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Abstract

Continuous innovations and advances in sequencing technologies have led to the birth and

development of several fields of research. In this thesis we propose four methods to address

open problems in two such fields, infection genomics and cancer genomics.

The first problem we address is reconstruction of transmission history of an outbreak

using genomic and epidemiological data collected from infected hosts. It is challenging to

account for all the relevant biological processes that occur during evolution and transmission

of the pathogens in the outbreak while also addressing the uncertainty in the most likely

solution. Our method, TiTUS, overcomes these challenges by first uniformly sampling from

the set of all possible feasible transmission histories of the outbreak under a realistic model of

evolution and transmission. Then, a consensus-based solution is generated that summarizes

the candidate solutions in a biologically meaningful way. We show that TiTUS efficiently

samples the solution space enabling accurate reconstruction of transmission history of an

outbreak.

The second method we introduce, Jumper, reconstructs viral transcripts using RNA-

sequencing data from infected cells. In this study, we focus our attention on viruses in the

Coronaviridae family, such as SARS-CoV-2, that express genes by a process of discontinuous

transcription mediated by the viral RNA-dependent RNA polymerase. The viral transcrip-

tome provides valuable information with clinical implications such as differential expression

of viral genes, the host cell response to viral infection and the viral life cycle. We show that

Jumper accurately infers the viral transcripts, outperforming existing transcript assembly

methods, and facilitates the study of coronavirus transcriptomes under varying conditions.

The third problem we address is doublet detection in single-cell DNA-sequencing data.

Our method, doubletD, is the first stand-alone doublet detection method for single-cell

DNA-sequencing data. We use a simple probabilistic model allowing a closed-form maximum

likelihood solution that efficiently and accurately detects doublets by identifying characteris-

tic signal in the variant allele frequency (VAF) distribution in the data. On simulations and

multiple real datasets, we show that doublet identification and removal using doubletD

improves downstream analysis such as genotype calling and phylogeny reconstruction.

Finally, we present a new method, PACTION, which proposes a solution to the tumor

phylogeny inference problem in cancer. Due to technological and methodological limitations,

existing methods are restricted to identifying tumor clones and phylogenies only based on

either small-scale mutations, such as single nucleotide variations (SNVs), or large-scale muta-
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tions, such as copy number aberrations (CNAs), preventing a comprehensive characterization

of a tumor’s clonal composition. To overcome these challenges, we formulate the identifica-

tion of clones in terms of both SNVs and CNAs as a reconciliation problem. We show that

PACTION reliably identifies tumor clones and their evolutionary relationships even in the

presence of noise or error in input SNVs and CNAs.
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Chapter 1: Introduction

Continuous innovations and advances in sequencing technologies have led to the birth and

development of several fields of research. In this thesis, we introduce four novel algorithms to

solve problems in two such fields, infection genomics and cancer genomics. In the following,

we provide an overview of these fields and the problems from these fields that we tackle in

this thesis.

1.1 INFECTION GENOMICS

Infection genomics is the study of evolution, infection and resistance to therapy in pathogens

(viruses, bacteria and parasites). Genomic sequencing of pathogens in infected hosts pro-

vides valuable information to understand transmission and virulence of the disease, host

response and pathogen life cycle. We focus on two problems from this field.

The first problem we work on is reconstruction of the transmission history of an outbreak.

The transmission history of an outbreak is a crucial tool that improves our understanding of

the disease and facilitates public health policy decisions. However, the inference of disease

transmission histories remains challenging due to various factors such as genetic diversity

of pathogen in infected hosts, known as within-host diversity and infection of the host by

multiple variants of the pathogen, known as multi-strain infections. Moreover, often there

are multiple transmission histories that can explain the genetic and epidemiological data

equally well. Most current methods for transmission history inference generate just one of

the possible solutions leading to biases in downstream analyses. In Chapter 2, we address

these challenges by introducing a new method, TiTUS (Transmission Tree Uniform Sam-

pler), which uniformly samples the space of feasible transmission histories under a realistic

model that accounts for both within-host diversity and multi-strain infections. We prove the

hardness of the decision and counting versions of the transmission tree inference problem.

We demonstrate the performance of TiTUS on simulated data and on real data of an HIV

outbreak with a known transmission chain [1]. Lastly, we develop a polynomial-time method

to summarize the solution space of transmission trees that are consistent with the genetic

and epidemiological data. The proposed consensus-based method provides a single trans-

mission tree that summarizes a set of candidate solutions while accounting for the number

of distinct strains transmitted in each infection event.

The second problem we tackle is reconstruction of viral transcriptome, also known as viral

transcript assembly, using RNA-sequencing data of infected cells. The viral transcriptome
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has direct influence on the expression levels of viral genes in infected cells and provide valu-

able information about the host response and viral life cycle. However, transcript assembly

remains an open problem, with challenges such as ubiquity of paralogs and unevenness of

read coverage. In Chapter 3, we present the first method to reconstruct viral transcripts

generated by discontinuous transcription using RNA-seq data of infected cells. Specifically,

we focused on viruses in the Coronaviridae family, such as SARS-CoV-2, that express genes

by a process of discontinuous transcription mediated by the viral RNA-dependent RNA

polymerase. Underpinning our approach, Jumper [2], is the concept of a segment graph,

a directed acyclic graph that, distinct from the splice graph used to characterize alterna-

tive splicing, has a unique Hamiltonian path. We provide a compact characterization of

solutions as subsets of non-overlapping edges in this graph, enabling the formulation of an

efficient mixed integer linear program. Applying Jumper on samples of cells infected by

SARS-CoV-1 and SARS-CoV-2, we discovered non-canonical transcripts that are either well

supported by long-read data of the same sample or corroborated by multiple independent

publicly available SRA samples infected by the same virus. We also found conserved core

sequences that possibly explain the generation of some of the inferred non-canonical tran-

scripts. Finally, we demonstrate the use of Jumper to study viral drug response at the

transcript level by analyzing samples with and without treatment prior to infection [3]. In

summary, Jumper enables detailed analyses of coronavirus transcriptomes under varying

conditions.

1.2 CANCER GENOMICS

Cancer results from an evolutionary process where somatic mutations accumulate in the

genomes of different cells. Computational cancer genomics combines genome sequencing with

algorithms to uncover the complexities of cancer. Cancer progression involves proliferation

of cells that accumulate new somatic mutations resulting in heterogeneous tumors, composed

of different clones, each corresponding to a distinct subpopulation of cells with the same set

of somatic mutations [4]. The resulting intra-tumor heterogeneity has been clearly linked

to critically important cancer phenotypes, including cancer prognosis and the potential of

developing resistance to cancer therapy [5, 6]. Therefore, important downstream applications

rely on accurate reconstructions of a tumor’s clonal architecture, which in turn requires the

identification of the different clones, their proportions and their evolutionary history.

One of most recent advances in sequencing technologies to study cancer is single-cell

sequencing, in which individual tumor cells are isolated and sequenced independently. This

technology holds the potential to facilitate precise reconstruction of a tumor’s evolutionary
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history. However, the process of isolation of individual tumor cells is error-prone and often

result in doublets where two or more cells are mistaken for a single cell. Not only do

doublets confound downstream analyses, but the increase in doublet rate is also a major

bottleneck preventing higher throughput with current single-cell technologies. In Chapter 4,

we developed the first stand-alone method for detecting doublets in scDNA-seq data. Our

method, doubletD [7], uses a simple probabilistic approach with a closed-form solution and

outperforms current methods for downstream analysis of scDNA-seq data that jointly infer

the doublets. Underlying our method is the observation that doublets in scDNAseq data have

a characteristic variant allele frequency (VAF) distribution. Our novel approach additionally

uses allelic dropouts, which are a common source of error in single-cell sequencing methods,

as a key signal in identifying doublets. In our work [7], we demonstrated that doublet

detection and removal using doubletD improves downstream analyses, such as genotype

calling and phylogeny reconstruction, while reducing computational costs. doubletD can

be utilized in conjunction with any downstream analysis of choice for scDNA-seq data and

therefore obviates the need for downstream methods to individually account for the presence

of doublets within their own models.

Lastly, we focus on reconstruction of comprehensive tumor phylogenies in cancer. Tu-

mor phylogenies provide evolutionary relationship between these subpopulations of cells in

a cancer tumor and have several clinical applications, such as identifying targets for cancer

treatment and understanding the development of metastasis. While cancer cells contain

somatic mutations that alter genomes at varying length scales, current tumor phylogeny

reconstruction methods only focus on either the small-scale mutations, such as single nu-

cleotide mutations (SNVs), or the large-scale mutations, such as copy number aberrations

(CNAs), but not both. In Chapter 5, we investigate whether tumor clonal compositions can

be comprehensively reconstructed by reconciliation of the SNV and CNA clone proportions

and phylogenies that can be independently and reliably inferred by existing methods for the

same cancer tumor. We prove that the proposed reconciliation problem is NP-hard and we

introduce PACTION (PArsimonious Clone Tree reconciliatION), an algorithm that solves

these problems using two mixed integer linear programming formulations. Using simulations,

we find that our approach reliably handles errors in input SNV and CNA proportions and

scales to practical instance sizes. On 49 samples from prostate cancer patients [8], we find

that our approach more comprehensively reconstructs tumor clonal architectures compared

to the manual approach adopted in the previous analysis of the same data.
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reconciliation in cancer. Algorithms for Molecular Biology, 2021. (in print)
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blets in single-cell DNA sequencing data. Bioinformatics, 2021. (Special issue for
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trees with multi-strain infections. Bioinformatics, 2020. (Special issue for Intelligent
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monious transmission networks under a weak bottleneck RECOMB Comparative Ge-

nomics (RECOMB-CG), Montpellier, France, October 1-4, 2019
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Chapter 2: Transmission History Inference

2.1 INTRODUCTION

With the advent of cheaper and more powerful sequencing methods, molecular epidemi-

ology has become an indispensable tool for inference of transmission histories of infectious

disease outbreaks. Genomic data of pathogen isolates collected from infected hosts is used to

assist with the identification of unknown infection sources and transmission chains. Intensive

field work generates crucial epidemiological data that provides addition information such as

contact history between patients and exposure times of the patients to sources of infection.

Methods that can efficiently use genomic and epidemiological data together for accurate

inference of transmission history of outbreaks are the key to real-time outbreak management

and devising public health policies and disease control strategies for future outbreaks [9].

There are several challenges that hinder the accurate inference of the transmission history

of an outbreak. Phylogeny estimation of the pathogen isolates reveals the evolutionary

history of the pathogen during the outbreak. However, due to within-host diversity of many

pathogens, branching events in the phylogeny do not correspond to the transmission events

during the outbreak [10]. Phylogeny-based methods that assume that the transmission

events coincide with the branching events in the phylogeny are therefore only applicable

in the context of pathogens with low mutation rates, short incubation times and acute

infections [11, 12, 13, 14]. Notably, recent studies of SARS-CoV-2, the virus leading to

COVID-19, demonstrate that there are patients that exhibit within-host diversity, i.e. the

presence of multiple SARS-CoV-2 viral strains in COVID-19 patients [15, 16].

Another factor that makes outbreak transmission history inference challenging is a weak

transmission bottleneck, where multiple strains of the pathogen are transmitted from a donor

to a recipient through a non-negligibly small inoculum. Due to this, the most recent com-

mon ancestor of lineages from the same host need not have arisen in that host. A similar

phenomenon of co-migration of cancerous cells has been observed in metastatic cancers [17].

Although large inocula have been observed in a number of diseases [18], most of the ex-

isting methods for transmission tree inference that account for the within-host diversity

do not account for the co-transmission of pathogen strains [19, 20, 21, 22]. That is, these

methods assume a strong transmission bottleneck where a single strain of the pathogen is

transmitted in an infection. A weak transmission bottleneck is considered in SCOTTI [23]

and BadTrIP [24], however they make the simplifying assumption that all the transmis-

sions are independent of each other. Our previous work, SharpTNI [25], considers the weak
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Figure 2.1: Overview of the Direct Transmission Inference (DTI) problem. (a) The
input of the problem consists of a timed phylogeny T that captures the evolutionary history
of the pathogen during the course of the outbreak. Each leaf of T corresponds to a pathogen
strain sampled from an infected host and is thus labeled using ˆ̀ (indicated by colors). Due
to within-host diversity, there may exist multiple leaves labeled by the same host. The entry
and removal times [τe(s), τr(s)] for each host s is also included in the input. The contact map
C is a directed graph between the host set indicating putative transmission pairs. (b) Our
aim is to label the internal vertices of T with ` such that the resulting transmission edges
form a transmission tree S (as shown in Fig. 2.1b). Each edge (s, t) of S is weighted by the
number of transmission edges from host s to host t given by the vertex labeling `. (c) An
alternative solution to the given DTI instance. It is easy to see that no solution exists under
the strong bottleneck constraint whereas under the weak transmission bottleneck there are
multiple solutions. All the feasible vertex labelings are shown in Fig. E.1.

transmission bottleneck without this assumption, under a parsimony based framework for

a known phylogeny. However, SharpTNI may yield transmission histories that cannot be

represented by a tree due to multiple infections of a single host from distinct donors. Such

superinfections are unlikely for pathogens where infected hosts acquire immunity towards

further infections of the pathogen [26, 27].

Here, we extend our previous work on transmission network inference [25] in the following

three ways. First, we consider the problem of counting and sampling uniformly from the set of

possible transmission trees for a known phylogeny and epidemiological data. As mentioned,

the constraint of tree-like transmissions between hosts is not enforced by SharpTNI [25]. This

constraint is enforced by [28] where the order of infections during the outbreak is completely

known, and by [29] under the strong transmission bottleneck constraint. In this work, we

introduce TiTUS to approximately count and almost uniformly sample the transmission

trees under a weak transmission bottleneck for a given timed phylogeny (Fig. 2.1). We prove

the hardness of the decision and counting versions of this problem and demonstrate the

efficiency and accuracy of TiTUS on simulated data. Second, we present a robust criteria

for ranking or prioritizing the uniformly sampled candidate transmission trees. In addition

to the simulated data, we demonstrate the performance of the selection criteria on an HIV

outbreak with a known transmission chain [1]. Third, in practice, the underlying phylogeny
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has some uncertainty and there can be multiple candidates for the transmission tree for

a given phylogeny. It is therefore desirable to have an efficient method to summarize the

solution space of transmission trees that are consistent with the genetic and epidemiological

data. To this end, we propose a consensus-based method that summarizes a set of candidate

solutions while accounting for the number of distinct strains transmitted in each infection

event.

2.2 PRELIMINARIES

To state the problems we consider in this manuscript, we start by introducing the required

concepts and notation. Let T be a rooted tree with vertex set V (T ) and edge set E(T ).

The set of leaves of the tree is given by L(T ). The root of the tree is denoted by r(T ).

We denote the children of a vertex u by δT (u). We write u �T v if vertex u is ancestral to

vertex v, i.e. vertex u is present on the unique path from r(T ) to vertex v. Note that �T is

reflexive, i.e. it holds that u �T u for all vertices u. We denote the set of m distinct hosts

in the outbreak by Σ. In a phylogeographical setting, the set Σ corresponds to m distinct

geographical locations.

The evolution of all strains of a pathogen in an outbreak is modeled by a timed phylogeny,

which we define as follows.

Definition 2.1. A timed phylogeny T is a rooted tree whose vertices are labeled by time-

stamps τ : V (T )→ R≥0 such that τ(u) ≤ τ(v) for all pairs u, v of vertices where u �T v.

Thus, as we can see in the above definition, time moves forward when traversing down a

timed phylogeny T starting from the root r(T ). It is important to note that the leaves of a

timed phylogeny T may occur at distinct time-stamps, i.e. T is not necessarily ultrametric.

Each leaf of a timed phylogeny T corresponds to a strain of pathogen that was collected

during the outbreak. As such, we know the host from which each individual strain was

isolated. This is captured by a leaf labeling, i.e. a labeling of the leaves of T by hosts Σ.

Definition 2.2. A leaf labeling of a timed phylogeny T is a function ˆ̀ : L(T )→ Σ, assigning

a host ˆ̀(u) ∈ Σ to each leaf vertex u ∈ L(T ).

While we know the host ˆ̀(u) from which each individual leaf u of T was sampled, we

do not know the hosts of the internal vertices, which correspond to unsampled, ances-

tral strains. Here, our goal is to determine the hosts in which these ancestral strains re-

side.Mathematically, we wish to construct a vertex labeling ` : V (T )→ Σ, such `(u) = ˆ̀(u)
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for all leaves u ∈ L(T ). Given a vertex labeling `, each internal vertex u of T thus corre-

sponds to a strain residing within host `(u) at time τ(u).

In addition to the evolutionary history of all strains in the outbreak, a timed phylogeny T

combined with a vertex labeling ` gives us information about the transmission history of the

outbreak. Transmissions of strains from one host to another correspond to edges (u, v) of T

labeled by distinct hosts `(u) 6= `(v). Formally, we define a transmission edge as follows.

Definition 2.3. Given a timed phylogeny T and vertex labeling `, an edge (u, v) of T is a

transmission edge if `(u) 6= `(v).

