be discussed separately in the rest of this chapter: in Section 5.1,

we introduce the calibration property of conditional probability estimates, and discuss how

to obtain such a property in practice; in Section 5.2, we discuss three major approaches

for relational learning in literature (i.e., methods that data analysts have employed for

specific tasks in the past), and generalize them to handle relational datasets with arbitrary

schema. After discussing these two challenges, we will present several experimental results

in Section 5.3, which can help us understand and evaluate the pros and cons of the prototype

methods.

5.1 THE CALIBRATION PROPERTY OF CONDITIONAL PROBABILITIES

Recall that our goal is to design a fully automated prediction algorithm for an arbitrary

relational dataset: regardless of what kind of input dataset we are given, our algorithm

should always be able to output predictions for the missing entries within such a dataset.

Obviously, depending on the nature of the dataset as well as the prediction method that we

use, the confidence level of our predictions could be drastically different from instance to

instance: sometimes we may be fairly certain about our predictions, while in other cases we

can be simply making wild guesses. Due to this, the ability to evaluate the confidence level

of predictions and quantify it in a meaningful manner is of crucial importance.

One possible approach is to designate a separate validation dataset before all the train-

ing and prediction procedures begin, and use it to provide global statistics: accuracy/F1

score/Mean Squared Error (MSE), etc. While such global statistics do offer important in-

sights into the reliability of our predictions, these statistics are not exactly ideal in the sense

that they only report “averaged” reliability over all of our predictions. In practice, the pre-

dictions usually do not have uniform confidence levels: we might be fairly certain about some

of the predictions, while entirely unsure about others. If we can quantify our confidence level

79

on a per-item basis, it could enable much more flexible use of our predictions: users could

utilize only the predictions with a high confidence level, while disregarding the others.

Conditional Probabilities and The Calibration Property

The conditional probabilities of labels are often viewed as a convenient tool for assessing

the per-item confidence level: for each missing entry in the dataset, we require the algorithm

to predict not only the most probable value, but also the likelihood of every value appearing

in that slot. The prediction of conditional probabilities has been extensively studied in

the literature, and most existing machine learning algorithms either naturally (e.g., logistic

regression, neural networks) or can be tuned to provide conditional probabilities as well

(e.g., SVM [77], decision tree [78] or nearest neighbor). Unfortunately, while the accuracy

of global statistics is naturally guaranteed by the law of large numbers, the conditional

probability estimates do not naturally enjoy such formal guarantees. In other words, while

our algorithm can provide conditional probabilities as the assessments of confidence levels

for our predictions, such assessments can be completely unreliable and their usefulness is

severely compromised as a result.

Now, one may wonder whether it is possible to achieve any formal guarantee(s) regarding

conditional probabilities (similar to how the reliability of global statistics is guaranteed by

the law of large numbers)? To answer this question, we provide some preliminary results

for properly interpreting the confidence measures generated by conditional probability esti-

mators [6]. Clearly, it would be ideal if the predicted conditional probabilities are accurate

on a per-item basis (i.e., the predicted probability equals to the true value according to

the underlying generative model), but unfortunately, this has been proven to be impossible

in agnostic scenarios [6], wherein we are unaware of the exact semantics of data entries in

a dataset. However, it is still possible to guarantee a certain calibration property for the

conditional probability estimates, defined as follows:

Definition 5.1 (Calibration Property). A supervised classification task is characterized by

four elements: the feature space X , the finite target set Y, the data generation distribution P
over X × Y, and a training dataset D = {(x1, y1), . . . , (xn, yn)} consisting of i.i.d. samples

from P. A conditional probability estimator f : X × Y → [0, 1] estimates the value of

Pr(Y |X), the conditional distribution of Y given X, for each feature-target pair.

Let f : X ×Y → [0, 1] be one such conditional probability estimator, we say f is (perfectly)

calibrated with respect to P if for any probability interval (p1, p2] (p1, p2 ∈ [0, 1]) and any

target value y0 ∈ Y, the estimated relative frequency of attribute value y0 among all data

instances satisfying p1 < f(X, y0) ≤ p2 is equal to the actual relative frequency of y0 among

80

these data instances:

∀p1, p2 ∈ [0, 1], y0 ∈ Y , E(X,Y)∼P [f(X, y0)1p1<f(X,y0)≤p2] = E(X,Y)∼P [1Y=y01p1<f(X,y0)≤p2]

(5.1)

and we say f is (perfectly) calibrated with respect to a dataset D if

∀p1, p2 ∈ [0, 1], y0 ∈ Y ,
1

n

n∑
i=1

f(xi, y0)1p1<f(xi,y0)≤p2 =
1

n

n∑
i=1

1yi=y01p1<f(xi,y0)≤p2 (5.2)

When f is not perfectly calibrated, the supreme of differences between the two quantities

in the above equation is called the calibration error of f with respect to the distribution P or

the dataset D:

cP (f) = sup
p1,p2,y0

|E(X,Y)∼P [f(X, y0)1p1<f(X,y0)≤p2]− E(X,Y)∼P [1Y=y01p1<f(X,y0)≤p2]| (5.3)

cD(f) = sup
p1,p2,y0

| 1
n

n∑
i=1

f(xi, y0)1p1<f(xi,y0)≤p2 −
1

n

n∑
i=1

1yi=y01p1<f(xi,y0)≤p2| (5.4)

Intuitively, f has the calibration property if for any probability value p and target value

y0, if we consider all data points X satisfying f(Y = y0|X) = p, then exactly p portion of

them would actually have label y0. In other words, f does not have to agree with the true

conditional probabilities Pr(Y |X) on every item, as long as they agree on average within

each respective group (i.e., items with the same prediction value).

The Motivation of the Calibration Property

To motivate the calibration property, let us consider the following example:

Example 5.1. Denote Z to be the collection of all English words. In this problem the feature

space X = Z∗ is the collection of all possible word sequences, and Y denotes whether this

document belongs to a certain topic (say, football). Let P be the following data generation

process: X is generate from the Latent Dirichlet Allocation model [79], and Y is chosen

randomly according to the topic mixture.

We use logistic regression for computing the conditional probability of each label Y , which

is parameterized by a weight function wY : Z → R, and two additional parameters aY and

bY . For each document X = z1z2 . . . zk, the output of the conditional probability estimator

is:

f(X, Y) =
1

1 + exp(−a
∑k

i=1w(zi)− b)
(5.5)

81

Now consider the case where we fix the word weight function wY . In this case, every

document X can be represented using a single parameter wY (X) =
∑

iw(zi), and we search

for the optimal aY and bY such that the log-likelihood is maximized. This is illustrated in

Figure 5.1.

Figure 5.1: Example 5.1 with Fixed Word Weight

Intuitively, to maximize the log-likelihood, we need the sigmoid function (1+exp(−aYwY (X)−
bY))−1 to match the conditional probability of Y conditioned on w(X): P(Y |wY (X)). There-

fore, for the optimal aY and bY , we could say that the following property is roughly correct:

P(Y |wY (X)) ≈ 1

1 + exp(−aYwY (X)− bY)
(5.6)

In other words,

∀0 ≤ p ≤ 1,E[P(Y |X)|f(X, Y) = p] ≈ p (5.7)

Let us examine this example more closely. The reason why the logistic regression classifier

tells us that f(X, Y) ≈ p is because of the following: among all the documents with similar

weight wY (X), about p portion of them actually belong to the topic in the training dataset.

This leads to an important observation: logistic regression classifiers estimate the conditional

probabilities by computing the relative frequency of labels among documents it believes to

be similar. Furthermore, this behavior is not unique to logistic regression. Many other

algorithms, including decision tree classifiers, nearest neighbor (NN) classifiers, and neural

networks, exhibit similar behavior:

82

• In decision trees, all the data points reaching the same decision leaf are considered

similar.

• In NN classifiers, all the data points with the same nearest neighbors are considered

similar.

• In neural networks, all the data points reaching the same output layer values are

considered similar.

We can abstract the above conditional probability estimators as the following two-step

process:

1. Partition the feature space X into several regions.

2. Estimate the relative frequency of labels among all data points inside each region.

The definition of the calibration property follows easily from the above two-step process.

We can argue that the classifier is approximately calibrated, if for each region S in the feature

space X , the output conditional probability of data points in S is close to the actual relative

frequency of labels in S. The definition for the calibration property then follows from the

fact that all data points inside each region have the same output conditional probabilities:

∀p1 < p2, Y ∈ Y , P(Y |p1 < f(X, Y) ≤ p2) = EX∼P [f(X)|p1 < f(X, Y) ≤ p2] (5.8)

The Uniform Convergence Result

Let G be a collection of functions from X ×Y to [0, 1], the Rademacher Complexity [80]1

of G with respect to D is defined as [81]:

RD(G) =
1

n
Eσ∼{±1}n [sup

g∈G

n∑
i=1

σig(Xi, Yi)] (5.9)

Then regarding the calibration property, we have the following result:

Theorem 5.1. Let F be a set of conditional probability estimators (i.e., functions from

X ,Y to [0, 1]). Let H be the set of binary classifiers obtained by thresholding the output of

functions in F :

H = {1p1<f(X,y)≤p2 : p1, p2 ∈ R, y ∈ Y , f ∈ F} (5.10)

1Our definition of Rademacher Complexity comes from Shalev-Shwartz and Ben-David’s textbook [81],
which is slightly different from the original definition in Bartlett and Mendelson’s paper [80].

83

Suppose the Rademacher Complexity of H satisfies:

2EDRD(H) +

√
2 ln(8/δ)

n
<
ε

2
(5.11)

Then,

PrD(sup
f∈F
|cP(f)− cD(f)| > ε) < δ (5.12)

Proof. We will use the following uniform convergence result [81]:

Theorem 5.2 (Uniform Convergence of Functions [81]). Let D be i.i.d. samples of (X ×
Y ,P), then with probability at least 1− δ,

sup
g∈G
| 1
n

n∑
i=1

g(Xi, Yi)− Eg(X, Y)| ≤ 2EDRD(G) +

√
2 ln(4/δ)

n
(5.13)

In the following we sometimes allow G to be a collection of functions from X to [0, 1] in

the above results. When used in this sense, we assume that the function will not use y label:

g(x, y) = g(x).

Define FD,p1,p2,y(f) to be the relative frequency of event {p1 < f(X, y) ≤ p2, Y = y}:

FD,p1,p2,y(f) =
1

n

n∑
i=1

1p1<f(Xi)≤p2,Yi=y (5.14)

Define FP,p1,p2,y(f) to be the probability of the same event:

FP,p1,p2,y(f) = P(p1 < f(X, y) ≤ p2, Y = y) (5.15)

Define ED,p1,p2,y(f) as the empirical expectation of f(X, y)1p1<f(X,y)≤p2 :

ED,p1,p2,y(f) =
1

n

n∑
i=1

f(Xi, y)1p1<f(Xi,y)≤p2 (5.16)

Define EP,p1,p2,y(f) as the expectation of the same function:

EP,p1,p2,y(f) = E[f(X, y)1p1<f(X,y)≤p2] (5.17)

When the context is clear, subscripts p1, p2 and y can be dropped. Using this notation,

84

we can rewrite cP(f) and cD(f) as follows:

cP(f) = sup
p1,p2,y

|FP(f)− EP(f)| cD(f) = sup
p1,p2,y

|FD(f)− ED(f)| (5.18)

Note that:

| sup
p1,p2,y

|FD(f)− ED(f)| − sup
p1,p2,y

|FS(f)− ES(f)||

≤ sup
p1,p2,y

||FD(f)− ED(f)| − |FS(f)− ES(f)||

≤ sup
p1,p2,y

|FD(f)− ED(f)−FS(f) + ES(f)|

≤ sup
p1,p2,y

(|FD(f)−FS(f)|+ |ED(f)− ES(f)|)

≤ sup
p1,p2,y

|FD(f)−FS(f)|+ sup
p1,p2,y

|ED(f)− ES(f)| (5.19)

Therefore it suffices to show that

P(sup
f,p1,p2,y

|FD(f)−FS(f)|+ sup
f,p1,p2,y

|ED(f)− ES(f)| > ε) < δ (5.20)

Define

H1 = {1p1<f(X,y)≤p2,Y=y : p1, p2 ∈ R, y ∈ Y , f ∈ F} (5.21)

H2 = {f(X, y)1p1<f(X,y)≤p2 : p1, p2 ∈ R, y ∈ Y , f ∈ F} (5.22)

Then we have the following lemma:

Lemma 5.1. Let H1,H2 as defined above, then:

RD(H1) ≤ RD(H) RD(H2) ≤ RD(H) (5.23)

Proof. For RD(H1), we have:

RD(H1) =
1

n
Eσ∼{±1}n [sup

p1,p2,y,f

n∑
i=1

σi1p1<f(Xi,y)≤p2,Yi=y] (5.24)

We can replace 1Yi=y with EZi∈{±1}max(Zi, 21Yi=y − 1):

RD(H1) =
1

n
Eσ∼{±1}n [sup

p1,p2,y,f

n∑
i=1

σi1p1<f(Xi,y)≤p2EZi∈{±1}max(Zi, 21Yi=y − 1)] (5.25)

85

Move the expectation over Z out of the supremum operator, we have:

RD(H1) ≤ 1

n
Eσ∼{±1}n,Z∈{±1}[sup

p1,p2,y,f

n∑
i=1

1p1<f(Xi)≤p2σi max(Zi, 21Yi=y − 1)] (5.26)

Now define Ti = σi max(Zi, 21Yi=y − 1), then

RD(H1) ≤ 1

n
EZ∈{±1}Eσ∼{±1}n [sup

p1,p2,y,f

n∑
i=1

1p1<f(Xi)≤p2Ti] (5.27)

Note that Ti is always uniformly distributed over {±1}, which is independent of Zi and Yi.