The vertex labeling that we construct for a given timed phylogeny T and leaf labeling ˆ̀,

must follow certain constraints for a realistic reconstruction of the transmission history of

the pathogen. We will now define these epidemiological constraints.

The first constraint that we introduce is called the direct transmission constraint, which

imposes the following two restrictions. First, the outbreak begins with a single infected

host. We call this initial host the root host and it labels the root node r(T ) of the timed

phylogeny. The root host is not infected by any other host and therefore if s is the root

host, there cannot exist a transmission edge (u, v) such that `(u) 6= s and `(v) = s. Second,

the remaining hosts have a unique infector and are thus infected only once in the course

of the outbreak. A possible explanation for this phenomenon is diseases where infected

hosts acquire immunity towards further infections of the pathogen [26, 27]. Consequently,

there cannot exist two distinct transmission edges (u, v) and (u′, v′) such that `(v) = `(v′)

and `(u) 6= `(u′). However, an infection between any two hosts s, t ∈ Σ may involve the

transmission of multiple strains at the same time. This is known as a weak transmission

bottleneck. Since the transmission of strains must occur concurrently, the time intervals

corresponding to any two transmission edges between the same pair (s, t) of hosts must have

an non-empty intersection. More formally, we state the direct transmission constraint as

follows,

Definition 2.4. A vertex labeling ` of a timed phylogeny T satisfies the direct transmission

constraint if (i) there does not exist a transmission edge (u, v) such that `(v) = `(r(T )),

(ii) for any two distinct transmission edges (u, v) and (u′, v′) with `(v) = `(v′), we have

`(u) = `(u′) and (iii) we have [τ(u), τ(v)]∩ [τ(u′), τ(v′)] 6= ∅ for any two distinct transmission

edges (u, v) and (u′, v′) where `(u) = `(u′) and `(v) = `(v′).

Under the direct transmission constraint, the set of transmission edges induced by the

vertex labeling ` uniquely determines the transmission tree S. More formally, the vertex set

V (S) of a transmission tree S is the host set Σ, and there is a directed edge from s ∈ Σ
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to t ∈ Σ if and only if there exists at least one edge (u, v) ∈ E(T ) such that (i) s 6= t, (ii)

`(u) = s and (iii) `(v) = t. Since every host except the root host has a unique infector, the

directed edges necessarily form a tree. Each directed edge (s, t) ∈ E(S) is given a weight

w : E(S)→ N such that w(s, t) equals the number of transmission edges in T from host s to

t. If w(s, t) = 1 for all edges (s, t) ∈ E(S) then each host is infected due to the transmission

of a single pathogen strain. This phenomenon is known as a strong transmission bottleneck.

Epidemiological data provide two additional types of information. First, for each host

s we are given an interval [τe(s), τr(s)] during which the host was present in the outbreak

and susceptible for infection. Specifically, τe(s) ∈ R≥0 is the entry time at which host s

became susceptible for infection, whereas τr(s) ∈ R≥0 is the removal time at which the

host was removed from the susceptible and infected populations and placed in treatment or

recovering.

Second, there can also be documented geographical constraints that prevent transmissions

between any given pair of hosts. We account for all such constraints using a contact map.

A contact map C is a directed graph whose vertex set equals the set Σ of hosts. A directed

edge (s, t) represents a possible infection event from host s to host t. If any two hosts are

not connected in C then there can be no infection event between that pair of hosts. It can

clearly be seen that (i) the contact map C is a subgraph of the interval graph induced by

the intervals [τe(s), τr(s)], ∀s ∈ Σ and (ii) the transmission tree S is a spanning arborescence

of the contact map C. Thus, even in the absence of documented contacts between hosts, a

contact map is induced by the entry and removal times of the hosts.

2.3 PROBLEM STATEMENT

We focus on inferring the transmission history of an outbreak for a known pathogen

phylogeny T . In addition, we are given epidemiological data, which include the contact

map C, entry and removal times [τe(s), τr(s)] for each host s ∈ Σ and assume a direct

transmission constraint under a weak transmission bottleneck. This leads to the following

decision problem.

Problem 2.1 (Direct Transmission Inference (DTI)). Given a timed phylogeny T with

time-stamps τ : V (T ) → R≥0, a leaf labeling ˆ̀ : L(T ) → Σ, a contact map C and entry

τe : Σ → R≥0 and removal times τr : Σ → R≥0, find a vertex labeling ` that induces a

transmission tree S that is a spanning arborescence of C and τ(u) ∈ [τe(s), τr(s)] for all

hosts s and vertices u where `(u) = s.

An instance of the DTI problem is shown in Fig. 2.1a shows an instance of the DTI
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problem along a with a solution vertex labeling ` and induced transmission tree S, where

the three hosts are inducated using three colors. Importantly, a DTI problem instance may

admit multiple solutions, as shown in Fig. 2.1b and Fig. 2.1c. These solutions provide alter-

native reconstructions of the transmission history, and thus must be taken into consideration

in any downstream analysis of the outbreak to devise policy to better manage/prevent future

outbreaks. To quantify the number of alternative reconstructions, we formulate the following

counting problem.

Problem 2.2 (# Direct Transmission Inference (#DTI)). Given a timed phylogeny T with

time-stamps τ : V (T ) → R≥0, a leaf labeling ˆ̀ : L(T ) → Σ, a contact map C and entry

τe : Σ→ R≥0 and removal times τr : Σ→ R≥0, count the number of vertex labelings ` that

induce a transmission tree S that is a spanning arborescence of C and τ(u) ∈ [τe(s), τr(s)]

for all hosts s and vertices u where `(u) = s.

Let L be the set of all solutions to a given DTI problem instance. Ideally, we would

exhaustively enumerate all solutions to the problem instance. However, worst case, the

number of solutions scales exponentially with our input. Thus, to obtain a good overview

of the solution space L, we need to consider the sampling version of #DTI problem where

we wish to uniformly sample the solution space.

In summary, we defined three versions of the DTI problem: a decision, counting and

sampling version. In the following, we will consider a previously defined constrained version

of the DTI problem as well as a generalization.

2.3.1 Related Transmission Tree Inference Problems

We start by considering a version of the DTI problem with one additional constraint.

This additional constraint requires that only one pathogen strain is transmitted to a new

host in a transmission event, and is known as a strong transmission bottleneck. We refer

to this problem as Directed Transmission Inference under Strong Bottleneck (DTI-SB),

and denote the space of solutions by LSB. This problem was posed by [21].In subsequent

work, [29] introduced a polynomial time algorithm to enumerate and uniformly sample from

the set LSB. Since the DTI-SB only has one additional constraint over the original DTI

problem, the solution space of DTI-SB is a proper subset of the solution space of DTI for

the same timed phylogeny T , leaf labeling ˆ̀ and epidemiological data. More formally, we

have LSB ⊆ L.

The second problem we consider is a relaxed version of DTI. Specifically, we relax the

direct transmission constraint for a given instance of DTI. We refer to this problem as
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Figure 2.2: Schematic of the solution spaces of transmission trees under different
constraints for a known timed phylogeny. We have LSB ⊆ L ⊆ LREL. LSB is the
solution space of transmission trees with a strong bottleneck that is considered in the work
of [29] where they show that counting the solutions and sampling from this solution space
can be performed in polynomial time. L is the solution space of DTI which we show to
be both NP-complete and #P-complete. Finally, LREL is the relaxed solution space that is
used to construct a polynomial time rejection based naive sampling and counting algorithm
in Section 2.5.2.1.

rel-DTI and the space of feasible solutions for a given instance by LREL. Section 2.5.2.1

introduces a polynomial time dynamic programming algorithm that enumerates, counts and

uniformly samples from the set LREL. Since the rel-DTI problem is a relaxation of the DTI

problem, we can use the algorithm introduced in Section 2.5.2.1 to uniformly sample from

the solution space of the DTI problem (L). Fig. 2.2 shows the relation between the solution

spaces of the three transmission tree inference problems.

2.3.2 Consensus Tree Problem

For the DTI problem described in the previous section, we start with a given pathogen

phylogeny T . However, in practice the phylogeny needs to be inferred from genomic se-

quences of the strains collected from individual hosts Σ. Several methods of phylogeny

inference generate either multiple candidates for the phylogeny or a posterior on the solu-

tion phylogeny space [30, 31]. Moreover, for each given timed phylogeny, we can get multiple

solutions to the DTI problem as shown for a representative instance in Fig. 2.1. Therefore,

there is a need for an efficient method to summarize the candidate transmission trees that

explain the disease outbreak.
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A common method to summarize the solution space of transmission trees is to aggregate

the information from the candidate transmission trees to generate a single graph where each

edge is weighted by the number of candidate trees that support that edge [20, 23, 32]. This

graph rarely represents a single coherent transmission tree among the set of all hosts in the

dataset. For this reason, the resulting graph is called a relationship graph [32] and does not

provide crucial information about co-occurrence and mutual exclusivity among edges of the

candidate transmission trees.

Another line of method summarizes the set of candidate solutions using one or more

consensus trees that best represent the solution space [33, 34]. For instance, [33] apply

pairwise distance metrics on the space S of transmission trees, not taking into account

the number w(s, t) of transmitted strains between pairs of host (s, t). The resulting distance

matrix is subsequently embedded into lower dimensional space that the authors then cluster.

Finally, each cluster is then assigned a single transmission tree in S as its representative [29].

[34] follow a similar embedding approach, again not taking the number w(s, t) of transmission

into account. Thus neither method supports a weak transmission bottleneck. To address

this limitation, we define the weighted parent-child distance (WPCD) d(S1, S2) between

any two transmission trees S1 and S2 as follows.

Definition 2.5. Let S1 = (Σ, E1) with edge labeling w1 and S2 = (Σ, E2) with edge labelings

w2 be two transmission tree on the same vertex set Σ. The weighted parent-child distance

between the two graphs denoted by d(S1, S2) is

d(S1, S2) =
∑

(s,t)∈E1

w1(s, t) +
∑

(s,t)∈E2

w2(s, t)

− 2
∑

(s,t)∈E1∩E2

min{w1(s, t), w2(s, t)}. (2.1)

In Appendix C.1 we show that this distance function induces a metric in the space S of

transmission trees. Note that transmission trees S and S ′ that have the same topology but

different edge weights w and w′ will have d(S, S ′) > 0. As a result, WPCD can be used to

produce a consensus transmission tree while taking an incomplete transmission bottleneck

into account. Under the strong transmission bottleneck the weighted parent-child distance

simplifies to the size of the symmetric difference between the edge sets of the two transmission

trees, i.e. d(S, S ′) = |E ′\E| + |E\E ′|. This distance is known as the parent-child distance,

and has been used to compare tumor phylogenies [35, 36]. Using WPCD, we define the

following consensus tree problem.

Problem 2.3 (Single Consensus Transmission Tree (SCTT)). Given k distinct transmission
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trees S = {S1, · · · , Sk} with edge labelings {w1, · · · , wk} find a consensus transmission tree

R that minimizes d(S, R) =
∑k

i=1 d(Si, R).

2.4 COMPLEXITY

This section establishes hardness results for the decision and counting versions of the DTI

problem.

Theorem 2.1. DTI is NP-complete.

We show the hardness of DTI by reduction from the 1-in-3SAT problem, which is a known

NP-complete problem [37]. Details are in Appendix B.1.

It is known that the #1-in-3SAT is a #P-complete problem [38]. In order to show that

the #DTI is also #P-complete, it suffices to show that there exists a polynomial-time

reduction from #1-in-3SAT such that the number of solutions is preserved, which we do in

Appendix B.1.

Theorem 2.2. #DTI is #P-complete.

Since the decision problem DTI is NP-complete, there does not exist a fully polyno-

mial randomized approximate scheme (FPRAS) for the counting version of DTI unless

NP=RP [39, 40].

2.5 METHODS

This sections describes the methods developed to solve the decision, counting and sampling

versions of the DTI problem.

2.5.1 Decision Problem

Since the DTI is NP-complete, we propose to use SATISFIABILITY to solve the decision

problem. As such, we construct a Boolean formula φ for a given DTI instance (T, ˆ̀, τe, τr, C),

such that there is a bijection between the solutions of the DTI instance and the corresponding

SAT instance φ. Solving the SAT instance will then be equivalent to solving the correspond-

ing DTI problem.
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Figure 2.3: TiTUS accurately samples solutions to the DTI problem. (a) The num-
ber of solution to the rel-DTI (|LREL|), the DTI (|L|), and the DTI-SB (|LSB|) problems
computed using the Naive rejection sampling, TiTUS, and STraTUS respectively. The
number of solutions to the rel-DTI problem grows rapidly for increasing values of the sim-
ulated bottleneck size κ, while STraTUS fails to provide any solution when κ is greater
than 1. (b) The sampling efficiency, defined as the ratio |L| and |LREL| for increasing values
of simulated number of hosts m and bottleneck size κ. (c) The ratio between the minimum
and maximum observed sampling frequency using TiTUS with the true uniform sampling
frequency .

Vertex labeling: Decision variables x ∈ {0, 1}n×m encode a vertex labeling, i.e. xi,s = 1

if and only if the node `(vi) = s and xi,s = 0 otherwise. We encode uniqueness of the label

of each vertex with the following formula.

onehot({xi,1, · · · , xi,m}), ∀vi ∈ V (T ). (2.2)

The function onehot(X) encodes that exactly one binary variable x ∈ X is true, which can

be accomplished by the following constraint.[ ∨
x∈X

x

]
∧
[ ∧
x,y∈X

(¬x ∨ ¬y)

]
. (2.3)

Transmission edges: We encode the transmission edges using variables cs,t with s, t ∈ Σ

and s 6= t. We enforce that cs,t = 1 if and only if the host t is infected by host s and cs,t = 0,

i.e.

(xi,s ∧ xj,t) =⇒ cs,t, ∀(vi, vj) ∈ E(T ) and s, t ∈ Σ. (2.4)
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Root host: To enforce that the host which labels r(T ) is not infected by any other host,

we have

xi,t =⇒ ¬cs,t, ∀s, t ∈ Σ, s 6= t, (2.5)

where vi = r(T ).

Direct transmission constraint: We enforce that any host cannot be infected by more

than one other host. For each host t ∈ Σ, we have

¬(cs,t ∧ cs′,t), ∀s, s′ ∈ Σ and s 6= s′. (2.6)

We require that all transmission edges from host s to host t must have time intervals that

overlap. For all edge pairs (vi, vj), (vk, vl) that do not have overlapping time intervals, i.e.

[τ(vi), τ(vj)] ∩ [τ(vk), τ(vl)] = ∅, we impose

¬(xi,s ∧ xj,t ∧ xk,s ∧ xl,t), ∀s, t ∈ Σ, s 6= t. (2.7)

2.5.2 Counting and Sampling Problem

2.5.2.1 Naive Rejection based Method

For a naive rejection sampling algorithm, we relax the direct transmission constraint and

uniformly sample vertex labelings for the timed phylogeny T such that for all transmission

edges (u, v) we have (`(u), `(v)) ∈ E(C). As described in Section 2.3.1, we refer to this as the

rel-DTI problem. Let the set of such vertex labelings be LREL. Drawing a vertex labeling

labeling ` ∈ LREL uniformly at random from the set LREL can be done in polynomial time,

as we describe in Appendix A.1. The sampled vertex labeling labeling ` is rejected unless

it satisfies the direct transmission constraint, which can be verified in polynomial time. The

probability of success for this rejection based sampling algorithm is 1− (|L|/|LREL|)K after

K repetitions.

2.5.2.2 Approximate Counting and Sampling using SAT

Using the SAT formulation shown in Section 2.5.1, we use ApproxMC [41, 42] to approx-

imate |L| and UniGen [43, 44] to sample almost uniformly from L. We call the resulting
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Figure 2.4: The transmission number and number of unsampled lineages of the solutions to
the DTI problem are negatively correlated to the infection recall. (a) The infection recall for
the uniformly sampled solution within different percentile based on the transmission num-
ber. (b) The infection recall for the uniformly sampled solution within different percentile
based on the number of unsampled lineages. (c) The infection recall of the consensus trans-
mission trees within different percentiles of both the transmission number and the number
of unsampled lineages simultaneously.

method Transmission Tree Uniform Sampler (TiTUS). This method is available, together

with our previous method SharpTNI [25], at https://github.com/elkebir-group/TiTUS.

2.5.3 Consensus Problem

This section introduces a polynomial time algorithm to solve the SCTT problem. The

algorithm and the proof for correctness follow the work of [36]. Let S = {S1, · · · , Sk} be a

set of k transmission trees with edge weights {w1, · · · , wk}. Our goal is to find a consensus

tree R that minimizes d(S, R) where d(·, ·) is the weighted parent-child distance. We start by

considering a simpler problem, given a rooted tree R on the set Σ of hosts, find nonnegative

weights w∗ of the edges of R so as to minimize the WPCD to S. To solve this problem,

we augment the given edge weights wi of trees Si ∈ S to include non-edges, yielding the

function qi : Σ× Σ→ N, where

qi(s, t) =

wi(s, t), if (s, t) ∈ E(Si),

0, otherwise.
(2.8)
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Observe that the parent-child distance between two transmission trees Si and Sj can be

re-written as

d(Si, Sj) =
∑

(s,t)∈Σ×Σ

|qi(s, t)− qj(s, t)|. (2.9)

To get the optimal weights for the given tree R, for any edge (s, t) ∈ E(R), we define

w∗(s, t) = arg min
z>0

∑
Si∈S

|qi(s, t)− z|. (2.10)

Intuitively, without the z > 0 constraint, the median will minimize this cost. Therefore,

w∗(s, t) for every pair of hosts (s, t) is given by max{med, 1} where med is the median of

the set {q1(s, t), · · · , qk(s, t)}. For the case where k is even, we define med as the smaller of

the two middle values. Thus, we have the following proposition.