Therefore,

RD(H1) ≤ 1

n
ET∼{±1}n [sup

p1,p2,y,f

n∑
i=1

1p1<f(Xi,y)≤p2Ti] = RD(H) (5.28)

For RD(H2), we have:

RD(H2) =
1

n
Eσ∼{±1}n [sup

p1,p2,y,f

n∑
i=1

σif(Xi, y)1p1<f(Xi,y)≤p2] (5.29)

Replace f(Xi, y) with
∫ 1

0
1t<f(Xi,y)dt, we have

RD(H2) =
1

n
Eσ∼{±1}n [sup

p1,p2,y,f

∫ 1

0

n∑
i=1

σi1t<f(Xi,y)1p1<f(Xi,y)≤p2dt] (5.30)

Move the integral out of the supremum operator, we have:

RD(H2) ≤ 1

n
Eσ∼{±1}n

∫ 1

0

[sup
p1,p2,y,f

n∑
i=1

σi1max(p1,t)<f(Xi,y)≤p2]dt (5.31)

Define p′1 = max(t, p1), then we have:

RD(H2) ≤ 1

n
Eσ∼{±1}n

∫ 1

0

[sup
p′1≥t,p2,y,f

n∑
i=1

σi1p′1<f(Xi,y)≤p2]dt (5.32)

Remove the restriction over p′1:

RD(H2) ≤ 1

n
Eσ∼{±1}n

∫ 1

0

[sup
p′1,p2,y,f

n∑
i=1

σi1p′1<f(Xi,y)≤p2]dt (5.33)

Now the expression inside the bracket no longer depends on the value of t, therefore we

86

conclude:

RD(H2) ≤ 1

n
Eσ∼{±1}n [sup

p′1,p2,y,f

n∑
i=1

σi1p′1<f(Xi,y)≤p2] = RD(H) (5.34)

Combining this lemma with the assumptions in the theorem:

EDRD(H1) +

√
2 ln(8/δ)

n
<
ε

2
EDRD(H2) +

√
2 ln(8/δ)

n
<
ε

2
(5.35)

By Equation (5.13):

P(sup
f,y,p1,p2

|FD(f)−FS(f)| > ε

2
) <

δ

2
P(sup

f,y,p1,p2

|ED(f)− ES(f)| > ε

2
) <

δ

2
(5.36)

In Theorem 5.1,H is the collection of binary classifiers obtained by thresholding the output

of condtional probability estimators in F . For many hypothesis classes F , the Rademacher

Complexity of H can be naturally bounded. For instance, if F is the d-dimensional gen-

eralized linear classifiers with monotone link function, then EDRD(H) can be bounded by

O(
√
d log n/n).

Verifying the Calibration Property

The first application of Theorem 5.1 is that we can verify whether the learned classifier

f is calibrated. For simple hypothesis classes F (e.g., logistic regression), the corresponding

hypothesis space H has low Rademacher Complexity. In this case, Theorem 5.1 naturally

guarantees the generalization of calibration measure.

There are also cases where the Rademacher Complexity of H is not small. One notable

example is SVM classifiers with Platt Scaling [77]. In the case of SVM, the dimensionality of

the feature space is usually much larger than the training dataset size (this is especially true

for kernel SVM). In such situation, we can no longer verify the calibration property using

only the training data, and a separate validation dataset is needed to calibrate the classifier

(as suggested by Platt [77]). When verifying the calibration of a classifier on a validation

dataset, we have the following result:

Claim 5.1. Let f be any conditional probability estimator, and D be a validation dataset

87

consisting of i.i.d. samples from P (i.e., D is not used when training f), then:

Pr(cP(f) ≤ cD(f) +

√
ln 2

δ

2n
) ≥ 1− δ (5.37)

Pr(cP(f) ≥ cD(f)− [16
√

2π · |Y|+ 2

√
2 ln

8

δ
]

√
1

n
) ≥ 1− δ (5.38)

Proof. We first prove the first inequality. Since D consists of i.i.d. samples from P , for any

p1, p2, y, we have the following:

EX∼P [1p1<f(X,y)≤p2f(X, y)]− P(p1 < f(X, y) ≤ p2, Y = y)

=ED
1

n

n∑
i=1

1p1<f(Xi,y)≤p2 [f(Xi, y)− 1Yi=y] (5.39)

Therefore, by Hoeffdding’s inequality, with probability 1− δ:

| 1
n

n∑
i=1

1p1<f(Xi,y)≤p2 [f(Xi, y)− 1Yi=y]

−EX∼P [1p1<f(X,y)≤p2f(X, y)] + P(p1 < f(X, y) ≤ p2, Y = y)| ≤

√
ln 2

δ

2n
(5.40)

Thus with probability 1− δ,

| 1
n

n∑
i=1

1p1<f(Xi,y)≤p2 [f(Xi, y)− 1Yi=y]|

≥|EX∼P [1p1<f(X,y)≤p2f(X, y)]− P(p1 < f(X, y) ≤ p2, Y = y)| −

√
ln 2

δ

2n
(5.41)

For any ε > 0, we can choose p1, p2 and y such that

|EX∼P [1p1<f(X,y)≤p2f(X, y)]− P(p1 < f(X, y) ≤ p2, Y = y)| > cP(f)− ε (5.42)

Then with probability 1− δ,

cD(f) ≥ | 1
n

n∑
i=1

1p1<f(Xi,y)≤p2 [f(Xi, y)− 1Yi=y]| > cP(f)− ε−

√
ln 2

δ

2n
(5.43)

Since ε can be any positive real number, the desired result follows immediately.