Lemma 2.1. Given a set S = {S1, · · · , Sk} of k transmission trees with edge weights

w1, · · · , wk and a transmission tree R, weights w∗(s, t) for (s, t) ∈ E(R) will minimize the

WPCD of S and R.

To identify a consensus tree R with minimum WPCD, we define the weighted parent-child

graph P as a complete graph with nodes given by the set Σ and a weight function

wp(s, t) =
∑
Si∈S

(|qi(s, t)− w∗(s, t)| − |qi(s, t)|) (2.11)

Observe that the weights of the edges of P can be negative.

Theorem 2.3. Given a set S = {S1, · · · , Sk} of k transmission trees with edge weights

w1, · · · , wk, a minimum weight spanning arborescence of the corresponding weighted parent-

child graph P defines a tree R that is a solution to the SCTT problem with the distance

measure used is weighted parent-child distance.

Proof. Provided in Appendix C.2. QED.

Although edge weights wp of P can be negative, the requirement of R to be a spanning

arborescence of G means that we can solve this problem in polynomial time with standard

minimum weight spanning arborescence algorithms.
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Figure 2.5: Schematic representation of unsampled lineages in outbreaks. Different
hosts H1 and H2 are represented by rectangular boxes and the samples taken from the hosts
are indicated by blue or green circles inside the boxes respectively. Black lines represent
the evolution of pathogen lineages. Solid lines correspond to within-host evolution of the
pathogen whereas dashed lines represent the transmission of strains during infection. Two
lineages L1 and L2 entering host H1 are shown. Lineage L1 is an unsampled lineage because
even though two strains of L1 are transmitted to host H2, none of the samples of H1 belong
to the lineage L1.

2.6 RESULTS

This section presents the results obtained by applying TiTUS to simulated as well as a

real dataset.

2.6.1 Simulations

We employ a two-stage approach to simulate an outbreak, generalizing [20]’s simulation

framework that uses a strong transmission bottleneck to support a weak transmission bot-

tleneck. First, we simulate the transmission process between the m hosts using the SIR

epidemic model [45]. The epidemiological model takes the transmission bottleneck size κ

and minimum number ns of strains/leaves for each host s as input. Given this input, the

model generates a transmission tree S with entry τe(s) and removal times τr(s) for each host

s as well as the number of transmissions w(s, t) = κ between each pair (s, t) ∈ E(S) of hosts.

Given S and w, we then simulate the evolution of the pathogens within each infected host

using a simple coalescence model with constant population size [46]. This process yields a

forest of timed phylogenies for each individual host s. We construct a single timed phylogeny

of all hosts by stitching together individual timed phylogenies using the transmission tree

S. We sample all the pathogen strains present in each infected host. This results in more

samples from hosts that have higher within-host diversity. For each combination of number

m ∈ {5, 7, 10} of hosts and bottleneck size κ ∈ {1, 2, 3} we generate five instances, amount-

ing to a total of 45 simulated instances. The cases with κ = 1 correspond to outbreaks
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Figure 2.6: Consensus transmission tree computed for the solutions selected using
the proposed criteria infers almost the entire transmission chain for the HIV
outbreak. The figure on the left shows the infection recall of the solutions with different
transmission numbers and number of unsampled lineages, uniformly sampled using TiTUS.
The black box encompasses the solutions selected for the percentile threshold of α = 0.01.
The figure on the right shows the consensus transmission tree for the selected solutions.
Each edge is labeled by the number of strains transmitted from the donor to the recipient
host. The incorrectly inferred transmission B→F is highlighted in red.

with a strong transmission bottleneck. In order to mimic the uncertainty in epidemiolog-

ical data seen in practice, we increase the length of the entry and removal time interval

[τe(s)−∆, τr(s) + ∆] for each host s, where ∆ equals 10% of the total outbreak duration.

We find that increasing the number of hosts and bottleneck size in the simulations leads to

an increase in the number of vertices n in the phylogenetic trees (Fig. E.2). This leads to a

sharp increase in the number of feasible solutions to the rel-DTI (Fig. 2.3a). The number of

solutions to DTI, on the other hand, stays relatively constant for increasing bottleneck size.

As a consequence of this, the sampling efficiency of the naive rejection sampling method,

defined by the ratio L/|LREL|, precipitates with increasing number m of hosts and bottleneck

size κ proving it unsuitable for any real applications.

For cases with simulated bottleneck size κ > 1, STraTUS fails to provide any solutions

(Fig. 2.3a). This shows that when multi-strain infections occur, transmission history in-

ference with a strong bottleneck assumption will fail to provide the true transmission tree

topology. Finally, we assess the sampling accuracy of TiTUS by comparing the sampling

frequency with 1/|L| where |L| is computed with sharpSAT [47]. For each unique solution

that is sampled, the expected sampling frequency 1/|L| is the same. Fig. 2.3c shows that the

ratio between both the minimum and maximum values of the observed sampling frequencies

with their expected values is close to 1.

We evaluate the performance of TiTUS against SharpTNI [25] on simulations with par-

tially sampled outbreaks. That is, we only collect a fixed number of samples per host (equal

to the bottleneck size κ), regardless of the within-host diversity. Partial sampling during
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an outbreak is common for ongoing and large-scale epidemics, such as the current COVID-

19 pandemic. We ran simulations of partially sampled outbreaks, with number of hosts

m ∈ {5, 7} and bottleneck size κ ∈ {2, 3, 4, 5}, where the transmission history is a tree. We

generated five instances for each combination of m and κ, resulting in a total of 40 simulated

instances. We find that in 26/40 of the instances, SharpTNI fails to produce a transmission

tree while TiTUS is able to sample transmission trees in all the cases (Fig. E.3).

In summary, our simulations show that methods that assume a strong transmission bot-

tleneck cannot be applied to outbreaks with a weak bottleneck. Similarly, methods that do

not enforce direct transmission, such as SharpTNI, might return transmission histories that

include complex transmission pattern such as superinfection. Moreover, the exponentially

increasing gap between the size of the solution space of rel-DTI compared to DTI renders the

rejection-based sampling impractical. In contrast, TiTUS almost uniformly samples from

the complex solution space of DTI.

2.6.1.1 Criteria to Prioritize Candidate Transmission Trees

We propose several criteria for ranking the vertex labelings for a given timed phylogeny

uniformly sampled by TiTUS. The first criterion is the number of transmission edges in the

vertex labeling. Based on the parsimony principle, which has been used in previous works

for both phylogeny inference [48] as well as transmission tree inference [25, 32, 49], we expect

vertex labelings that have few transmission edges to be closer to the ground truth.

The second criterion is the number of unsampled lineages, which is the number of transmis-

sion edges (u, v) for which there does not exist a descendant leaf v′ (i.e. v �T v′) labeled by

`(v). Unsampled lineages are a consequence of multi-strain infections and we expect to see

fewer unsampled lineages when the within-host diversity of the infected hosts is adequately

sampled. Fig. 2.5 illustrates this concept.

To assess these criteria, we compare the sampled transmission trees with the ground truth

by computing the infection recall, defined as the fraction of transmission events between

pairs of hosts that are correctly inferred. Fig. 2.4a shows the value of the infection recall

for candidate solutions in different percentiles based on the number of transmission edges.

Clearly, as we look at solutions with larger transmission numbers, the infection recalls de-

creases. Fig. 2.4b show a similar negative correlation between the infection recall and the

number of unsampled lineages. We use both the transmission number and the number of

unsampled lineages to prioritize the uniformly sampled candidate solutions. Specifically, for

any given percentile threshold α we include all the vertex labelings whose percentile is at

most α for both the transmission number and the number of unsampled lineages. (Thus,
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setting α = 1 will include all sampled vertex labelings.) The selected vertex labelings are

then used to compute the consensus transmissions tree. Fig. 2.4c shows the infection recall

of the consensus transmission trees for increasing value of the percentile threshold α. We

see that a value of α that is either too small or too large results in a decrease in the infec-

tion recall. Based on the simulated data, we see that α∗ = 0.01 yields accurate consensus

transmission tree solutions. Hence, the two criteria enable accurate prioritization of sampled

vertex labelings.

2.6.2 HIV Outbreak with a Known Transmission Chain

We apply our method TiTUS to infer the transmission history of an HIV-1 outbreak

involving 11 patients with a known transmission chain [1, 50]. The data consists of 212 sam-

ples collected over the span of 18 years from the 11 patients. The direction of transmissions

and a relatively narrow time interval for each transmission event were inferred from epidemi-

ological information obtained by patient interviews, clinical data and treatment histories of

the patients.

The DTI problem for this HIV dataset is set up as follows. For the timed phylogeny,

we use the Maximum Clade Credibility (MCC) tree obtained from the partially sequenced

env regions presented by [1] in their publication. Table. E.1 shows the sampling times

and transmission windows provided in the epidemiological data for each of the hosts. The

transmission window of a host is the time interval inside of which the host is expected to

have been infected. Transmission windows for host A and host D are incongruent with the

given timed phylogeny. By this we mean there is no vertex labeling on the given MCC

phylogeny that allows for the known transmissions to host A and host D. We exclude these

time windows, while the transmission windows for the remaining hosts are used to constraint

the possible vertex labelings of the MCC tree. We restrict the infection for each host to take

place in within the transmission window provided in the epidemiological data. Note that

while using the time window constraints, we only restrict the time of infection and do not

utilize information about the known infectors for each infected host. Finally, for each host

the entry time is taken as the beginning of its time window of transmission and the removal

time is the latest date of sampling (Table E.1). We find that STraTUS fails to provide a

solution on this dataset. Indeed, a weak transmission bottleneck needs to be considered in

order to infer the transmission history.

For this DTI instance, using sharpSAT [47] we find that there are exactly 30,901,500

feasible vertex labelings. We generate 100,000 samples from this solution space and compute

the infection recall when compared to the known transmission chain. Fig. 2.6 shows the
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values the infection recall for solutions with different number of transmission edges and

number of unsampled lineages. The infection recall is close to 1 for the solutions that have

no unsampled lineages. The number of transmission edges also has a negative, albeit weaker

correlation with the infection recall.

For any given percentile threshold α we include all vertex labelings whose percentile is

at most α for both the transmission number and the number of unsampled lineages. Based

on the simulations, we focus on percentile threshold α∗ = 0.01. For this threshold value,

Fig. 2.6 shows the consensus transmission tree inferred by TiTUS. The infection recall for

this tree is 0.9, i.e. we correctly infer 9/10 transmission from the known transmission chain.

We incorrectly infer the transmission B→F while the known transmission to F based on

epidemiological data is A→F. Fig. E.5 shows similar behavior of the infection recall as a

function of α as observed in our simulations. Moreover, this figure shows that our method

is robust around α∗ = 0.01.

2.7 DISCUSSION

In this paper, we formulated the Direct Transmission Inference (DTI) problem of inferring

transmission trees for a given timed phylogeny and epidemiological data while supporting a

weak transmission bottleneck. Weak transmission bottlenecks are common in the spread of

diseases due to pathogens with large inoculum sizes, high mutation rates, long incubation

times and chronic infections [18]. Previous studies of counting and sampling transmission

trees for a given timed phylogeny assume a strong transmission bottleneck [28, 29], and are

not applicable to outbreaks of pathogens with a weak transmission bottleneck, often failing

to return any solution.

We proved that the decision version of the DTI problem is NP-complete and the counting

version #DTI is #P-complete. Leveraging recent advances made in approximate counting

and sampling of solutions to SATISFIABILITY [41, 43, 44, 51], TiTUS, which uses a SAT-

ISFIABILITY oracle to almost uniformly sample from the solution space of DTI. In most

cases, uniformly sampled candidate solutions from the transmission tree space will deviate

considerably from the ground truth. To address this issue, we proposed two criteria that can

be used to prioritize the uniformly sampled transmission trees. We demonstrated the per-

formance and robustness of our selection criteria on both simulated data and a real dataset

of an HIV outbreak [1].

Further, we also considered the problem of summarizing a given set of candidate trans-

mission tree solutions of a disease outbreak. We defined a new distance metric weighted

parent-child distance (WPCD) on the space of transmission multi-trees that capture the
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transmission of multiple strains between hosts during an outbreak. This distance is an ex-

tension of the parent-child distance which is used in previous works to summarize cancer

phylogenies [35, 36]. We presented a polynomial time algorithm for finding the consensus

transmission tree with minimum total WPCD from the candidate solutions. The perfor-

mance of the consensus transmission tree of recalling the transmissions that occurred during

the outbreak is demonstrated both on simulated and real datasets.

There are several avenues for future research. First, the decision version of the DTI prob-

lem can be used to prioritize a posterior distribution of phylogenies, by checking if each

phylogeny admits a vertex labeling that induces a transmission tree that is compatible with

the given epidemiological data. A similar approach is employed by [52] where they prioritize

statistically likely timed phylogenies that admit vertex labelings with fewer transmission

edges. By including biological relevant constraints such as a contact map and direct trans-

mission constraints, we expect to obtain high-fidelity phylogenetic and transmission history

reconstructions. Second, one limitation of the proposed method is that it assumes that all

the infected hosts in the outbreak are sampled. This assumption is only applicable for small

outbreaks in regions with perfect surveillance and reporting system in place. An extension

of this method to include unsampled hosts would be a useful. Third, akin to [33], we plan to

extend the SCTT to simultaneously cluster the set S of transmission trees and infer a rep-

resentative consensus transmission tree for each cluster. Fourth, we plan to directly include

the identified prioritization criteria as constraints in the DTI problem. Finally, we plan to

apply this methodology to study the origins of observed within-host diversity in COVID-19

patients [15, 16].
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Chapter 3: Viral Transcript Assembly

3.1 BACKGROUND

Coronaviruses, and more generally viruses in the taxonomic order of Nidovirales, are en-

veloped viruses containing a positive-sense, single-stranded RNA genome that encodes for

non-structural proteins near the 5’ end as well as structural and accessory proteins near the

3’ end [53]. Since the host ribosome processes mRNA starting at the 5’ end, translation

of the viral genome only generates the non-structural proteins. Expression of the remain-

ing genes is achieved by discontinuous transcription performed by the viral RNA-dependent

RNA polymerase (RdRp) [54], a protein that is encoded in the non-structural part of the vi-

ral genome. Specifically, RdRp can skip over contiguous genomic regions, or segments, in the

viral RNA template, resulting in a repertoire of discontinuous transcripts that correspond

to distinct subsequences of segments ordered as in the reference genome (Figure 3.1a). Sev-

eral recent studies have analyzed SARS-CoV-2 sequencing samples, identifying ‘split reads’

— i.e. single reads that span non-contiguous parts of the viral geneome — that provide

evidence for canonical discontinuous transcription events that produce an intact 3’ open

reading frame (ORF) as well as non-canonical discontinuous transcription events whose role

is unclear [55, 56, 57]. However, to the best of our knowledge, no study has attempted to

assemble coronavirus transcriptomes, which could provide important clues about the viral

life cycle under various conditions such as drug treatment.

Current methods for transcript assembly are mainly designed for eukaryotes and fall under

two broad categories: (i) reference-based methods and (ii) de novo assembly methods. The

main distinction is that the former require the reference genome as input while the latter

have no such requirement. As such, de novo assembly methods [58, 59, 60, 61, 62] are

useful when the reference genome is unavailable or when the diversity of different species

in the sample is too large. On the other hand, reference-based methods [63, 64, 65, 66, 67]

generally achieve higher accuracy as they use the reference genome as a scaffold on which to

align sequencing reads. Specifically, given an alignment R, reference-based methods seek the

set T of transcripts that comprise the transcriptome, enabling the subsequent quantification

of their abundances c using separate tools [68, 69].

While in this work we similarly seek to reconstruct transcripts T and their abundances

c from an alignment R of coronavirus sequencing samples, there are critical differences be-

tween the processes of transcription in eukaryotes and coronaviruses. In eukaryotes, a gene

may express multiple transcripts that differ in their composition due to alternative splicing,
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Our goal is to find

arg max
T ,c

Pr(R | T , c),

where Pr(R | T , c) is the probability of observed reads R from given transcripts T with proportions c.
Using the Bayes theorem and considering that all the reads are independent of one another, we get,

Pr(R | T , c) =
nY

i=1

mX

j=1

Pr(ri | Tj) Pr(Tj),

where Pr(ri | Tj) is the probability of observing read ri given that it is generated from transcript Tj and
Pr(Tj) is the probability of generating a read from transcript Tj . The marginalization over the set of tran-
scripts T is necessary because of the ambiguity of the transcript of origin of any given read.

4 Methods

4.1 Transcript Assembly Problem
Make an obser-
vation about core
sequences, the
need for cluster-
ing. this does not
happen in regular
transcript assem-
bly, where exon are
non-overlapping in
terms of sequence.

What are discontinuous edges? Core sequences – there will be ambiguity unlike in alternative splice
where exons are non-overlapping.

Notable differences: matching core sequences leads to set of distinct discontinuous edges that originate
from the same transcript.

4.2 Testing Models of Discontinuous Transcription

5 Results

5.1 Simulations

1. Get segment graph on the Cell short-read data

2. Generate bam files with negative sense only

3. run scallop, jumper and stringtie on the simulated bam files

First simulation figure:

• Panel (a): Five precision/recall plots, one for each seed.

• Panel (a): Each plot will have 3 methods (jumper, scallop and stringtie). Three repetitions per method
and seed (these are different polyester runs, shapes)

• Panel (b): AUC

• Panel (c): Average precision/recall for default value of parameter.

• Panel (d): Average precision/recall for most lenient value of parameter.

• Panel (e): Canonical vs. non-canonical

• Panel (f): Split by abundance/expression (low, medium, high).

10

10%5' 3'

20%5' 3'

20%5' 3'
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Figure 3.1: (a) Coronaviruses generate a set T of discontinuous transcripts with varying
abundances c during infection. (b) Next generation sequencing will produce an alignment R
with two types of aligned reads: unphased reads that map to a contiguous genomic region
(black) and phased reads that map to distinct genomic regions (red). (c) From R we obtain
the segment graph G, a directed acyclic graph with a unique Hamiltonian path. Jumper
solves the Discontinuous Transcript Assembly to infer T and c with maximum like-
lihood. While this figure shows single end reads, our problem statement and method make
use of the additional information provided by paired-end reads.

which is predominantly mediated by the spliceosome and results in the generation of multiple

mRNAs with differentially joined or skipped exons from the same gene. By contrast, tran-

scripts in coronaviruses result from discontinuous transcription, which is mediated by viral

RdRp and results in the removal of contiguous segments due to jumps of the RdRp. While

conceptually the resulting discontinuous transcripts can be viewed as the result of alterna-

tive splicing of a single gene that corresponds to the complete viral genome, there are four

key differences and constraints (Figure 3.1a). First, the genomes of coronaviruses are much

smaller (∼ 30kb) than eukaryotic genomes. Second, while alternative splicing sometimes

involves shuffling of exons, this phenomenon is not observed in discontinuous transcription

where the order of segments is fixed. Third, discontinuous transcripts have matching seg-

ments at the 5’ and 3’ ends, which is not necessarily true for eukaryotic transcripts of the

same gene. Fourth, the complete viral genome, without any jumps, is always part of the

transcriptome. Current transcript assembly methods are not optimized to leverage these

four constraints that characterize coronavirus transcriptomes.

In this study, we introduce the Discontinuous Transcript Assembly (DTA) prob-

lem of finding discontinuous transcripts T and their abundances c (Figure 3.1a) given an

alignment R of paired end reads (Figure 3.1b). Underpinning our approach is the concept
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Figure 3.2: (a) Phasing reads in an alignmentR define a set of junctions, which in turn define
the segment graphG. (b) Each phasing read has characteristic discontinuous edges indicating
the set σ⊕ of discontinuous edges present in the read as well as conflicting/overlapping
discontinuous edges σ	. Here, phasing read r (blue), has σ⊕(r) = {e3, e5} and σ	(r) =
{e2, e4}. Note that e1 is not included in σ	(r) as it does not overlap with π(r) = {e3, e5}.

of a segment graph (Figure 3.1c), a directed acyclic graph that, distinct from the splice

graph used to characterize alternative splicing, has a unique Hamiltonian path due to the

aforementioned constraints. This enables us to characterize discontinuous transcripts T as

small subsets of non-overlapping edges in this graph. Our method, Jumper, uses this com-

pact representation to solve the DTA at scale via a progressive heuristic that incorporates a

mixed integer linear program. Using simulations, we show that Jumper drastically outper-

forms Scallop [63] and StringTie [64], existing methods for reference-based transcript

assembly in the general case. In real data [55], we run Jumper on paired-end short-read

data of virus infected Vero cells and use long-read data of the same sample for validation.

We find that Jumper not only identifies canonical transcripts that are part of the refer-

ence transcriptome, but also predicts expression of non-canonical transcripts that are well

supported by long-read data. Similarly, Jumper identifies canonical and non-canonical tran-

scripts in SARS-CoV-1 and MERS-CoV samples [70]. Finally, we demonstrate the use of

Jumper to study viral drug response at the transcript level by analyzing samples with and

without treatment prior to infection [3]. In summary, Jumper enables detailed analyses of

coronavirus transcriptomes under varying conditions.
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3.2 DISCONTINUOUS TRANSCRIPTION PROBLEM STATEMENT

To formulate the Discontinuous Transcript Assembly problem, we begin by defining

discontinuous transcripts as follows.

Definition 3.1. Given a reference genome, a discontinuous transcript T is a sequence

v1, . . . ,v|T | of segments where (i) each segment corresponds to a contiguous region in the

reference genome, (ii) segment vi precedes segment vi+1 in the reference genome for all

i ∈ {1, . . . , |T | − 1}, (iii) segment v1 contains the 5’ end of the reference genome and

(iv) segment v|T | contains the 3’ end of the reference genome.

In the literature, discontinuous transcripts that differ from the genomic transcript T0

are called subgenomic transcripts, which correspond to subgenomic RNAs (sgRNAs) [55].

Transcripts T = {Ti} occur in abundances c = [ci] where ci ≥ 0 is the relative abundance of

transcript Ti such that
∑|T |

i=1 ci = 1. While next-generation sequencing technologies provide

high coverage of the viral genome of length L of about 10 to 30 Kbp, they are limited to short

reads with fixed length ` ranging from 100 to 400 bp. For ease of exposition, we describe the

formulation in context of single-end reads, but in practice we use the paired-end information

if it is available.

As `� L, the identity of the transcript of origin for a given read is ambiguous. Therefore

we need to use computational methods to reconstruct the transcripts and their abundances

from the sequencing reads. Specifically, given a coronavirus reference genome of length L

and reads of a fixed length `, we use a splice-aware aligner such as STAR [71] to obtain an

alignment R. This alignment provides information about the abundance c and composition

of the underlying transcripts T in the following two ways. First, the depth, or the number

of reads along the genome is informative for quantifying the abundance c of the transcripts.

Second, the composition T of the transcripts is embedded in phasing reads, which are reads

that align to multiple distinct regions in the reference genome (Figure 3.1b).

To make the relationship between T , c and R clear, we introduce the segment graph G,

which is obtained from the phasing reads in a alignment R. As mentioned, each phasing

read r ∈ R maps to q ≥ 2 distinct regions in the reference genome. Each pair of regions that

are adjacent in the phasing read are separated by two positions v, w (where w−v ≥ 2) in the

reference genome called junctions. Thus, each phasing read contributes 2q−2 junctions. The

collective set of junctions contributed by all phasing reads inR in combination with positions

{1, L} induces a partition of the reference genome into closed intervals [v−, v+] of junctions

that are consecutive in the reference genome (i.e. there exists no other junction that occurs

in between v− and v+). The resulting set of segments equals the node set V of segment
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graph G (Figure 3.2a). The edge set E of segment graph G is composed of continuous

edges E→ and discontinuous edges Ey. Continuous edges E→ are composed of ordered

pairs (v = [v−, v+],w = [w−, w+]) of nodes that correspond to segments that are adjacent

in the reference genome, i.e. where v+ = w−. On the other hand, discontinuous edges Ey

are composed of ordered pairs (v = [v−, v+],w = [w−, w+]) of nodes that corresponds to

segments that are adjacent in at least one phasing read inR but not adjacent in the reference

genome (i.e. w− − v+ ≥ 2). Figure 3.1c shows an example of a segment graph.

Definition 3.2. Given an alignment R, the corresponding segment graph G = (V,E→∪Ey)

is a directed graph whose node set V equals the set of segments induced by the junctions of

phasing reads inR and whose edge set E = E→∪Ey is composed of edges (v = [v−, v+],w =

[w−, w+]) that are either continuous, i.e. v+ = w−, or discontinuous, i.e. w− − v+ ≥ 2 and

there exists a phasing read where junctions v+ and w− are adjacent.

We note that the segment graph G is closely related to the splice graph used in regular

transcript assembly where transcripts correspond to varying sequences of exons due to alter-

native splicing. The key difference, however, is that an alignment R generated from reads

obtained from discontinuous transcripts induces a segment graph G that is a directed acylic

graph (DAG) with a unique Hamiltonian path. This is because, as stated in Definition 3.1,

discontinuous transcripts T have matching 5’ and 3’ ends, and, although their comprising

segments may vary, their order follows the reference genome.

Observation 3.1. Segment graph G is a directed acyclic graph with a unique Hamiltonian

path.

The unique Hamiltonian path of G corresponds to the sequence of continuous edges E→.

This path corresponds to the whole viral genome which is generated by the RdRp during

the replication step [54]. Moreover, by the above observation, G has a unique source node s

and sink node t. Importantly, each transcript T ∈ T that is compatible with an alignment

R corresponds to an s− t path π(T ) in G. Here, a path π is a subset of edges E that can be

ordered (v1,w1), . . . , (v|π|,w|π|) such that wi = vi+1 for all i ∈ [|π| − 1] = {1, . . . , |π| − 1}.
While splice graphs are DAGs and typically have a unique source and sink node as well,

they do not necessarily contain a Hamiltonian path [63, 72, 73, 74].

Our goal is to find a set T of transcripts and their abundances c that maximize the

posterior probability

Pr(T , c | R) ∝ Pr(R | T , c) Pr(T , c). (3.1)
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Under an uninformative, flat prior, this is equivalent to maximizing the probability Pr(R |
T , c). We use the segment graph G to compute the probability Pr(R | T , c) of observing an

alignment R given transcripts T and abundances c. We follow the generative model which

has been extensively used for transcription quantification [68, 69, 75]. The notations used

in this paper best resemble the formulation described in [74]. Let R be composed of reads

be {r1, . . . , rn} and the set T of transcripts be T = {T1, . . . , Tk} with lengths L1, . . . , Lk

and abundances c = [c1, . . . , ck]. In line with current literature, reads R are generated

independently from transcripts T with abundances c. Further, we must marginalize over

the set of transcripts T as the transcript of origin of any given read is typically unknown,

since ` � L. Moreover, we assume that the fixed read length ` is much smaller than the

length Li of any transcript Ti. As such, we that Pr(R | T , c) equals

Pr(R | T , c) =
n∏
j=1

Pr(rj | T , c)

=
n∏
j=1

1∑k
b=1 cbLb

∑
i:π(Ti)⊇π(rj)

ci, (3.2)

where π(T ) ⊆ E is the s − t path corresponding to transcript T and π(r) ⊆ E is the

path induced by the ordered sequence of segments (or nodes of G) spanned by read r.

By construction, π(T ) ⊇ π(r) is a necessary condition for transcript T to be a candidate

transcript of origin of read r. Appendix C.3 gives the derivation of the above equation

(Eq. (3.2)). Our goal is to find arg maxT ,c Pr(R | T , c), leading to the following problem.

Problem 3.1 (Discontinuous Transcript Assembly (DTA)). Given alignmentR and

integer k, find discontinuous transcripts T = {T1, . . . , Tk} and abundances c = [c1, . . . , ck]

such that (i) each transcript Ti ∈ T is an s−t path in segment graph G, and (ii) Pr(R | T , c)

is maximum.

The probability P (R | T , c), in Eq. (3.2), is expressed in terms of the observed reads

and their induced paths π(r) ⊆ E(G) in the segment graph G. In the Methods section, we

describe a more concise way of expressing the probability P (R | T , c) using the fact that the

segment graph G is a DAG with a unique Hamiltonian path. This concise characterization

enables us to design a progressive heuristic that incorporates an efficient mixed linear integer

program (MILP) to solve the DTA problem (details are in the Methods section). Our

resulting method, Jumper, is implemented in Python 3 using Gurobi [76] (version 9.0.3) to

solve the MILP and pysam [77] for reading and processing the input BAM file. Jumper is

available at https://github.com/elkebir-group/Jumper.
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3.3 COMBINATORIAL CHARACTERIZATION OF SOLUTIONS

Eq. (3.2) defines the probability Pr(R | T , c) in terms of the observed reads r and their

induced paths π(r) ⊆ E(G) in the segment graph G. The authors in [74] use this character-

ization of reads as paths in a general splice graph to account for ambiguity in the transcript

of origin for the reads. For a general splice graph, such a characterization is required to

capture all the possible observed reads. However, in our setting, where the segment graph

G is a DAG with a unique Hamiltonian path, it is possible to describe each read and each

transcript uniquely in a more concise form. Each path in the segment graph is characterized

by a set of non-overlapping discontinuous edges. To describe this, we introduce the following

definition.

Definition 3.3. Two edges (v = [v−, v+],w = [w−, w+]) and (x = [x−, x+],y = [y−, y+]) of

G overlap if the open intervals (v+, w−) and (x+, y−) intersect, i.e. (v+, w−)∩ (x+, y−) 6= ∅.

For any transcript T corresponding to an s − t path in G, for which we are only given

its discontinuous edges σ(T ), the continuous edges of T are uniquely determined by G and

σ(T ). That is, the continuous edges of T equal precisely the subset of continuous edges E→

that do not overlap with any of the discontinuous edges in σ(T ). Conversely, given an s− t

path π(T ) of G the corresponding set of discontinuous edges is given by σ(T ) = π(T )∩Ey.

Thus, we have the following proposition with the proof in Appendix C.4.

Proposition 3.1. There is a bijection between subsets of discontinuous edges that are

pairwise non-overlapping and s− t paths in G.

In a similar vein, rather than characterizing a read r by its induced path π(r) ⊆ E

in the segment graph, we characterize a read r by a pair (σ⊕(r), σ	(r)) of characteristic

discontinuous edges. Here, σ⊕(r) is the set of discontinuous edges that must be present in

any transcript that could generate read r, i.e. σ⊕(r) = π(r) ∩ Ey. Conversely, σ	(r) is the

set of discontinuous edges that must be absent in any transcript that could generate read

r due to the unidirectional nature of RdRp transcription. Thus, the set σ	(r) consists of

discontinuous edges Ey \ σ⊕ that overlap with any edge in π(r). Clearly, while σ⊕(r) ∩
σ	(r) = ∅, it need not hold that σ⊕(r) ∪ σ	(r) equals Ey (see Figure 3.2b). Formally, we

define (σ⊕(r), σ	(r)) as follows.

Definition 3.4. The characteristic discontinuous edges of a read r are a pair (σ⊕(r), σ	(r))

where σ⊕(r) is the set of discontinuous edges present in read r, i.e. σ⊕(r) = π(r)∩Ey, and

σ	i is the set of discontinuous edges (v = [v−, v+],w = [w−, w+]) ∈ Ey \σ⊕(r) that overlaps

with an edge (x = [x−, x+],y = [y−, y+]) in π(r).
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We have the following result with the proof given in Appendix C.4.

Proposition 3.2. Let G be a segment graph, T be a transcript and r be a read. Then,

π(T ) ⊇ π(r) if and only if σ(T ) ⊇ σ⊕(r) and σ(T ) ∩ σ	(r) = ∅.

Hence, we may rewrite the likelihood Pr(R | T , c) as

n∏
j=1

1∑k
b=1 cbLb

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci. (3.3)

where X(T , σ⊕j , σ	j ) be the subset of indices i corresponding to transcripts Ti ∈ T where

σ(Ti) ⊇ σ⊕j and σ(Ti) ∩ σ	j = ∅. Note that the only difference between Eq. (3.3) and the

formulation in Eq. (3.2) is the way that the candidate transcripts of origin for a given read are

described. In Eq. (3.2), they are described as paths in the splice graph wheres in Eq. (3.3),

they are described by sets of pairwise non-overlapping discontinuous edges in the segment

graph. This leads to the following theorem.

Theorem 3.1. For any alignment R, transcripts T and abundances c, Equations (3.2) and

(3.3) are identical.

Although we have described the formulation for single-end reads, this characterization

is applicable to paired-end and even synthetic long reads. Moreover, our implementation

provides support for both single-end and paired-end read samples with a fixed read length.

The above characterization using discontinuous edges allows us to reduce the number of terms

in the likelihood function since multiple reads can be characterized by the same characteristic

discontinuous edges. We describe this in detail in the next section.