88

To prove the second inequality, by Theorem 5.1, it suffices to show that

∀D,RD(H) ≤
√

32π

n
|Y| (5.44)

for F = {f}. Now for each y ∈ Y , define the ρy(i) to be the permutation of {1, . . . , n}
satisfying f(xρy(1), y) ≤ f(xρy(2), y) ≤ . . . ≤ f(xρy(n), y). Then we have,

RD(H) =
1

n
Eσ sup

p1,p2,y
|

n∑
i=1

1p1<f(xi,y)≤p2σi| ≤
1

n
Eσ max

y,a,b
|
∑
a<i≤b

σρy(i)| (5.45)

Denote Sy(i) =
∑

j≤i σρy(j), then Sy is a simple one-dimensional random walk, by the reflec-

tion principle of symmetric random walk [82], we have:

∀C ≥ 0,Pr(sup
i
|Sy(i)| > C) ≤ 2Pr(|Sy(n)| > C) (5.46)

Therefore,

Eσ[sup
i,j,y
|Sy(i)− Sy(j)|] ≤ 2Eσ[sup

i,y
|Sy(i)|] ≤ 4Eσ sup

y
|Sy(n)| (5.47)

By Hoeffding’s inequality,

∀C ≥ 0, y ∈ Y , Pr(|Sy(n)| ≥ C
√
n) ≤ 2 exp(−1

2
C2) (5.48)

Therefore,

∀C ≥ 0, Pr(sup
y
|Sy(n)| ≥ C

√
n) ≤ 2 exp(−1

2
C2)|Y| (5.49)

Thus,

RD(H) ≤ 4

n
Eσ sup

y
|Sy(n)| =

√
16

n

∫ ∞
0

Pr(|Sn| ≥ x
√
n)dx

≤
√

64

n
|Y|

∫ ∞
0

e−
1
2
x2dx =

√
32π

n
|Y| (5.50)

Obtaining Calibrated Conditional Probabilities

Suppose that for each label y ∈ Y , we are given an uncalibrated conditional probability

estimator fy : X → [0, 1], and we want to find a function gy : [0, 1] → [0, 1], so that

gy ◦ fy presents a better conditional probability estimation. This is the problem of classifier

calibration, which has been studied in many papers [83, 77].

89

Traditionally, calibration algorithms find the best link function gy by maximizing likelihood

or minimizing squared loss. In this chapter, we suggest a different approach to the calibration

problem. We can find the best gy by minimizing the calibration measure2 cD,y(gy ◦ fy)
with respect to the validation dataset. Let us assume w.l.o.g. that the validation dataset

D = {(x1, y1), . . . , (xn, yn)} satisfies fy(x1) ≤ . . . ≤ fy(xn) and that gy is monotonically

nondecreasing. Then we have,

cD,y(gy ◦ fy, D) =
1

n
sup
p1,p2

|
n∑
i=1

1p1<gy(fy(xi))≤p2(1yi=y − gy(fy(xi)))|

≤ 1

n
max
a,b
|
∑
a<i≤b

(1yi=y − gy(fy(xi)))| (5.51)

This expression can be used as the objective function for calibration: we search over the

space of hypothesis G to find a function gy that minimizes this objective function. Compared

to other loss functions, the benefits of minimizing this objective function is that the resulting

classifier is more likely to be calibrated, and therefore provides more interpretable conditional

probability estimates. In fact, one of the most well-known calibration algorithms, the isotonic

regression algorithm (Algorithm 5.1), can be viewed as minimizing this objective function

(proof can be found in [6]):

Claim 5.2. Let G be the set of all continuous nondecreasing functions from [0, 1] to [0, 1].

Then the optimal solution found by the isotonic regression algorithm (Algorithm 5.1) not

only minimizes the squared loss

L2(gy) =
n∑
i=1

(1yi=y − gy(fy(xi)))2 (5.52)

as shown in [84], but also minimizes

Lc(gy) = max
a,b
|
∑
a<i≤b

(1yi=y − gy(fy(xi)))| (5.53)

Usefulness of the Calibration Property

Although we have shown that it is possible to obtain calibrated conditional probabilities as

assessments for confidence levels, it is not immediately clear why calibrated conditional prob-

abilities would be more useful to users than uncalibrated ones in practice. To demonstrate

2Although cD is originally defined w.r.t. all labels, it is also possible to define the calibration w.r.t.
specific label y, we omit the detailed definition here for simplicity.

90

Algorithm 5.1 Isotonic Regression Calibration (PAV Algorithm) [84]

1. Order the data points so that fy(x1) ≤ fy(x2) ≤ . . . ≤ fy(xn)

2. For i = 0, . . . , n, Compute Pi = (i, Si =
∑

j≤i 1yj=y)

3. Let cv(P) be the lower boundary of the convex hull of the set of points Pi
Remark: Implementing this step using the Graham’s algorithm [85] would result
in the exact same algorithmic procedure as in [84].

4. For i = 0, . . . , n, Let Zi = intersection of cv(P) and the line x = i

5. Compute zi = Zi − Zi−1

6. Let gy(fy(xi)) = zi, extrapolate these points to get continuous nondecreasing function
gy.

the usefulness of calibration property, let us consider the following example scenario:

Example 5.2. Suppose that we have a list of residents and a product, the prediction algo-

rithm (trained using the history of purchase activities) has predicted the calibrated conditional

probabilities of each resident buying our product (if we dispatch a salesperson). Obviously,

the strategy to maximize our profit while minimizing the cost is to send the salesperson only

to residents with relatively high probability of buying.

Now the question is: how to decide the optimal threshold probability value for whether to

send the salesperson or not? Without the calibration property, it can be hard to answer

such question. However, with the calibration property, the answer is simple: we should only

send the salesperson to residents with the purchasing probability greater than p, where p is

defined as:

p =
the cost of sending the salesperson

the profit of each sale
(5.54)

To see this, note that since the conditional probabilities are calibrated, we can reliably

estimate the expected number of people actually buying our product once we send the

salesperson (denoted as Sp) using the following formula:

Sp =
∑

r∈residents

Pr(buying|r)1Pr(buying|r)>p (5.55)

and the calibration property ensures that the real value is close to Sp (see Definition 5.1).

From this, it is easy to see that our previously mentioned strategy would maximize the

expected net profit (i.e. profits from sales minus cost of salesperson).

91

Remark: Currently, our calibration property is defined with respect to each individual

target label y0 (i.e., the conditional probabilities are essentially calibrated for each y0 sep-

arately). Although it is possible to define more restricted version of the total calibration

property (i.e., designating probability intervals for all target labels simutaneously), it be-

comes unclear as how to actually guarantee such a total calibration property in practice. We

hope that future papers in this direction would give us a more complete answer.

5.2 APPROACHES FOR RELATIONAL LEARNING

Now that we have discussed the calibration property of conditional probabilities and meth-

ods for obtaining it, we can move on to discuss the actual prediction algorithms for relational

datasets. As our goal is to develop a hidden structure based prediction algorithm that works

for arbitrary relational datasets, a good starting point is to review the existing specialized

approaches for specific relational learning tasks, and understand the high-level philosophy

behind those approaches, so that we can generalize them into algorithms that work for

arbitrary relational datasets.

To the best of our knowledge, there are primarily three distinct lines of approaches for

relational learning tasks:

• Join-based Learning and Prediction. The first, and probably most commonly

used approach for relational learning is to reduce it to a standard machine learning

task with independent training data points. Such a reduction is usually achieved via

foreign-key join operations, with the goal of generating one single large table to be

used as input for standard machine learning techniques (e.g., SVMs, Decision Trees,

etc.) [76].

• Probabilistic Models. Many researchers have also been developing generative proba-

bilistic models for large-scale relational datasets to capture the probabilistic dependen-

cies between attributes in the dataset. These techniques are mostly based on possible

world semantics [86], and the most notable one involves Markov Logic Networks [87].