3.4 METHODS

To solve the DTA problem, we use the results of the section on 3.3 to write a more

concise form of the likelihood. Specifically, let S = {(σ⊕1 , σ	1 ), . . . , (σ⊕m, σ
	
m)} be the set

of characteristic discontinuous edges generated by the reads in alignment R. Let d =

{d1, · · · , dm} be the number of reads that map to each pair in S. Using that reads r with

identical characteristic discontinuous edges (σ⊕(r), σ	(r)) have identical probabilities Pr(r |
T , c), we obtain the following mathematical program for the log-likelihood log Pr(R | T , c)

(see Appendix C.3 for derivation).
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max
T ,c

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci − n log
k∑
b=1

cbLb (3.4)

s.t. π(Ti) is an s− t path (3.5)

in the segment graph G,∀i ∈ [k],

k∑
i=1

ci = 1, (3.6)

ci ≥ 0, ∀i ∈ [k]. (3.7)

Observe that the first sum (over reads) is concave and the second sum (over transcripts)

is convex. Since we are maximizing, our objective function would ideally be concave. In

Appendix C.4, we prove the following lemma, which enables us to remove the second term

using a scaling factor for the relative abundances c that does not alter the solution space.

Lemma 3.1. Let D > 0 be a constant, ci(c) = ciD/
∑k

j=1 cjLj and ci(c) = ci/
∑k

j=1 cj for

all i ∈ [k]. Then, (T , c = [c1(c), . . . , ck(c)]) is an optimal solution for (3.4)-(3.7) if and only

if (T , c = [c1(c), . . . , ck(c)]) is an optimal solution for

max
T ,c

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci (3.8)

s.t. π(Ti) is an s− t path (3.9)

in the segment graph G,∀i ∈ [k],

k∑
i=1

ciLi = D, (3.10)

ci ≥ 0, ∀i ∈ [k]. (3.11)

We formulate the mathematical program given in Lemma 3.1 as a mixed integer linear

program. More specifically, we encode (i) the composition of each transcript Ti as a set

σ(Ti) of non-overlapping discontinuous edges, (ii) the abundance ci and length Li of each

transcript Ti, (iii) the total abundance
∑

i∈X(T ,σ⊕j ,σ
	
j ) ci of transcripts supported by charac-

teristic discontinuous edges (σ⊕j , σ
	
j ), and (iv) a piecewise linear approximation of the log

function using a user-specified number h of breakpoints. We will describe (i) and (ii) in the

following and refer to Appendix A.2 for (iii) and (iv).
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Transcript composition. We begin modeling (3.9), which states that each transcript

Ti must correspond to an s − t path in the segment graph G. Using Proposition 3.1, we

introduce binary variables x ∈ {0, 1}|Ey|×k to encode the presence of discontinuous edges in

each of the k s − t paths corresponding to the k transcripts in T . For any discontinuous

edge e = (v = [v−, v+],w = [w−, w+]), let I(e) denote the open interval (v+, w−) between

the two segments v and w. By Proposition 3.1, it must hold that I(e) ∩ I(e′) = ∅ for any

two distinct discontinuous edges e and e′ assigned to the same transcript. To encode this,

we impose

xe,i + xe′,i ≤ 1, ∀i ∈ [k], e, e′ ∈ Ey (3.12)

s.t. e 6= e′, I(e) ∩ I(e′) 6= ∅. (3.13)

Transcript abundance and length. We introduce non-negative continuous variables

c = [c1, . . . , ck] that encode the abundance of the k transcripts. The scale of these abundances

depends on the choice of D. We choose D = `∗ where `∗ is the length of the shortest s− t

path in the segment graph G. Substituting D = `∗ into (3.10) yields
∑k

i=1 ciLi = `∗.

Since ciLi ≤
∑k

j=1 cjLj = `∗ and Li ≥ `∗, we have that ci ≤ 1. To model the product ciLi

of the length Li of a transcript Ti and its abundance ci, we focus on individual discontinuous

edges e. For any discontinuous edge e = (v = [v−, v+],w = [w−, w+]), let L(e) = w− − v+

be the length of the interval. Observe that

ciLi = ciL− ci
∑

e∈σ(Ti)

L(e) = ciL−
∑
e∈Ey

cixe,iL(e). (3.14)

We introduce continuous variables ze ∈ [0, 1]k and encode the product ze,i = cixe,i for all

e ∈ Ey as

ze,i ≤ ci, ∀i ∈ [k], (3.15)

ze,i ≤ xe,i, ∀e ∈ Ey, i ∈ [k], (3.16)

ze,i ≥ ci + xe,i − 1, ∀e ∈ Ey, i ∈ [k]. (3.17)

Therefore, we may represent
∑k

i=1 ciLi = `∗ as

k∑
i=1

ciL−
k∑
i=1

∑
e∈Ey

ze,iL(e) = `∗. (3.18)

The resulting formulation has O(|Ey|k + |Ey|m + mh) variables, where h is the user-
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specified number of breakpoints used in the piecewise linear approximation of the log func-

tion. This number includes |Ey|k binary variables. The number of constraints is O(k|E|2 +

|E|km).

Progressive heuristic. In practice, the number of discontinuous edges in the segment

graph is inflated due to ambiguity in the exact location at which the RdRp jumps as well

as sequencing and alignment errors. This leads to large number of binary variables in our

MILP (we have k · |Ey| binary variables) which can make the MILP intractable. In order

to approximately solve the problem with large values of k, we implement a progressive

heuristic. Our heuristic takes as input the alignment R and an integer k, which is the

maximum number of transcripts in the solution. At each iteration p ≤ k, we are given a

set T of p− 1 previously computed transcripts and seek a new transcript T ′ by solving the

MILP (see Appendix A.3 for details) using function SolveILP with additional constraints

to fix the values of the variables that encode the presence/absence of discontinuous edges

for the transcripts in T . The resulting reduction in number of binary variables from |Ey|k
to |Ey| improves the running time of the MILP. As an additional optimization, we re-

estimate the abundances of a new set T ′ of transcripts. This set contains all transcripts

in T as well additional transcripts corresponding to all possible subsets of discontinuous

edges σ(T ′) of the newly identified transcript T ′, identified by the function Expand. We

solve a linear program (see Appendix A.3 for details) with function SolveLP to re-estimate

the abundances c′ of T ′, retaining only the top p transcripts Ti from T ′ with the largest

abundances ciLi. We terminate upon convergence, i.e. if T = T ′, or if the number p of

iterations reaches the number k. Algorithm 3.1 provides the pseudo code of the progressive

heuristic implemented in Jumper. The details of the subproblems SolveILP and SolveLP

are given in Appendix A.3.

Implementation details. Matching core sequences that mediate the discontinuous tran-

scription by RdRp lead to ambiguity in precise location of breakpoint during alignment of

spliced reads. Therefore, in practice we observe multiple discontinuous edges with closely

spaced 5’ and 3’ breakpoints. Moreover, false positive discontinuous edges are introduced

due to sequencing and alignment errors. We use a threshold on the number of spliced reads

supporting a discontinuous edge to filter false positive edges with low support. This param-

eter can also be used to reduce computational burden and focus on the highly expressed

transcripts in the sample. A discussion on the choice of the thresholding parameter Λ is

provided in Appendix A.4.
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Algorithm 3.1: Jumper(R, k)

(T , c)← (∅, [])
for p← 1 to k do

T ′ ← SolveILP(T )
T ′ ← T ∪Expand(T ′)
c′ ← SolveLP(T ′)
Sort (T ′, c′) s.t. Lic

′
i ≥ Li+1c

′
i+1 for all i ∈ {1, . . . , |T ′| − 1}

(T ′, c′)← ({T1, . . . , Tp}, [c′1, . . . , c′p])
if T ′ 6= T then

(T , c)← (T ′, c′)
end
else

return (T , c)
end

end
return (T , c)

3.5 RESULTS

We begin by establishing terminology that will be used throughout this section. A dis-

continuous edge (v = [v−, v+],w = [w−, w+]) is canonical provided its 5’ junction v+ occurs

in the transcription regulating leader sequence (TRS-L), i.e. between positions 50 and 851,

and the first occurrence of ‘AUG’ downstream of the 3’ junction w− position coincides with

the start codon of a known ORF, otherwise the discontinuous edge is called non-canonical.

In a similar vein, a transcript is canonical if it contains at most one canonical and no

non-canonical discontinuous edges, otherwise the transcript is non-canonical. We ran all

experiments on a server with two 2.6 GHz CPUs and 512 GB of RAM.

3.5.1 Simulations

We generated our simulation instances using a segment graph G obtained from a short-

read sample (SRR11409417). Following Kim et al. [55], we used fastp to trim short reads

(trimming parameter set to 10 nucleotides), which were input to STAR run in two-pass mode

yielding an alignment R. Figure 3a shows the sashimi plot of the canonical and the non-

canonical discontinuous edges (mappings) supported by the reads in the sample. From R,

we obtained G by only including discontinuous edges supported by at least 20 reads. The

segment graph G has |V | = 39 nodes and |E| = 67 edges, which include |Ey| = 29 dis-

1This range contains the TRS-L regions of the SARS-CoV-1 [78], SARS-CoV-2 [55] and MERS-CoV [78]
genomes analyzed in this paper.
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Figure 3.3: Jumper consistently outperforms Scallop [63] and StringTie [64] in recon-
struction of viral transcripts from simulated SARS-CoV-2 sequencing data. (a) Sashimi plot
showing the canonical (black) and non-canonical (gray) discontinuous mappings supported
by reads in short-read sample SRR11409417. (b) Number of canonical and non-canonical
transcripts for 5 simulation instances of (T , c) generated under the negative-sense discon-
tinuous transcription model. (c) F1 score of the three methods (Jumper, Scallop and
StringTie) for all the 25 simulated instances under the negative-sense discontinuous tran-
scription model. (d) Precision and recall values of the three methods with one of sequencing
experiment for each simulated instance of (T , c) under the negative-sense discontinuous
transcription model as input. (e) Total number of canonical and non-canonical transcripts
recalled by the three methods for the simulated instances shown in panel (d).

continuous edges and |E→| = 38 continuous edges. The discontinuous edges are subdivided

into 14 canonical discontinuous edges that produce a known ORF and 15 non-canonical dis-

continuous edges. Next, we generated transcripts T and their abundances c from G using

the negative-sense discontinuous transcription model (described in Appendix D.2). Upon

generating the transcripts, we simulated the generation and sequencing of RNA-seq data,

and aligned the simulated reads using STAR [71]. We generated 5 independent pairs (T , c)

of transcripts and abundances (Figure 3b). For each pair (T , c) we generated 5 paired-

end short read sequencing simulations using polyester [79]. Thus, in total we generated

5× 5 = 25 simulation instances.
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We compare the performance of our method Jumper with two other reference-based

transcript assembly methods, Scallop and StringTie. Note that our method, Jumper,

does not use prior knowledge about the underlying negative-sense discontinuous transcription

model to infer the viral transcripts from the simulated data. To avoid including false-positive

discontinuous edges, we set Λ = 100 so that Jumper discards discontinuous edges with fewer

than 100 supporting reads. For Scallop and StringTie, we performed a sweep on their

input parameters and report the best results here. We begin by comparing the transcripts

predicted by the three methods to the ground truth transcripts. Specifically, a predicted

transcript is correct if there exists a transcript in the ground truth whose junction positions

match the predicted junctions positions within a tolerance of 10 nucleotides.

Figure 3c shows the F1 score (harmonic mean of recall and precision) of the three meth-

ods for all the simulation instances, showing that Jumper achieves a higher F1 score (me-

dian of 0.255 and range [0.176, 0.339]) compared to Scallop (median of 0.062 and range

[0.0145, 0.173]) and StringTie (median of 0.019 and range [0.0114, 0.0412]). Fig. E.9 shows

that Jumper’s improved performance holds for both the recall and the precision with run-

ning times comparable to the Scallop and StringTie. To investigate the effect of thresh-

old parameter Λ on the performance of Jumper, we ran our method on the simulated

instances with Λ ∈ {10, 50, 100, 200}. Fig. E.10 shows that Jumper outperforms Scallop

and StringTie for all values of Λ, although it incurs significantly more runtime for Λ = 10.

To better understand the tradeoff between precision and recall, we zoom in on five simu-

lation instances with distinct pairs (T , c). Figure 3d shows the precision and recall achieved

by each method for each of these five simulation instances, demonstrating that Jumper

consistently outperforms both Scallop and StringTie. On average, Jumper recalls 5

times more transcripts than Scallop and 11 times more transcripts than StringTie while

also having higher precision in all simulated cases. Fig. E.11 shows that all three methods

produce similar precision and recall values for different sequencing replicates of the same

simulated instance of (T , c), demonstrating consistency in results. Finally, Figure 3e shows

the number of canonical and non-canonical transcripts generated by the three methods that

match the ground truth for each simulated instance, with Jumper consistently recalling a

larger number of ground-truth canonical and non-canonical transcripts.

In summary, we found that Jumper correctly predicts higher number of both canonical

and non-canonical transcripts compared to Scallop and StringTie for all the simulated

instances (summarized in Table E.4). We observe similar trends on simulated instances of a

human gene (see Appendix E.4).
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Figure 3.4: Using short-read data of SARS-CoV-2 infected Vero cells [55], Jumper identifies
canonical and non-canonical transcripts that are well supported by long-read sequences of
the same sample. (a) The segment graph for the short-read data contains both canonical
(above) and non-canonical (below) edges. (b) Jumper assembles 8 canonical transcripts
and 9 non-canonical transcripts and estimates their abundances with zoomed-in view of the
non-canonical transcripts X, X’, 1ab’, S’, 3a’, E’, 6’, 7b∗ and N’. (c) All non-canonical tran-
scripts predicted by Jumper are well supported by long-read data. (NGS: Next Generation
Sequencing; ONT: Oxford Nanopore Technologies)

3.5.2 Viral Transcript Assembly in SARS-CoV-2 Infected Vero Cells

Recently, Kim et al. [55] explored the transcriptomic architecture of SARS-CoV-2 by per-

forming short-read as well as long-read sequencing of Vero cells infected by the virus. The

authors used oligo(dT) amplification, which targets the poly(A) tail at the 3’ end of messen-

ger RNAs, thus limiting positional bias that would occur when using SARS-CoV-2 specific

primers [80, 81]. Subsequently, the authors aligned the resulting reads using splice-aware

aligners, STAR [71] for the short-read sample (median depth of 1763) and minimap2 [82] for

the long-read sample (median depth of 6707 and mean length of 2875 bp). For both comple-

mentary sequencing techniques, the authors observed phasing reads that were indicative of

canonical as well as non-canonical transcription events. While this previous work quantified

the fraction of phasing reads supporting each discontinuous transcription event, it did not

attempt to assemble complete viral transcripts.

We used Jumper to reconstruct the SARS-CoV-2 transcriptome of the short-read se-

quencing sample using the BAM file obtained by running Kim et al.’s pipeline [55]. This

was followed by running Salmon to identify precise transcript abundances. We note that

running Scallop on the short-read data resulted in only a single, complete canonical tran-

script (corresponding to ‘N’) but required subsampling of the BAM file (to 20%) due to

memory constraints, whereas StringTie produced two incomplete transcripts (‘ORF3a’

and a non-canonical transcript with low support). On a segment graph with |V | = 59 nodes

and |E| = 93 edges comprised of |Ey| = 35 most abundant discontinuous edges, 18 of which
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canonical and 17 non-canonical (Figure 3.4a), Jumper identified 33 transcripts, 17 of which

have an abundance of at least 0.001 as determined by Salmon (Figure 3.4b). A subset of 8

transcripts are canonical, containing at most one discontinuous edge with the 5’ junction in

TRS-L and the first ATG downstream of the 3’ junction coinciding with the start codon of

a known ORF. These canonical transcripts correspond to ORF1ab, ORF3a, E, M, ORF7a,

ORF7b, ORF8, N. In particular, ORF1ab (abundance of 0.008) corresponds to the complete

viral genome, necessary for viral replication. Notably, ORF10 is the only missing ORF in

the identified transcriptome, which is in line with previous studies [55, 57] that did not find

evidence for active transcription of ORF10.

As mentioned, Jumper inferred 9 non-canonical transcripts, denoted as X, X’, 1ab’, S’,

3a’, 6’, E’, 7b∗ and N’. Among these, transcripts 1ab’, S’, 3a’ and 6’ encode for the 1ab

polypeptide, spike protein S, accessory protein 3a and accessory protein 6, respectively.

Transcripts X and X’ both contain the discontinuous edge going from position 68 to 15774,

with the latter containing an additional discontinuous edge from position 26256 to 26284.

The 5’ end of the common discontinuous edge occurs within TRS-L, whereas the 3’ end

occurs in the middle of ORF1b but is out of frame with respect to the starting position of

ORF1b (13468). Specifically, the start codon ‘ATG’ downstream of the 3’ end is located at

position 15812 and occurs within nsp12 (RdRp) and the first stop codon is located at position

15896, encoding for a peptide sequence of 28 amino acids. Interestingly, when we examined

the reference genome, we observed matching sequences “GAACTTTAA” near the 5’ and 3’

junctions of the discontinuous edge common to X and X’, possibly explaining why the viral

RdRp generated this jump (Fig. E.12a,b). Strikingly, both matching sequences are conserved

within the Sarbecovirus subgenus but not in other subgenera of the Betacoronavirus genus

(Fig. E.12a,c). To further corroborate this transcript, we examined short and long-read

SARS-CoV-2 sequencing samples from the NCBI Sequence Read Archive (SRA). Specifically,

we looked for the presence of reads potentially originating from transcript X focusing on

high-quality samples with 100 or more leader-spanning reads (reads whose 5’ end maps to

the TRS-L region). We say a read r supports a transcript T if the discontinuous edges

of r exactly match those of T , i.e. π(r) ⊆ π(T ) and |σ⊕(r)| = |σ(T )| (Fig. E.13). We

found ample support for transcript X in both short and long-read samples on SRA, with 100

out of 351 short-read samples and 81 out of 653 long-read samples having more than 0.1%

of leader-spanning reads supporting transcript X (Fig. E.14). We note that although this

discontinuous transcription event was also observed in [57], the authors found no evidence

of this transcript leading to protein product in the ribo-seq data. Further research into a

potentially regulatory function of this transcript is required.