These probabilistic models naturally induce conditional probabilities for each missing

entry, although exact inference is NP-hard [12], necessitating approximations [88].

• Representation Learning. Popularized by the seminal work of word2vec [89], the

idea of learning a vector space representation for entities in relational datasets is at the

core of many recent relational learning techniques. These methods are mostly trying to

optimize a certain objective function that revolves around using vector representations

92

of entities to predict observed information in the dataset, and the learned representa-

tions [90] are then used as features for other prediction tasks (via standard machine

learning techniques such as SVMs and neural networks).

In the following, we show the three different methods that we designed by generalizing

the above approaches to handle relational datasets with arbitrary schema.

5.2.1 Feature Inheritance

The most straightforward approach for predicting missing entries in relational datasets

is to reduce this task into a standard machine learning task, which is typically achieved

by joining information across relations via foreign-key references. Feature Inheritance (FI)

is an algorithmic procedure that we developed for joining information across relations in

relational datasets with arbitrary schema. After the FI procedure, each tuple will “inherit”

features from other tuples that are connected to it via foreign-key references. Let us first

demonstrate the general idea of feature inheritance via a simple example:

Example 5.3 (Targeted Advertisement with FI). Consider the e-commerce dataset in Fig-

ure 5.2, which consists of three different tables containing information about advertisements,

users, and historical click-throughs respectively. As we can see, the joined click-through table

(right hand side of Figure 5.2) “inherits” all relevant features from the user and advertise-

ment tuples in the base tables. Hence, it is now possible to use standard machine learning

methods on this table to predict click-through probabilities.

Figure 5.2: Targeted Advertisement (Feature Inheritance)

93

More generally, suppose the database contains k relationsR = {R1, . . . , Rk}, in which each

relation Ri contains ni tuples Ri = {ti,1, . . . , ti,ni
}. There are also m different foreign-key

attributes in the database: F = {f1, . . . , fm}, and each foreign-key attribute fi : Rai → Rbi

is defined as a mapping function between two relations3. Under such a notation, the FI

procedure uses the following steps to decide the exact feature inheritance setup:

1. For each relation Ra0 , consider all possible join-paths starting from Ra0 that has length

l ≤ L:

Pa0,l = {Ra0

g1−→ Ra1

g2−→ . . .
gl−→ Ral : g1, . . . , gl ∈ F} (5.56)

where gi ∈ F : Rai−1
→ Rai denotes the foreign-key attribute of Rai−1

referencing

tuples of Rai .

2. For each such join-path p = (g1, . . . , gl) ∈ Pa0,l, we augment Ra0 with all the (base)

attributes of Ral : for each attribute A : Ral → Y of Ral , the following new attribute

Ap : Ra0 → Y is added to Ra0 :

∀t ∈ Ra0 ,Ap(t) = A ◦ gl ◦ . . . ◦ g1(t) (5.57)

In other words, for each t ∈ Ra0 , let tl ∈ Ral be the corresponding tuple that t is

referencing through the join path p, then the new attribute of t has value equals the

corresponding attribute value of tl.

After running the FI procedure, each relation in R will be augmented with features from

other relations. Thus, it is now possible to apply standard machine learning algorithms on

the augmented relations to obtain calibrated conditional probability estimates regarding the

attributes of interest. The upper limit L for the length of join-path controls the trade-off

between efficiency and accuracy: larger value of L can lead to situations where too many

features are joined together, reducing the efficiency of learning procedure; smaller value on

the other hand can miss important correlations occurring between far-away attributes. The

value of this hyper-parameter can be either specified by user or tuned automatically via

cross-validation.

5.2.2 Calibrated Markov Logic Network

The second approach utilizes existing generative probabilistic models for relational datasets:

although these models naturally output marginal probabilities for the missing entries, these

3This is consistent with the standard definition of attributes throughout this chapter, in which each
attribute A : {t1, . . . , tn} → Y is defined as a mapping function from the set of tuples to the target domain.

94

marginal probabilities do not naturally have the calibration property. However, it is possible

to convert them into calibrated CPEs using a calibration step. Here, we use the Markov

Logic Network [87] model as our probabilistic model for relational datasets. The detailed

steps of this method are described in the following:

1. Construct a parametric generative probabilistic model P(D|Θ) (e.g., a Markov Logic

Network) for the given relational dataset D. This probabilistic model describes the

joint distribution of all attributes in the dataset (regardless of whether they are ob-

served or missing), and the parameter Θ controls the likelihood of each particular joint

instantiation of attribute values.

2. Divide the observed attribute values of D into two separate datasets: the training

dataset Dtrain and the validation dataset Dval. Search for the parameter ΘMLE that

maximizes the likelihood4 of observing Dtrain given Θ:

ΘMLE = arg max
Θ

= P(Dtrain,A|Θ) (5.58)

3. Compute the marginal distribution of all attributes with missing values in Dtrain,

conditioned on the surrounding context and the estimated parameter ΘMLE.

∀y ∈ Yi, f(i, y) = P(Ai = y|Dtrain,ΘMLE) (5.59)

4. Apply a calibration algorithm on the marginal probabilities f(i, y), and use observed

attribute values in Dval as labels. The calibration algorithm takes the uncalibrated

probability estimates as input5 and adjusts their values so that the calibration property

is satisfied.

5.2.3 Latent Feature Inheritance

The third approach for computing calibrated CPEs is inspired by the recent developments

in the field of representation learning: we try to learn vector-form representation for each

individual tuple in the relational dataset. The embedding vectors are intended to preserve

all structural and attribute information in the dataset, while having the benefits of being

easier to be utilized by standard machine learning algorithms.

4In practice, optimizing exact likelihood is infeasible due to efficiency reasons, and approximations such
as pseudo-likelihood are commonly used

5The ground truth label of a small subset of data instances is also required for the calibration algorithm
to work.

95

Assuming that each tuple is associated with an embedding vector (a.k.a., the latent fea-

ture), the representation learning approach requires us to design an appropriate objective

function, which should involve all the latent feature vectors, as well as the structure and

attributes of dataset. In order to design an objective function that is applicable to all differ-

ent kinds of database schema, we can utilize the feature inheritance (FI) technique, allowing

each tuple to inherit other tuple’s latent feature vector. Formally, the objective function can

be designed as follows:

1. Initially, associate each tuple t with an latent feature vector vt
6.

2. For each tuple t, find the collection of tuples C(t) that t should inherit feature from

(based on the FI technique in Section 5.2.1). Define the extended latent feature vector

form of t as evt = {vt} ∪ {vu : u ∈ C(t)}.

3. For each attribute Ai, we associate it with a prediction function fi(evt, θi) which takes

an extended latent feature vector evt as input (θi is the parameter to be optimized).