As stated, the difference between transcripts X and X’ is that the latter includes an ad-
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ditional discontinuous edge, corresponding to a short jump of ∼ 27 nucleotides between

positions 26256 and 26284. This is an in frame deletion inside ORF E, resulting in the loss

of 9 amino acids that span the N-terminal domain (4 amino acids) and the transmembrane

domain (5 amino acids) of the E protein [83]. A similar in-frame deletion of 24 nucleotides

(from position 26259 to 26284) was observed by Finkel et al. [57] that resulted in the loss

of a subset of 8 out of the 9 amino acids in the deletion that we observed. Furthermore, it

is possible that this common deletion is being selected for during passage in Vero E6 cells,

which were used by both Kim et al. [55] and Finkel et al. [57]. Non-canonical transcripts S’,

3a’ and E’ also contain the same discontinuous edge from position 26256 to 26284. While

transcript E’ produces a version of protein E with 9 missing amino acids, transcripts S’

and 3a’ produce complete viral proteins S and 3a, respectively. Non-canonical transcript

6’ differs from the canonical transcript 6, containing a jump from position 27886 to 27909.

This jump is downstream of ORF6 and therefore does not disrupt the translation of acces-

sory protein 6. Similarly, transcript 1ab’ has a single jump from position 26779 to 26817,

which is downstream of the ORF1ab gene and therefore will yield the complete polypep-

tide 1ab. Transcript 7b∗, on the other hand, has a single discontinuous edge from position

71 to 27762. The start codon ‘ATG’ downstream of the 3’ end occurs at position 27825,

maintaining the frame of 7b, and thus leading to an N-terminal truncation [55] of 23 amino

acids. Interestingly, transcript 7b and transcript 7b∗ appear with similar abundances in our

solution. Finally, transcript N’ has one canonical discontinuous edge from TRS-L (position

65) to the transcription regulating body sequence (TRS-B) region corresponding to ORF N

(position 28255) and an additional jump from position 28525 to 28577, which leads to an

in-frame deletion of 17 amino acids in the N-terminal RNA-binding domain [84, 85] of ORF

N. Thus, with the exception of transcripts X and X’, the non-canonical transcripts identified

by Jumper either produce complete viral proteins (1ab’, S’, 3a’, 6’), contain in-frame dele-

tions in the middle of known proteins (E’, N’) or produce N-terminally truncated proteins

(7b∗).

One of the major findings of the Kim et al. paper [55] is that the SARS-CoV-2 transcrip-

tome is highly complex owing to numerous non-canonical discontinuous transcription events.

Strikingly, our results show that these non-canonical transcription events do not significantly

change the resulting proteins. Indeed, we find that 4 out of the 9 non-canonical transcripts

produce a complete known viral protein and the total abundance of the predicted transcripts

that produce a complete known viral protein is 0.968. Moreover, these predicted transcripts

account for more than 90% of the reads in the sample according to the estimates provided

by Salmon.

Typically, reads from short-read sequencing samples are not long enough to contain more
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than one discontinuous edge. As a result, short-read data can only provide direct evidence

for transcripts with closely spaced discontinuous edges. For instance, we observed ample

support (63485 short reads) for the predicted non-canonical transcript E’, which has two

discontinuous edges (69, 26237) and (26256, 26284), in short-read data due to the close prox-

imity of the two discontinuous edges (i.e. the discontinuous edges are only 26256−26237 = 19

nucleotides apart). The other non-canonical transcripts with multiple discontinuous edges,

i.e. X’, S’, 3a’, 6’ and N’, have edges that are too far apart to be spanned by a single short

read. Using the long-read sequencing data of this sample, we detected supporting long reads

that span the exact set of discontinuous edges of all 9 non-canonical transcripts (Figure 3.4c).

Moreover, we found support for the canonical transcripts as well (Fig. E.15). Thus, all tran-

scripts identified by Jumper from the short-read data are supported by direct evidence in

the long-read data.

In summary, using Jumper we reconstructed a detailed picture of the transcriptome

of a short-read sequencing sample of Vero cells infected by SARS-CoV-2. While existing

methods failed to recall even the reference transcriptome, Jumper identified transcripts

encoding for all known viral protein products. In addition, our method predicted non-

canonical transcripts and their abundances, whose presence we subsequently validated on a

long-read sequencing sample of the same cells.

3.5.3 Viral Transcript Assembly in SARS-CoV-2 Infected A549 Cells with and without
Treatment

To demonstrate that Jumper can be used to understand the effect of drugs on the vi-

ral transcriptome, we analyzed a recent dataset by Blanco et al. [3] who studied the host

transcriptional response to SARS-CoV-2 and other viral infections using various cell lines.

We focused on A549 lung alveolar cell line samples that were sequenced after 24 hours of

SARS-CoV-2 infection. There are a total of eight samples, four of which were pre-treated

with ruxolitinib for 1 hour before the infection and the remaining four were untreated. Rux-

olitinib is a JAK1 and 2 kinase inhibitor, which blocks type-I interferon (IFN-I) signaling

necessary to engage cellular antiviral defenses [86, 87]. Specifically, the four samples with-

out treatment are SRR11573904 (median depth of 86), SRR11573905 (median depth of 85),

SRR11573906 (median depth of 89) and SRR11573907 (median depth of 89), and the four

samples treated with ruxolitinib are SRR11573924 (median depth of 90), SRR11573925 (me-

dian depth of 91), SRR11573926 (median depth of 91) and SRR11573927 (median depth of

92). We used fastp to trim the short reads (trimming parameter set to 10 nucleotides) and

we aligned the resulting reads using STAR in two-pass mode. We ran Jumper with the 35
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Figure 3.5: Jumper enables analysis of drug response in SARS-CoV-2 infected cells [3] at the
transcript level. (a) A Venn diagram shows in the number of transcripts reconstructed from
samples with and without treatment with ruxolitinib. Fig. E.16 shows the distribution of the
18 transcripts that are common between samples with and without treatment while Table E.3
describes these transcripts. (b) Abundance of the transcripts yielding canonical proteins in
the samples along with ‘NC’ depicting the abundance of the non-canonical transcripts. (c)
Abundance of the transcripts yielding the spike protein (S) and its variants ∆S1 and ∆S2
whose structure is described in (d).

most abundant discontinuous edges in the segment graph. Similarly to the previous analysis,

we restricted our attention to transcripts identified by Jumper that have more than 0.001

abundance as estimated by Salmon [69].

Scallop, run with default parameters, identified at most two transcripts for each sam-

ple encoding for different variants of ORF N. Jumper identified a total of 47 transcripts

across the eight samples, with 18 of these transcripts present in both ruxolitinib treated

and untreated samples (Fig. E.16a,E.16c). We observed that samples with pre-treatment

of ruxolitinib cumulatively have fewer transcripts compared to the number of transcripts

from samples without any treatment (29 vs. 36 transcripts, Fig. 5a). Strikingly, all the tran-

scripts that are present in two or more samples were also present across the two groups of

samples (treated and untreated). Focusing on the 18 common transcripts, Figure C11d in

Appendix shows the total number of samples that contain each of these 18 transcripts. A

subset of 13 out of these 18 transcripts produce all known canonical viral proteins except 7b.

Fig. 5b shows the abundance of the transcripts yielding functional proteins in the samples

along with ‘NC’ depicting the abundance of transcripts producing either non-canonical or
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non-functional viral proteins. The abundance of the canonical transcripts, except 1ab, is

slightly higher in samples with treatment compared to the samples without treatment. Con-

sequentially, the abundance of non-canonical transcripts is lower in samples with treatment

compared to samples without treatment.

There are five non-canonical transcripts, including ∇M, NC1 and NC2, which do not

encode for known SARS-CoV-2 proteins but are explained by matching motifs near the 5’

and 3’ ends of the non-canonical discontinuous edges, described in Table E.3, potentially

mediating the jump made by the RdRp to generate these transcripts. Specifically, while

transcript ∇M contains a canonical discontinuous edge from the leader to the known TRS-B

region of M, it also contains an out-of-frame deletion such that the transcript yields a 116

amino acids long protein which matches the M protein for the first 87 amino acids (total

length of protein M is 222 amino acids). Both transcripts NC1 and NC2 contain only one

jump with the 5’ end within ORF1a. The 3’ end of the jump lies within ORF7b and ORF

N for transcript NC1 and transcript NC2, respectively. The remaining two non-canonical

transcripts, ∆S1 and ∆S2, have in-frame deletions in the region that encodes for the spike

protein.

∆S1 contains an in-frame jump from position 23593 to 23630 resulting in a 12 amino-acid

in-frame deletion, while ∆S2 contains a jump from position 23593 to 23615, which results

in a 7 amino-acid in-frame deletion in the spike protein (Fig. 5d). Both these deletions

overlap with the furin cleavage site (FCS), highlighted in Fig. 5d, which has been the focus

of several recent studies [56, 88, 89]. The authors of [56] deduced that the deletion of the

FCS enhances the ability of the virus to enter Vero cells and is selected for during passage in

Vero E6 cells, a cell line that lacks a working type-I interferon response. The observation of

∆S1 and ∆S2 in infected A549 cell samples can be explained by the fact that Blanco et al. [3]

propagated SARS-CoV-2 in Vero E6 cells prior to the infection of the A549 cells. Fig. 5c

shows that pre-treatment with ruxolitinib leads to an increase in the abundance of the three

transcripts, S (median increase from 0.004 to 0.005), ∆S1 and ∆S2 (median increase from

0.0011 to 0.0012), with the increase being most significant for ∆S1 (median increase from

0.008 to 0.012) with a p-value of 0.015 with the Mann-Whitney u-test. This shows that

the response of different variants of the virus to treatment of drugs can differ significantly.

In summary, we find that Jumper enables transcript-level analysis of the viral response to

drug treatments.
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Figure 3.6: Jumper identifies canonical and non-canonical transcripts that recur in two
short-read sequencing samples of SARS-CoV-1 infected Calu-3 cells [70]. For both the
samples, we show the segment graph, with canonical (above) and non-canonical (below)
discontinuous edges. We also show the predicted transcripts and their abundances in the
two samples with a zoomed-in view of the non-canonical transcripts 1ab’, M’ and N∗. UTR:
untranslated region.

3.5.4 Viral Transcript Assembly in SARS-CoV-1 and MERS-CoV Infected Cells

To show the generalizability of our method, we considered two other coronaviruses, SARS-

CoV-1 and MERS-CoV. We describe the results for two SARS-CoV-1 infected cell samples

here and the analysis of three MERS-CoV infected cell samples is described in Appendix E.5.

We analyzed two published samples of human Calu-3 cells infected with SARS-CoV-1 [70],

SRR1942956 and SRR1942957, with a median depth of 21,358 and 20,991, respectively.

These two samples originate from the same SRA project (‘PRJNA279442’) whose metadata

states that both samples were sequenced 24 hours after infection. We used fastp to trim the

short reads (trimming parameter set to 10 nucleotides) and we aligned the resulting reads

using STAR in two-pass mode. We ran Jumper with the 35 most abundant discontinuous

edges in the segment graph. As observed previously, Scallop only identified a single tran-

script corresponding to ORF N in both the samples. By contrast, Jumper reconstructed

25 transcripts in sample SRR1942956 and 26 transcripts for sample SRR1942957. Similarly

to the previous analysis, we discuss the transcripts identified by Jumper that have more

than 0.001 abundance as estimated by Salmon. There are 13 such transcripts for sample

SRR1942956 and 13 such transcripts for sample SRR1942957 (Figure 3.6).
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SARS-CoV-1 has a genome of length 29751 bp, and consists of 13 ORFs (1ab, S, 3a,

3b, E, M, 6, 7a, 7b, 8a, 8b, N and 9b), two more than SARS-CoV-2. For both samples,

Jumper identified canonical transcripts corresponding to all the ORFs of SARS-CoV-1 ex-

cept ORF3b, ORF8b and ORF9b (Figure 3.6). Notably, ORF8b and ORF9b share transcrip-

tion regulating body sequences (TRS-B) with ORF8a and ORF N respectively [90]. More

specifically, ORF9b (from position 28130 to 28426) is nested within ORF N (from position

28120 to 29388) with start codons only 10 nucleotides apart and consequently shares the

same TRS-B as ORF N. ORF8b (from position 27864 to 28118) intersects with ORF8a (from

27779 to 27898) and previous studies have failed to validate a TRS-B region for ORF8b [90].

One possible way that these ORFs are translated is due to ribosome leaky scanning, which

was also hypothesized to lead to ORF7b translation in SARS-CoV-2 [57]. This explains why

Jumper was unable to identify transcripts that directly encode for 8b and 9b. Regarding

ORF3b, Jumper did identify a canonical transcript corresponding to 3b in both samples, but

the Salmon estimated abundances (0.00044 for SRR1942956 and 0.0005 for SRR1942957)

for these transcripts were below the cut-off value of 0.01. Finally, we note that the relative

abundances of the canonical transcripts are consistent for the two samples (Figure 3.6) and

ranked in the same order (Fig. E.17), with ORF7b being the least abundant and ORF N

having the largest abundance, in line with the observations in SARS-CoV-2 infected cells

described in the previous sections.

Figure 3.6 shows the three non-canonical transcripts predicted by Jumper in the two

SARS-CoV-1 samples, designated as 1ab’, M’ and N∗. Since these non-canonical transcripts

are in very low abundance, we see some discrepancy in the prediction between the two sam-

ples. The first non-canonical transcript 1ab’ with a single short discontinuous edge from

position 26131 to 26156 is detected in both samples and has a very low abundance compared

to the canonical transcript 1ab (0.0133 for 1ab vs 0.002 for 1ab’ in SRR1942956, and 0.013

for 1ab vs 0.0039 for 1ab’ in SRR1942956). Since the discontinuous edge occurs downstream

of the stop codon of 1ab (position 21492), the 1ab’ transcript encodes for the complete

polypeptide 1ab. The second non-canonical transcript M’ has two discontinuous edges: a

canonical discontinuous edge from TRS-L (position 65) to TRS-B of ORF M (position 26351)

and a non-canonical discontinuous edge from 29542 to 29661 in the 3’ untranslated region

(UTR). As such, this transcript encodes for the complete M protein. This transcript is

detected in SRR1942956 with a very low abundance of 0.001 and is detected at an even

lower abundance of 0.0008 in SRR1942957, which is below the cut-off threshold of 0.001.

The third non-canonical transcript, denoted by N∗, has a single discontinuous edge from

position 65 to 29003. While Jumper and Salmon detected this transcript only in sample

SRR1942957 with a low abundance of 0.003, we do observe 119 reads in SRR1942956 (com-
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pared to 151 reads in SRR1942957) that support this edge, suggesting that N∗ might be

present in the latter sample at too small of an abundance to be detected. Transcript N∗ is

interesting because the first ‘ATG’ downstream of the 3’ end of its discontinuous edge occurs

at position 29071 maintaining the frame of N (which starts at position 28120). Thus tran-

script N∗ encodes for an N-terminally truncated version of protein N with 105 amino acids

(while protein N is composed of 422 amino acids) and only contain part of the C-terminal

dimerization domain [84] of protein N. This is similar to transcript 7b∗ in the SARS-CoV-2

infected Vero cell sample, which yields a N-terminal truncated version of protein 7b. Detec-

tion of non-canonical transcripts such as E’ and 7b∗ in SARS-CoV-2 and N’ in SARS-CoV-1

suggests that generation of N-terminally truncated proteins might be a common feature in

coronaviruses.

In summary, Jumper can used to to reconstruct the transcriptome of all viruses in and

lead to discovery of novel viral transcripts and corresponding viral proteins. While this

section focused on SARS-CoV-1, we observed similar results for MERS-CoV samples, where

Jumper reconstructed transcripts corresponding to all the ORFs with well-supported TRS-

B sites along with consistent abundances across the three samples (see Appendix E.5).

3.6 DISCUSSION

In this paper, we formulated the Discontinuous Transcript Assembly (DTA) prob-

lem of reconstructing viral transcripts from short-read RNA-seq data of coronaviruses. The

discontinuous transcription process exhibited by the viral RNA-dependent RNA polymerase

(RdRp) is distinct from alternative splicing observed in eukaryotes. Our proposed method,

Jumper, is specifically designed to reconstruct the viral transcripts generated by discontin-

uous transcription and is therefore able to outperform existing transcript assembly methods

such as Scallop and StringTie, as we have shown in both simulated and real data.

For real-data analysis, we used publicly available short-read and long-read sequencing

data of the same sample of SARS-CoV-2 infected Vero cells [55]. We performed transcript

assembly using the short-read sequencing data and used the long-read data for validation.

Jumper was able to identify transcripts encoding for all known viral proteins except ORF10,

which has been shown to have little support of active transcription in previous studies [55, 57].

Moreover, we predicted 9 non-canonical transcripts that are well supported by long-read

sequencing data.

Furthermore, we demonstrated that Jumper enables transcript-level quantitative analysis

of viral response to treatment with drugs. More specifically, we analyzed 8 samples of A549

lung alveolar cells infected by SARS-CoV-2, four of which were pre-treated with ruxolitinib
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for 1 hour before infection [3]. Jumper identified one variant of the spike protein, with a

12 amino acid deletion overlapping with the furin cleavage site, that showed statistically

significant increase in expression in samples that were pre-treated with ruxolitinib. We also

showed the versatility of Jumper by considering two additional coronaviruses, SARS-CoV-1

and MERS-CoV. For two samples of Calu-3 cells infected by SARS-CoV-1 and three samples

of Calu-3 cells infected by MERS-CoV [70], Jumper reconstructed all the canonical tran-

scripts with distinct TRS-B regions and additionally predicted the presence of non-canonical

transcripts encoding for either complete or truncated versions of known viral proteins.

There are several avenues for future work. First, Jumper currently is only applicable

to data obtained using technologies that limit positional bias such as oligo(dT) amplifica-

tion, which targets the poly(A) tail at the 3’ end of messenger RNAs. We plan to extend

our current model to account for positional and sequencing biases in the data. Doing so

will enable us to assemble transcriptomes from sequencing samples that used SARS-CoV-2-

specific primers, which form the majority of currently available data. Second, we currently

make the assumption of a fixed read length that is much smaller than the length of viral

transcripts. We will relax this assumption in order to support long-read sequencing data

that have variable read lengths. Third, we plan to study the effect of mutations (including

single-nucleotide variants as well as indels) on the transcriptome. Along the same lines, there

is evidence of within-host diversity in COVID-19 patients [15, 16, 91, 92, 93, 94]. It will be

interesting to study whether this diversity translates to distinct sets of transcripts and abun-

dances within the same host. Fourth, there are possibly multiple optimal solutions to the

DTA problem that present equally likely viral transcripts with different relative abundances

in the sample. A useful direction of future work is to explore the space of optimal solutions

similar to the work done in [74]. Finally, the approach presented in this paper can extended

to the general transcript assembly problem. Although Jumper can be used for transcript

assembly of individual eukaryotic genes (see Appendix E.4), it does not currently support

assembly across multiple genes. The extension of the current approach can be facilitated by

using the topological ordering of the nodes in a general splice graph that does not have a

unique Hamiltonian path, unlike the segment graph considered in the DTA problem. We

envision this will facilitate efficient use of combinatorial optimization tools such as integer

linear programming to transcript assembly problems.
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Chapter 4: Doublet Detection in Single-Cell DNA-sequencing data

4.1 INTRODUCTION

The increased use of single-cell sequencing for cancer research is providing a wealth of new

insights regarding intra-tumor heterogeneity, metastasis and the landscape of the tumor

microenvironment [95, 96, 97, 98]. In particular, the ongoing improvement in single-cell

DNA sequencing (scDNA-seq) assays is rapidly advancing methods for reconstructing the

evolutionary history of a tumor [99, 100, 101, 102, 103, 104]. While scDNA-seq is more labor

intensive and error-prone than traditional bulk DNA sequencing [105], scDNA-seq permits

the observation of mutation co-occurrence patterns within a single cell, yielding both higher

fidelity tumor phylogeny reconstructions and more accurate identification of a set of distinct

tumor clones or genotypes.

The smaller amount of DNA material within a cell compared to RNA poses additional

sequencing challenges than those faced in single-cell RNA sequencing (scRNA-seq) [106].

Medium to high coverage scDNA-seq technology, suitable for detecting single-nucleotide

variants, suffers from elevated rates of technical errors due to whole-genome amplification

that may impact downstream analyses, including allelic dropout (ADO), copying mistakes in

the amplification reaction, unbalanced amplification and doublets. Specifically, when ADO

occurs, one or more of the alleles may fail to be amplified during the early stages of the

process and thus the allele is said to “drop out” prior to sequencing. While technological

advances have decreased the frequency of these errors, one remaining technical challenge is

when multiple cells, or multiplets, are captured within a droplet and linked to a single barcode

making all subsequent reads appearing as if they originated from one cell. To mitigate this

effect, practitioners utilize a Poisson distribution to estimate the probability that a droplet

contains a specified number of cells. The rate parameter of the Poisson distribution is then

determined by a function of the cell solution concentration and droplet volume to obtain the

desired probability of multiplets [107]. This results in the majority of droplets containing zero

cells and multiplets with more than two cells are rare. However, doublets, which are droplets

containing two cells, occur frequently and are therefore the focus of this work [108, 109, 110].

Adapting terminology from the scRNA-seq literature [111], we introduce three categories

for doublets in scDNA-seq: (i) selflet, (ii) nested and (iii) neotypic (Fig. 4.1a). Selflets are

comprised of cells with identical genotypes. Nested doublets occur when the set of mutations

in one cell is a proper subset of the mutations in the other cell. A neotypic doublet is a

doublet that is not nested or a selflet and implies the existence of a novel genotype not
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Figure 4.1: doubletD calls doublets in medium to high coverage scDNA-seq data.
(a) The first step of most single-cell sequencing technologies involves cell capture where
the goal is to encapsulate single cells into droplets, known as singlets. However, errors in
this process (details in Section 4.3) can lead to three kind of doublets – neotypic doublets,
nested doublets and selflets. (b) The cells in each isolated droplet i undergo whole-genome
amplification and sequencing independently. These processes introduce errors such as allelic
dropouts and imbalance in amplification. (c) The resulting aligned reads are used for variant
calling yielding alternate vi,j and total ci,j read counts at each locus of interest j. (d)
doubletD uses the observed variant allele frequencies vi,j/ci,j as the key signal, while
accounting for sequencing and amplification errors to detect doublets in the sample. The
symbol � denotes element-wise division.

present in the sample. Neotypic doublets thus distort the signal of mutation co-occurrence

patterns and makes it challenging to distinguish the presence of rare clones, that may be

resistant to certain treatments, from a neotypic doublet [105]. Although nested doublets

and selflets will not impact the analysis of mutation co-occurrence or mutual exclusivity

patterns, they may impact the estimation of clonal abundances, which are used to model

both the evolutionary trajectory and the fitness landscape of a tumor [97, 112].

While there are downstream analysis methods, such as genotype and/or phylogeny infer-

ence methods, that account for the presence of doublets, to the best of our knowledge, there

exists no standalone method for doublet detection in scDNA-seq data. There are a number

of drawbacks to methods that jointly infer the doublets during any downstream analysis.

First, methods like ∞SCITE [113], SCG [103] and SiCloneFit [102] utilize Bayesian infer-

ence in the form of Markov chain Monte Carlo (MCMC) or variational inference, which scale

poorly with the inclusion of doublets and size of the input [102, 103, 113]. Second, methods,

such as ScisTree [114], are able to identify doublets only under the infinite sites model of

evolution. Third, most methods require a binarized or discretized experiment by loci matrix
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input as opposed to positional variant and reference allele read counts. This results in the

loss of useful information for doublet identification. Lastly, as a result of the discrete input

and/or utilizing the infinite sites assumption, methods that do identify doublets are at best

only able to identify neotypic doublets.

In contrast, there exist a number of standalone methods for detecting doublets in single-

cell RNA sequencing data. [111, 115, 116]. See [117] for an excellent overview and bench-

marking of scRNA-seq doublet detection methods. Doublets in single-cell RNA sequencing

(scRNA-seq) result in the observation of neotypic gene expression profiles, which impacts cell

clustering and the identification of cell-state trajectories ([117]). In general, these methods

follow a four step process. First, simulated doublets are created by mixing observed gene ex-

pression profiles. Second, the observed and simulated data are embedded into a latent space

using dimensionality reduction. Third, machine learning methods are used to estimate the

probability that a droplet is a doublet. Finally, a threshold scheme is enacted based on

knowledge of the experimental doublet rate to classify experiments as either a singlet or

doublet. The main variation within these methods is the choice of embedding/dimension

reduction and classifier. Additionally, these methods are designed to capture neotypic dou-

blets and struggle to identify embedded doublets, which are often located within clusters of

singlets in the embedded space. While it is possible to directly apply scRNA-seq doublet

detection methods on DNA variant read counts, such methods do not properly account for

the distinct error profile of scDNA-seq data.

As a first step in addressing the need for a fast, standalone method for scDNA-seq dou-

blet detection, we introduce doubletD, which performs doublet detection in medium to high

coverage scDNA-seq data. Critically, doubletD does not make any assumptions about the

model of evolution, the number of distinct clones or assume a threshold on the minimum

clonal abundance in the sample. doubletD operates directly on variant and reference allele

counts without the need to discretize the input, thus retaining a critical signal for doublet

detection in the form of the variant allele frequency (VAF) (Fig. 4.1c). Specifically, under-

lying doubletD is the observation that doublets in scDNA-seq data have a characteristic

VAF spectrum due to increased number of copies and/or allelic dropout (Fig. 4.1d). Oth-

ers have noted the presence of some of these characteristics in a post hoc analysis of either

single-nucleotide variant [118] or copy-number aberration calling [119]. doubletD considers

each droplet independently but borrows strength from the entire dataset while using a max-

imum likelihood approach in order to rapidly classify an experiment as either a doublet or

singlet prior to downstream analyses. We demonstrate on both simulated and real datasets

that these design choices allow doubletD to be utilized in conjunction with any downstream

analysis of choice and therefore obviates the need for more complex downstream methods to

50



Figure 4.2: Plate diagram of the doubletD’s graphical model. Observed total and
variant read counts (C,V) of m loci in n droplets are affected by doublet status z, allelic
dropout and additional errors during sequencing.

individually account for the presence of doublets within their own models.

4.2 METHODS

4.2.1 Generative Model

Similarly to scRNA-seq, there are two main types of high-throughput cell capture strate-

gies in scDNA-seq: microfluidics and well-based protocols, which, respectively, distribute

a cell suspension into either droplets or wells [120, 121]. Here, we use the term ‘droplet’

independent of the used technology. Consider a scDNA-seq experiment with n droplets

and m mutation loci that were identified after read alignment and variant calling. Each

mutation locus has two alleles: a reference allele and a variant allele. Thus, we are given

C = [ci,j] ∈ Nn×m total read counts and V = [vi,j] ∈ Nn×m variant counts, which are inde-

pendent across droplets and loci. Read counts vi,j and ci,j of mutation locus j in droplet i

are affected by (i) whether droplet i is a doublet (Section 4.2.1.1), (ii) the genotype(s) at

locus j in the droplet (Section 4.2.1.2), and errors during sequencing including (iii) allelic

dropout (Section 4.2.1.3) and (iv) amplification bias and sequencing errors (Section 4.2.1.4).

We make these relationships explicit in a generative model for C and V (Fig. 4.2).

4.2.1.1 Doublet Model

In the following we will define random variables z ∈ {0, 1}n, where zi indicates whether

droplet i is a doublet (i.e. zi = 1) or a singlet (i.e. zi = 0). During the capture step, cells
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are released into a nozzle with a constant rate r and there is a fixed time-interval t in which

a droplet is formed. The number of cells in a droplet is given by the number of cells that

enter the nozzle in the time-interval during which the droplet is formed. Therefore, the

prior on the doublet probability is a Poisson distribution with mean λ = rt. Moreover, only

non-empty droplets will yield sequence reads. This combined with the fact that doublets

are composed of two cells, we have that zi = 1, i.e. the event of droplet i being a doublet,

equals

P (zi = 1) =
Λ(2;λ)∑∞
k=1 Λ(k;λ)

=
Λ(2;λ)

1− Λ(0;λ)
, (4.1)

where Λ(k;λ) is the probability of k ∈ N occurrences (here cells) under a Poisson distri-

bution with mean λ. In practice rt is very small (i.e. λ � 1), and thus the mass of the

Poisson distribution Λ(k;λ) is concentrated around two outcomes k ∈ {1, 2}. Therefore,

zi can be approximately modeled by a Bernoulli distribution with probability of success

δ = Λ(2;λ)/(Λ(1;λ) + Λ(2;λ)) so that

P (zi = 1) = δ. (4.2)

Considering independence between distinct droplets, we get

P (z) =
n∏
i=1

δzi(1− δ)(1−zi). (4.3)

4.2.1.2 Genotype Model

We make the simplifying assumption that each mutation locus has copy number 2 in a

single cell — we show robustness of violations to this assumption in Section 4.3.1. Thus the

genotype of a locus j in a single cell can be in one of three states: (i) wild type (wt) where both

copies have the reference allele, (ii) heterozygous (het) with one variant and one reference

copy, and (iii) homozygous (hom) where both copies have the variant allele. Let µwt,j, µhet,j

and µhom,j be the mutation probabilities at locus j of the three types, respectively, such that

µwt,j + µhet,j + µhom,j = 1. Let xi,j indicate the variant allele frequency (VAF) at locus j

in droplet i. In case i is a singlet, we have that xi,j ∈ Σsinglet where Σsinglet = {0, 1/2, 1}
for any locus j. On the other hand, if i is a doublet, we have that xi,j ∈ Σdoublet where

Σdoublet = {0, 1/4, 1/2, 3/4, 1} for any locus j. For a droplet i comprising of a single cell
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(zi = 0), the probability P (xi,j | zi = 0) equals

P (xi,j | zi = 0) =



µwt,j, if xi,j = 0,

µhet,j, if xi,j = 1/2,

µhom,j, if xi,j = 1,

0, otherwise.

(4.4)

Following current single-cell literature [122, 123], we assume that a doublet contains two

cells with independent genotypes. Therefore, we may define P (xi,j | zi = 1) using probabili-

ties P (xi,j | zi = 0) as∑
g,h∈S(f) P (xi,j = g | zi = 0)P (xi,j = h | zi = 0)∑

g,h∈Σsinglet×Σsinglet
P (xi,j = g | zi = 0)P (xi,j = h | zi = 0)

, (4.5)

where S(f) = {(g, h) ∈ Σsinglet × Σsinglet | 2g + 2h = 4f} gives all pairs (g, h) of VAFs in

Σsinglet that result in the doublet VAF f . For example, a doublet VAF f = 1/2 results from

two cells with pairs (g, h) of VAFs in the set S(1/2) = {(1/2, 1/2), (1, 0), (0, 1)}.

4.2.1.3 Allelic Dropout Model

We follow the work in [123, 124] to model the shift in variant allele frequency due to

allelic dropouts (ADO). In this model, ADO is introduced by deciding for each cell whether

a given allele is amplified or not according to a specific probability β known as the ADO

rate. Dropout of distinct alleles is assumed to be independent and the ADO rate β is

assumed to be constant for all cells and all loci. Although this could be easily extended to

account for site-specific ADO as considered in other work [125], here we opt for a global

allelic dropout rate to reduce the number of parameters. The VAF yi,j at locus j in droplet

i after the dropout event depends on the VAF xi,j and doublet indicator zi (Fig. 4.2).

Specifically, each possible pair (xi,j, zi), where xi,j ∈ Σsinglet when zi = 0 and xi,j ∈ Σdoublet

when zi = 1, can yield varying yi,j with probabilities that depend on the number of alleles

that are dropped during amplification. Using that each mutation locus has copy number

2 in a single cell and allowing any number of copies to drop out, we have yi,j ∈ Θsinglet

where Θsinglet = {0, 1/2, 1} if droplet i is a singlet. Conversely, if i is a doublet, we have

yi,j ∈ Θdoublet where Θdoublet = {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1}. Table A.1 in Appendix A.5 lists

all values of P (yi,j | xi,j, zi) for varying (xi,j, zi) in terms of the ADO rate β.

53



4.2.1.4 Read Count Model

Beyond ADO, there are two types of additional errors that affect read counts (ci,j, vi,j) and

lead to an observed VAF vi,j/ci,j that differs from the latent VAF yi,j after ADO: (i) copy

errors, which occur early during PCR and lead to a propagation of incorrect nucleotides, and

(ii) allelic imbalance, where amplification is biased towards one of the alleles [106]. We model

the resulting overdispersion with a beta-binomial as is standard in the field [122, 123, 125].

We use an uninformative prior on total read counts ci,j yielding

P (ci,j, vi,j | yi,j) = P (vi,j | ci,j, yi,j)P (ci,j) ∝ P (vi,j | ci,j, yi,j). (4.6)

While copy errors and uneven amplification errors happen simultaneously during the am-

plification stage, here, following [125], we employ a simpler model that assumes that the

copy errors precede the allelic imbalance during amplification. We capture copy errors using

a specified false positive rate αfp, which is the probability of generating an alternate allele in

the copy when the template has the reference allele, and false negative rate αfn, which is the

probability of generating a reference allele in the copy when the template has the alternate

allele. Specifically, the probability pi,j of producing a copy with the alternate allele at locus

j in experiment i is given by

pi,j = yi,j(1− αfn) + (1− yi,j)αfp = αfp + (1− αfp − αfn)yi,j. (4.7)

The number vi,j of variant reads resulting after amplification in presence of allelic imbalance

is modeled by the following beta-binomial distribution.