We also need a loss function li(Ai(t), f(evt, θi)), which compares the true attribute

value Ai(t) with the prediction f(evt, θi) and incur loss based on the difference.

4. The final objective function is the sum of all individual loss function components:

L(Θ, V) =
∑
Ai

∑
t

l(Ai(t), f(evt, θi)) (5.60)

Optimizing the final objective function L(Θ, V) should lead us to meaningful vector rep-

resentations for all tuples, as well as proper predictions for all the missing entries. The

parametric prediction function design can be dataset dependent, but it is also possible to

use universal classifiers (e.g., SVMs), which is the default choice in our implementation.

5.3 PRELIMINARY EXPERIMENTS

Here, we evaluate the above three methods on several synthetic datasets as well as one

real-world dataset. These experiments should help us understand what kind of datasets each

method works well with, and in what situations they won’t give us reasonable predictions.

6The latent feature includes the explicit feature as part of it.

96

(a) Synthetic Bayes (b) Synthetic Cluster

Figure 5.3: Single Table Synthetic Datasets

5.3.1 Synthetic Bayes Dataset

This dataset contains a single table with 6 binary attributes. The first 5 attributes are

independent noisy version of the last one (with probability p being flipped), and we want to

predict the last attribute given the others. In this experiment, the dataset contains 10,000

tuples, and 50% of them have the last attribute observed. Figure 5.3(a) shows the mean

squared error of the three methods, where all three overlap entirely.

In this dataset, the performance of three methods are basically the same: all three methods

are capable of capturing the logistic regression model as a special case, which is actually the

optimal prediction method for this dataset. Simple linear classification methods are special

cases of all three methods, and the optimization procedure can find the existence of such

simple models using relatively few data points.

5.3.2 Synthetic Cluster Dataset

This dataset contains one single table with 11 binary attributes. The dataset is generated

using the following procedure:

• We first generate 10 template tuples, for which each of the 11 binary attributes are

generated from independent coin flips.

• Then, each tuple is generated from one of the 10 tuple templates (randomly chosen):

the first 10 attributes are noisy version of the corresponding attribute in the template

tuple; the last attribute (11th) is always equal to the corresponding (11th) attribute

of the template tuple, and is also the prediction target of this dataset.

In this experiment, the dataset contains 10,000 tuples, and 50% of them have the last

attribute observed. Figure 5.3(b) shows the mean squared error of the three methods. For

97

this dataset, the FI method performs the best since it essentially treats the prediction task as

a standard machine learning task (i.e., no feature inheritance occurs in this dataset). On the

other hand, the CMLN method performs the worst due to the fact that the logistic regression

model mimicked by CMLN is not the optimal model for this dataset. The performance of

the LFI method lies somewhere in between, which is due to fact that the vector space latent

features behave like pure noise for this dataset.

5.3.3 Synthetic Graph Dataset

This dataset simulates a graph or network scenario with nodes and edges. It contains

two relations: the first relation contains only 1 column, which specifies the node group

information (i.e., which group does each node belongs to); the second relation has 2 columns,

which specifies the edge information (i.e., two end points of the edges). Here we try to predict

the group label of some nodes given others. Among all edges, p of them are noise edges (i.e.,

connecting random nodes), while the remaining ones only connect nodes with the same label.

In this experiment, the dataset contains 5,000 nodes (divided into 5 groups) and 100, 000

edges, 50% of the nodes have their labels observed, and the labels of the other 50% nodes

are prediction targets. Figure 5.4 shows the mean squared error of the LFI and CMLN

methods. The performance of the FI method is not reported because it is not applicable to

this dataset.

Figure 5.4: Synthetic Graph Dataset

As we can see, while LFI can perform reasonably well on this dataset with low noise level,

CMLN performs much better due to the existence of human guidance. This experiment

demonstrates the superiority of CMLN when the user is capable of providing precise and

accurate first-order logical predictors. Although such a scenario is relatively rare in practice,

it does exist in some cases.

98

5.3.4 StackExchange Dataset

This dataset comes from the StackExchange data dump [39], and we used part of the data

collected from cs.stackexchange.com, which consists of 28,210 questions, 33,411 answers,

17,608 users and 461 tags7. The dataset schema is illustrated in Figure 5.5. There are a total

of 65,781 pairs of question-tag associations, and the same number of negative associations

are randomly generated. In the experiment, 50% of the question-tag associations have their

labels observed, while the labels of the other 50% are the prediction targets.

Figure 5.5: StackExchange Dataset Schema

The AUC(Area Under Curve) score8 obtained by the FI and LFI methods are 0.806 and

0.631 respectively. The CMLN method do not scale well to this large dataset, so we are

unable to report its performance.

5.4 DISCUSSION

From the experiments, we have seen that all three methods can perform well if given

suitable datasets. Generally speaking, FI works best when the dataset is “flat”, in the sense

that predictions can be made without relying on the relationships between entities. CMLN

performs well if user can provide precise first-order logic predictors, but scales badly to large

datasets. LFI performs decently across the board, and excels on datasets with complex

relationships (e.g., StackExchange dataset). From these experiments, it appears that it

would be beneficial to combine all these approaches in some way, so that we can always

achieve good performance regardless of the kind of input dataset we are given. We remark

7Tags with less than 50 associated questions are removed to reduce noise.
8AUC score is the standard evaluation metrics for ranking-based algorithms, which computes the total

area under the ROC curve.

99

that the work presented in this chapter is still ongoing, and it would be interesting to see if it

is possible to design an algorithm that combines the advantages of these three approaches.

100

CHAPTER 6: CONCLUSION

In this thesis, we introduced a general framework for utilizing the hidden structures of

datasets to improve automated data processing. In our framework, the extracted structures

are directly used for the subsequent data processing steps, and do not need manual verifi-

cation or intervention beforehand. Due to the lack of human supervision, we usually need

to consider different trade-offs when designing the structure extraction modules, compared

to traditional scenarios where structure extraction is for the purpose of human consumption

or data analysis. We summarized three major design principles for structure extraction in a

data processing scenario: (a) the representativeness principle requires the structure hypoth-

esis space to be able to cover most cases, since the structure extraction procedure must work

for every potential dataset without any human supervision; (b) the learnability principle

restricts the size of structure hypothesis space, as we must be able to efficiently find the

appropriate structure candidate from this space; (c) the extracted structure must provide

good utility for the subsequent data processing step, and thus the structure hypothesis space

must be designed in conjunction with the data processing procedure. We also discussed three

example algorithms in our recent and ongoing work, and connected the design decisions in

practice with the general principles above.

Automatically using hidden structure to improve data processing represents the future

trend of integration between artificial intelligence and data management. As such a frame-

work does not require the presence of experienced data analysts “in the loop”, it can be used

by anyone with basic data management experience in a plug and play manner. The “intelli-

gent” part is hidden from the user in our framework, and therefore the algorithm design for

our framework generally requires a deeper understanding of the behavior of machine learn-

ing algorithms. Recent advances in the field of machine learning have made it possible to

design generic structure extraction algorithms without pre-specifying a target dataset, and

we can definitely hope for new developments following this trend in the future, so that data

processing algorithms will become more and more “intelligent”, approach human expertise,

and lead to substantially reduced effort for end-users.

101

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of
items in large databases,” in Acm sigmod record, vol. 22, no. 2. ACM, 1993, pp.
207–216.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing
surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[3] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned
index structures,” in Proceedings of the 2018 International Conference on Management
of Data. ACM, 2018, pp. 489–504.

[4] Y. Gao and A. Parameswaran, “Squish: Near-optimal compression for archival of re-
lational datasets,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2016, pp. 1575–1584.

[5] Y. Gao, S. Huang, and A. Parameswaran, “Navigating the data lake with datama-
ran: Automatically extracting structure from log datasets,” in Proceedings of the 2018
International Conference on Management of Data. ACM, 2018, pp. 943–958.

[6] Y. Gao, A. Parameswaran, and J. Peng, “On the interpretability of conditional prob-
ability estimates in the agnostic setting,” in Artificial Intelligence and Statistics, 2017,
pp. 1367–1374.

[7] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”
IEEE transactions on Information Theory, vol. 24, no. 5, pp. 530–536, 1978.

[8] F. M. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree weighting method:
basic properties,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 653–
664, 1995.

[9] S. Babu, M. Garofalakis, and R. Rastogi, “Spartan: A model-based semantic compres-
sion system for massive data tables,” in ACM SIGMOD Record, vol. 30, no. 2. ACM,
2001, pp. 283–294.

[10] H. Jagadish, R. T. Ng, B. C. Ooi, and A. K. Tung, “Itcompress: An iterative semantic
compression algorithm,” in Data Engineering, 2004. Proceedings. 20th International
Conference on. IEEE, 2004, pp. 646–657.

[11] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil et al., “C-store: a column-oriented dbms,” in Proceedings
of the 31st international conference on Very large data bases. VLDB Endowment,
2005, pp. 553–564.

[12] D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques.
MIT press, 2009.

102

[13] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[14] G. Schwarz et al., “Estimating the dimension of a model,” The annals of statistics,
vol. 6, no. 2, pp. 461–464, 1978.

[15] M. Abramowitz and I. Stegun, “Handbook of mathematical functions: With formu-
las, graphs, and mathematical tables applied mathematics series,” National Bureau of
Standards, Washington, DC, 1964.

[16] G. G. Langdon, “An introduction to arithmetic coding,” IBM Journal of Research and
Development, vol. 28, no. 2, pp. 135–149, 1984.

[17] V. Raman and G. Swart, “How to wring a table dry: Entropy compression of rela-
tions and querying of compressed relations,” in Proceedings of the 32nd international
conference on Very large data bases. VLDB Endowment, 2006, pp. 858–869.

[18] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[19] S. M. Jalaleddine, C. G. Hutchens, R. D. Strattan, and W. A. Coberly, “Ecg data com-
pression techniques-a unified approach,” IEEE transactions on Biomedical Engineering,
vol. 37, no. 4, pp. 329–343, 1990.

[20] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
2012.

[21] J. Roure and R. Sangüesa, “Incremental methods for bayesian network learning,” in
Department de. Citeseer, 1999.

[22] J. R. Alcobé, “Incremental hill-climbing search applied to bayesian network structure
learning,” in Proceedings of the 15th European conference on machine learning, Pisa,
Italy, 2004.

[23] M. A. Roth and S. J. Van Horn, “Database compression,” ACM Sigmod Record, vol. 22,
no. 3, pp. 31–39, 1993.

[24] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite state
markov chains,” The annals of mathematical statistics, vol. 37, no. 6, pp. 1554–1563,
1966.

[25] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for boltzmann
machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[26] S. Davies and A. Moore, “Bayesian networks for lossless dataset compression,” in Pro-
ceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining. Citeseer, 1999, pp. 387–391.

103

[27] R. Baeza-Yates, B. d. A. N. Ribeiro et al., Modern information retrieval. New York:
ACM Press; Harlow, England: Addison-Wesley,, 2011.

[28] J. J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM Journal of
research and development, vol. 20, no. 3, pp. 198–203, 1976.

[29] N. Kushmerick, D. S. Weld, and R. Doorenbos, “Wrapper induction for information
extraction,” 1997.

[30] D. Freitag and N. Kushmerick, “Boosted wrapper induction,” in AAAI/IAAI, 2000, pp.
577–583.

[31] H. Elmeleegy, J. Madhavan, and A. Halevy, “Harvesting relational tables from lists on
the web,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 1078–1089, 2009.

[32] J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering of protocols from network
traces,” in Reverse Engineering (WCRE), 2011 18th Working Conference on. IEEE,
2011, pp. 169–178.

[33] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation using exam-
ples,” Communications of the ACM, vol. 55, no. 8, pp. 97–105, 2012.

[34] K. Fisher, D. Walker, K. Q. Zhu, and P. White, “From dirt to shovels: fully automatic
tool generation from ad hoc data,” in ACM SIGPLAN Notices, vol. 43, no. 1. ACM,
2008, pp. 421–434.

[35] “Recordbreaker: Automatic structure for your text-formatted data,” http://cloudera.
github.io/RecordBreaker/.

[36] M. Sipser, Introduction to the Theory of Computation. Thomson Course Technology
Boston, 2006, vol. 2.

[37] A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in
coding and modeling,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp.
2743–2760, 1998.

[38] “Flex: lexical analyzer generator,” https://en.wikipedia.org/wiki/Flex (lexical
analyser generator).

[39] “Stack exchange data dump,” https://archive.org/details/stackexchange, accessed:
2017-07-13.

[40] D. Grune and C. J. Jacobs, “Parsing techniques,” Monographs in Computer Science.
Springer,, p. 13, 2007.

[41] S. Gulwani, “Automating string processing in spreadsheets using input-output exam-
ples,” in ACM SIGPLAN Notices, vol. 46, no. 1. ACM, 2011, pp. 317–330.

[42] “Datamaran technical report,” https://arxiv.org/pdf/1708.08905.pdf.

104

[43] S. Sarawagi et al., “Information extraction,” Foundations and Trends R© in Databases,
vol. 1, no. 3, pp. 261–377, 2008.

[44] N. Dalvi, P. Bohannon, and F. Sha, “Robust web extraction: an approach based on a
probabilistic tree-edit model,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. ACM, 2009, pp. 335–348.

[45] W. Han, D. Buttler, and C. Pu, “Wrapping web data into xml,” ACM SIGMOD Record,
vol. 30, no. 3, pp. 33–38, 2001.

[46] C.-N. Hsu and M.-T. Dung, “Generating finite-state transducers for semi-structured
data extraction from the web,” Information systems, vol. 23, no. 8, pp. 521–538, 1998.

[47] I. Muslea, S. Minton, and C. Knoblock, “Stalker: Learning extraction rules for
semistructured, web-based information sources,” in Proceedings of AAAI-98 Workshop
on AI and Information Integration. AAAI Press, 1998, pp. 74–81.

[48] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates, “Web-scale information extraction in knowitall:(preliminary
results),” in Proceedings of the 13th international conference on World Wide Web.
ACM, 2004, pp. 100–110.

[49] E. Agichtein and L. Gravano, “Snowball: Extracting relations from large plain-text
collections,” in Proceedings of the fifth ACM conference on Digital libraries. ACM,
2000, pp. 85–94.

[50] A. Arasu and H. Garcia-Molina, “Extracting structured data from web pages,” in Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of data.
ACM, 2003, pp. 337–348.

[51] V. Crescenzi, G. Mecca, P. Merialdo et al., “Roadrunner: Towards automatic data
extraction from large web sites,” in VLDB, vol. 1, 2001, pp. 109–118.

[52] H. A. Sleiman and R. Corchuelo, “Trinity: on using trinary trees for unsupervised
web data extraction,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 6, pp. 1544–1556, 2014.

[53] H. A. Sleiman and R. Corchuelo, “Tex: An efficient and effective unsupervised web
information extractor,” Knowledge-Based Systems, vol. 39, pp. 109–123, 2013.

[54] B. Liu, R. Grossman, and Y. Zhai, “Mining data records in web pages,” in Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2003, pp. 601–606.

[55] Y. Zhai and B. Liu, “Web data extraction based on partial tree alignment,” in Pro-
ceedings of the 14th international conference on World Wide Web. ACM, 2005, pp.
76–85.

105

[56] M. Kayed and C.-H. Chang, “Fivatech: Page-level web data extraction from template
pages,” IEEE transactions on knowledge and data engineering, vol. 22, no. 2, pp. 249–
263, 2010.

[57] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse engineer-
ing from network traces.” in USENIX Security Symposium, 2007, pp. 1–14.

[58] S. B. Cohen, D. Das, and N. A. Smith, “Unsupervised structure prediction with non-
parallel multilingual guidance,” in Proceedings of the Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, 2011, pp.
50–61.

[59] V. I. Spitkovsky, H. Alshawi, A. X. Chang, and D. Jurafsky, “Unsupervised dependency
parsing without gold part-of-speech tags,” in Proceedings of the conference on empirical
methods in natural language processing. Association for Computational Linguistics,
2011, pp. 1281–1290.

[60] P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and M. Tommasi, “Automatic wrapper
induction from hidden-web sources with domain knowledge,” in Proceedings of the 10th
ACM workshop on Web information and data management. ACM, 2008, pp. 9–16.

[61] E. Agichtein and V. Ganti, “Mining reference tables for automatic text segmentation,”
in Proceedings of the tenth ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2004, pp. 20–29.

[62] E. Cortez, D. Oliveira, A. S. da Silva, E. S. de Moura, and A. H. Laender, “Joint
unsupervised structure discovery and information extraction,” in Proceedings of the
2011 ACM SIGMOD International Conference on Management of data. ACM, 2011,
pp. 541–552.

[63] C. Zhao, J. Mahmud, and I. Ramakrishnan, “Exploiting structured reference data for
unsupervised text segmentation with conditional random fields,” in Proceedings of the
2008 SIAM International Conference on Data Mining. SIAM, 2008, pp. 420–431.

[64] W. W. Cohen, M. Hurst, and L. S. Jensen, “A flexible learning system for wrapping
tables and lists in html documents,” in WWW. New York, NY, USA: ACM, 2002, pp.
232–241.

[65] R. Gupta and S. Sarawagi, “Answering table augmentation queries from unstructured
lists on the web,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 289–300,
2009.

[66] A. Machanavajjhala, A. S. Iyer, P. Bohannon, and S. Merugu, “Collective extraction
from heterogeneous web lists,” in Proceedings of the fourth ACM international confer-
ence on Web search and data mining. ACM, 2011, pp. 445–454.

[67] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive visual spec-
ification of data transformation scripts,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2011, pp. 3363–3372.

106

[68] V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive data cleaning system,”
in VLDB, vol. 1, 2001, pp. 381–390.

[69] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish, “Foofah: Transforming data by
example,” in Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 2017, pp. 683–698.

[70] V. Le and S. Gulwani, “Flashextract: a framework for data extraction by examples,”
in ACM SIGPLAN Notices, vol. 49, no. 6. ACM, 2014, pp. 542–553.

[71] D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn, “Flashrelate: extracting relational
data from semi-structured spreadsheets using examples,” in PLDI’15, 2015, pp. 218–
228.

[72] M. Raza and S. Gulwani, “Automated data extraction using predictive program syn-
thesis,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[73] R. Vaarandi, “A breadth-first algorithm for mining frequent patterns from event logs,”
Intelligence in Communication Systems, pp. 293–308, 2004.

[74] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event logs using it-
erative partitioning,” in Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2009, pp. 1255–1264.

[75] K. Lakshminarayan, S. A. Harp, R. P. Goldman, T. Samad et al., “Imputation of
missing data using machine learning techniques.” in KDD, 1996, pp. 140–145.

[76] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, “To join or not to join?: Thinking
twice about joins before feature selection,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 19–34.

[77] J. Platt et al., “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods,” Advances in large margin classifiers, vol. 10, no. 3, pp.
61–74, 1999.

[78] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,”
IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3, pp. 660–674, 1991.

[79] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machine
Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[80] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexities: Risk bounds
and structural results,” The Journal of Machine Learning Research, vol. 3, pp. 463–482,
2003.

[81] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, 2014.

[82] R. Durrett, Probability: Theory and Examples. Cambridge University Press, 2010.

107

[83] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from decision
trees and naive bayesian classifiers,” in ICML, vol. 1. Citeseer, 2001, pp. 609–616.

[84] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities with supervised
learning,” in Proceedings of the 22nd International Conference on Machine Learning.
ACM, 2005, pp. 625–632.

[85] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite planar
set,” Information Processing Letters, vol. 1, no. 4, pp. 132–133, 1972.

[86] D. Suciu, “Probabilistic databases,” in Encyclopedia of Database Systems. Springer,
2009, pp. 2150–2155.

[87] M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62,
no. 1-2, pp. 107–136, 2006.

[88] L. Getoor and B. Taskar, Introduction to statistical relational learning. MIT press,
2007.

[89] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-
tations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[90] R. Castro Fernandez, E. Mansour, A. Qahtan, A. Elmagarmid, I. Ilyas, S. Madden,
M. Ouzzani, M. Stonebraker, and N. Tang, “Seeping semantics: Linking datasets using
word embeddings for data discovery,” 04 2018.

108