πi,j ∼ beta(pi,j, s), (4.8)

vi,j | ci,j, πi,j ∼ Binom(ci,j, πi,j), (4.9)

where s is the precision parameter that quantifies allelic imbalance error. A low precision s

signifies high unevenness in amplification.

4.2.2 Posterior Probability

To determine which droplets are doublets, we are interested in the posterior probability

of z for the given single-cell sequencing data (C,V), which is defined as

P (z | C,V) =
P (C,V | z)P (z)

P (C,V)
∝ P (C,V | z)P (z). (4.10)
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In line with current methods [102, 123], we use independence of read counts across mutation

loci and droplets and obtain

P (C,V | z) =
n∏
i=1

m∏
j=1

P (ci,j, vi,j | zi). (4.11)

We now express P (ci,j, vi,j | zi) in terms of P (xi,j | zi) (described in Section 4.2.1.2), P (yi,j |
xi,j, zi) (described in Section 4.2.1.3) and P (ci,j, vi,j | yi,j) (described in Section 4.2.1.4).

Marginalizing over xi,j and yi,j yields,

P (ci,j, vi,j | zi) =
∑

xi,j∈Σi

∑
yi,j∈Θi

P (ci,j, vi,j, xi,j, yi,j | zi) (4.12)

=
∑

xi,j∈Σi

∑
yi,j∈Θi

P (ci,j, vi,j | xi,j, yi,j, zi)P (xi,j, yi,j | zi) (4.13)

=
∑

xi,j∈Σi

∑
yi,j∈Θi

P (ci,j, vi,j | yi,j)P (yi,j | xi,j, zi)P (xi,j | zi) (4.14)

where

Σi =

Σsinglet, if zi = 0,

Σdoublet, otherwise.
and Θi =

Θsinglet, if zi = 0,

Θdoublet, otherwise.
(4.15)

4.2.3 DoubletD

Our goal is to find z ∈ {0, 1}n such that the likelihood function (Equation (4.10)) is

maximized. Substituting the doublet prior from Equation (4.3) in Equation (4.10) and

taking log, we get

logP (z | C,V) =
n∑
i=1

m∑
j=1

logP (ci,j, vi,j | zi) +
n∑
i=1

logP (zi) +K (4.16)

where K is the constant of proportionality. Since zi is an indicator variable (i.e. zi ∈ {0, 1}),
we linearize the above equation in terms of z using,

logP (ci,j, vi,j | zi) = logP (ci,j, vi,j | zi = 0) + ziΩi,j (4.17)
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where

Ωi,j = log

(
P (ci,j, vi,j | zi = 1)

P (ci,j, vi,j | zi = 0)

)
(4.18)

and

logP (zi) = logP (zi = 0) + zi

(
logP (zi = 1)

logP (zi = 0)

)
(4.19)

= logP (zi = 0) + zi log

(
δ

1− δ

)
. (4.20)

where the last equality uses doublet prior model (Equation (4.3)). Note that, since the

read counts (ci,j, vi,j) are observed, the matrix Ω = [Ωi,j] ∈ Rn×m is constant. Ignoring

the constant of proportionality K, which is independent of z, and using linearization of

logP (ci,j, vi,j | zi) and logP (zi) in Equation (4.16), we get the following linear objective

function

J(z) =Φ +
n∑
i=1

zi

(
m∑
j=1

Ωi,j + log

(
δ

1− δ

))
(4.21)

where Φ is a constant defined as follows,

Φ =
n∑
i=1

m∑
j=1

logP (ci,j, vi,j | zi = 0) +
n∑
i=1

logP (zi = 0). (4.22)

Since J(z) is linear, we have the following closed form solution maximizing J(z),

zi =

1, if
∑m

j=1 Ωi,j + log
(

δ
1−δ

)
> 0,

0, otherwise.
(4.23)

4.2.3.1 Implementation Details

Our resulting method, doubletD, identifies z ∈ {0, 1}n given total and variant read

counts (C,V) with maximum posterior probability P (z | C,V). To do so, doubletD

requires input mutation probabilities µwt, µhet and µhom at each locus j used in the geno-

type model (Section 4.2.1.2), and the precision parameter s used in the read count model

(Section 4.2.1.4). Appendix A.6 describes a data-driven approach to estimate these param-
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eters. Moreover, the doublet prior probability δ can either be taken as input or estimated

by maximizing the posterior probability. doubletD is implemented in Python 3, is open

source (BSD-3-Clause license), and is available at https://github.com/elkebir-group/

doubletD.

4.3 RESULTS

We evaluated the performance of doubletD via in silico experiments with known ground

truth doublets (Section 4.3.1) as well as two real datasets: (i) a two cell line mixture (Sec-

tion 4.3.2) and (ii) six patients with acute lymphoblasic leukemia [95] (Section 4.3.3).

4.3.1 In silico Experiments

We aim to answer the following questions: (i) Is doubletD agnostic to the choice of scDNA-

seq assay and experimental design? (ii) How robust is doubletD to the presence of copy

number aberrations? (iii) Will the removal of doublets improve downstream analyses? To

this end, we simulated scDNA-seq data of 10 genotypes under an evolutionary model that

incorporates copy number abberations (CNAs) and SNVs, varying the number of SNVs

m ∈ {10, 50, 100}, the doublet probability δ ∈ {0.1, 0.2, 0.4}, the mean sequencing coverage

c ∈ {10×, 50×, 100×} and ADO probability β ∈ {0.0, 0.05, 0.25}. Each combination of simu-

lation parameters was replicated with five different random number generator seeds, amount-

ing to a total of 405 experiments. In each experiment, we simulated 500 in silico droplet .

We benchmarked our method against SCG [103], a genotyping method for scDNA-seq data

whose model optionally incorporates doublet detection, which we refer to as SCG:doublet,

and Scrublet [111], a standalone doublet detection method designed for scRNA-seq data.

We were not able to benchmark against SiCloneFit [102] and∞SCITE [113], which are tree

inference methods that also incorporate doublets, due to their prohibitive runtimes when run

in doublet mode. Appendix D.3 further details the simulation design, evolutionary model

and method arguments. In particular, for SCG we performed 25 restarts unless specified

otherwise, using the restart with the maximum evidence lower bound (ELBO).

Assay and design agnosticism: We focus on simulations with a mean coverage of

c = 50× and simulated doublet probability of δ = 0.2. We refer to Appendix E.7 for other

simulation regimes. While all three methods show increasing F1 scores (the harmonic mean

between precision and recall) with increasing number m of mutations, doubletD achieves

the highest F1 score (median: 0.88) compared to SCG:doublet (median: 0.76) and Scrublet

57



Figure 4.3: Simulations show that doubletD has high recall and precision in dou-
blet detection, outperforming SCG and Scrublet across various experimental
regimes and improving performance in downstream genotyping. (a) F1 score,
precision and recall of doublet detection for the three competing methods (doubletD,
SCG:doublet and Scrublet) in simulations with varying ADO rate β and number of mu-
tations m in the absence of CNAs (γ = 0). (b) Recall of the three kind of doublets, i.e.
neotypic, nested and selflet. (c) F1 score, precision and recall by method in the presence
of CNAs (γ ∈ {0, 0.1, 0.5}) and varying ADO rate β. All results are for simulations with
doublet probability δ = 0.2, mean read depth c = 50× and precision parameter s = 15.

(median: 0.37) (Fig. 4.3a).Specifically, we find that Scrublet has the worst performance

in terms of both recall (median: 0.35) and precision (median: 0.38), demonstrating that

doublet detection methods developed for scRNA-seq data cannot be directly applied to

scDNA-seq data. While both doubletD and SCG:doublet have equivalently high precision

(SCG:doublet median: 0.99 vs doubletD median: 0.98), doubletD has superior recall (me-

dian: 0.78) among all methods (median recall of 0.67 for SCG:doublet and 0.35 for Scrublet).

Strikingly, SCG:doublet performs poorly in the regime of a small number m = 10 of muta-

tions, with a median recall and precision of 0.21 and 1.00, compared to 0.70 and 0.87 for

doubletD, respectively. Such small number of mutations do occur in practice — e.g. the

ALL data analyzed in Section 4.3.3.

Zooming in on doublet type in Fig. 4.3b, we find that all methods have the highest recall for

neotypic doublets (median: 1.00 for doubletD, 1.00 for SCG:doublet and 0.50 for Scrublet),

and that the recall increases for both nested and neoytpic doublets with increasing number of

mutations and increasing ADO. Notably, doubletD has the highest recall for nested doublets

(median: 0.85) compared to SCG:doublet (median: 0.57) and Scrublet (median: 0.15). As

expected, doubletD and SCG:doublet are unable to detect selflets for ADO rate 0.05 while

Scrublet does detect a small proportion of selflets (median: 0.05). However, when ADO rate

is 0.25, doubletD has significantly higher recall (median: 0.6) as compared with SCG:doublet
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Figure 4.4: Simulations show that removal of doublets using doubletD improves
downstream genotype calling with reduced runtime. (a) F1 score, precision and
recall of genotypes for doubletD+SCG:singlet, SCG:doublet and SCG:singlet for varying
number of mutation m and ADO rate β and without CNAs (γ = 0). (b) Running time for
genotype calling using doubletD+SCG:singlet, SCG:doublet and SCG:singlet for simulations
with varying number of mutations m without CNAs (γ = 0). All results are for simulations
with doublet probability δ = 0.2, mean read depth c = 50× and precision parameter s = 15.

(median: 0) and Scrublet (median: 0.2). Note that SCG:doublet is unable to detect selflets

due to VAF discretization. Further, both SCG:doublet (IQR: 0.34-0.80) and Scrublet (IQR:

0.13-0.50) show large variance in recall rates as opposed to doubletD (IQR: 0.73-0.92).

Additionally, we find that our method maintains its good performance in simulations when

varying coverage and doublet probabilities (Fig. E.18). The lower bound of coverage for the

in silico experiments was 10×. Even at such a low coverage, doubletD maintains its good

performance (median precision: 0.83 and median recall 0.78, see Fig. E.18a). It is also

important to note that doubletD’s improved performance does not come at the expense

of running time (Fig. E.20a, median: 14.9 s vs. 11,000.0 s for SCG:doublet and 4.1 s for

Scrublet). Finally, doubletD is robust to the choice of user-specified parameters such

as the precision s (Appendix E.7.1, Fig. E.21, Fig. E.22, Fig. E.23 and Fig. E.24). In

summary, we find that doubletD is robust to many variations in experimental assays and

design, outperforming SCG:doublet and Scrublet.

Robustness with respect to CNAs: In order to evaluate the robustness of doubletD

to the presence of copy number aberrations (CNAs), we generated simulations with varying

probability of CNAs γ ∈ {0, 0.1, 0.5}, where γ = 0 represents simulations with no CNAs.

More specifically, for each locus that undergoes a copy number aberration (with proba-

bility γ), we introduced a loss with probability ` ∈ {0.1, 0.5} and a gain otherwise. We
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ran SCG:doublet with 5 restarts due to increased runtimes compared to the copy-neutral

simulations.

Although doubletD does not explicitly account for CNAs, Fig. 4.3c shows that

doubletD is robust to varying copy number aberration probability γ, outperforming

SCG:doublet and Scrublet in most regimes. Specifically, doubletD yields the highest

recall (median: 0.79) with good precision (median: 0.98) resulting in the highest F1 score

(median: 0.87) compared to SCG:doublet (median: 0.80) and Scrublet (0.36). While

SCG:doublet has the same precision as doubletD (median: 0.98), this comes at the cost

of lower recall (median: 0.73) compared to doubletD (median: 0.79).

The robustness of doubletD can be explained by the observation that losses (deletions)

introduced by CNAs behave similarly to allelic dropouts, which is a key signal used by

doubletD to detect doublets. We demonstrate the vulnerability of doubletD to copy

number gains on simulations with highest possible copy number aberration probability γ = 1

and lowest possible loss probability ` = 0 (Fig. E.19). Note that this kind of extreme

presentation of CNAs is not observed in practice and that copy number losses including loss

of heterozygosity events are common in cancer [100, 104, 126].

In summary, we find that doubletD is robust to the presence of CNAs and outperforms

both SCG:doublet and Scrublet in doublet detection.

Improving downstream genotype calling: SCG is a genotyping method for scDNA-

seq data of tumors that includes doublet detection. It has two modes: in singlet mode

(SCG:singlet) all droplets are considered singlets, whereas in doublet mode (SCG:doublet)

genotypes and doublets in the sample are jointly inferred. Here, we assess whether the

sequential use of doubletD followed by SCG:singlet (doubletD+SCG:singlet) performs

better than SCG:singlet and SCG:doublet. In each of these settings, SCG is run with 25

restarts.

Recall that each of our simulated instances contain 10 genotypes. To assess the perfor-

mance of the three methods, we compute recall, precision and F1 score with respect to these

ground-truth genotypes, considering a genotype as correctly inferred (i.e. a true positive)

if it precisely matches a ground-truth genotype. Thus, if a method infers the exact set

of 10 ground-truth genotypes, its recall, precision and F1 score will be 1. We find that

doubletD+SCG:singlet has the highest F1 score (median: 0.95) compared to SCG:singlet

(median: 0.73) and SCG:doublet (median 0.89) across all experimental regimes (Fig. 4.4a).

SCG:singlet has good genotype recall (median: 0.9) but reduced precision (median: 0.64)

since it misidentifies doublets as cells with distinct genotypes. SCG:doublet, on the other

hand, has better precision (median: 1.0) but filters out rare genotypes misidentified as dou-
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Figure 4.5: doubletD successfully recalls all 42 orthogonally validated high confi-
dence neotypic doublets and identifies 11 putative selflets in a two cell line mix-
ture dataset. (a) The VAF for each droplet at each of the five validation loci. Droplets are
assigned a neotypic doublet confidence score (NCS), which is the number of validation loci
whose VAF was in the range [0.15, 0.85] (dotted lines). (b) The resulting proportion (total)
of droplet calls by method (doubletD, SCG:doublet, and Scrublet) by prediction (singlet,
doublet) and NCS. (c) The aggregated observed VAF distribution by doubletD prediction
and cell line for droplets with NCS = 0. The number of droplets in the aggregate are shown
in the parenthesis.

blets resulting in reduced recall (median: 0.80). doubletD+SCG:singlet yields the highest

recall (median: 0.90) and precision (median: 1.0). In general, SCG:singlet calls more geno-

types (median: 14) while SCG:doublet calls fewer genotypes (median: 8.5) compared to

the ground truth of 10 genotypes (Fig. E.25). On the other hand, doubletD+SCG:singlet is

closer to ground truth with a median of 9.5 distinct genotypes. Furthermore, Fig. 4.4b shows

that doubletD+SCG:singlet takes orders of magnitude less time compared to SCG:doublet.

While SCG:singlet takes the least time to run, it also yields the lowest F1 score (Fig. 4.4a).

In summary, we find that the use of doubletD improves genotype calling of SCG while

incurring runtimes comparable to SCG in singlet mode. This suggests that doublet removal

using doubletD is a useful pre-processing step for downstream analyses of scDNA-seq data

of tumors.

4.3.2 Mixture of Two Cell Lines

We validated doubletD on a dataset of n = 1,569 droplets comprised of a 50%-50% mix

of KG-1 and Raji cell lines (with m = 26 loci) captured by Mission Bio’s Tapestri platform

and sequenced by Illumina NextSeq1. Appendix E.7.2 details the data preparation, includ-

ing the exclusion of 23 cells that had a genotype distinct from the two cell lines. KG-1 had

1https://portal.missionbio.com/datasets/KG-1-Raji-50-50-Myeloid
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12 heterozygous (het), 7 wild type and 7 homozygous loci, while Raji had 11 heterozygous,

7 wild type and 8 homozygous loci (Fig. E.26). The mean sequencing coverage c was 110×.

Following the procedure outlined in Appendix A.6, we fit beta-binomial precision s = 10.5,

αfp = 0.015, αfn = 0.0073 and locus-specific mutation probabilities µ to the observed variant

V and total read counts C. We used the experimental ADO rate (β = 0.06) previously

estimated by [96] on a large patient cohort using Mission Bio’s Tapestri platform.

There are two unique characteristics of this dataset that permit identification of neotypic

doublets for orthogonal validation: (i) the droplets are easily clustered into two clones by

the cell line of origin (Fig. E.26) and (ii) the droplets are comprised of distinct cell lines

with distinct evolutionary histories. These characteristics are uncommon in regular datasets

where the number of clones and associated genotypes is unknown a priori and droplets

originate from a single tumor whose clones have a shared evolutionary history. As such, we

conclude that doublets will be either neotypic (one cell from each cell line), or selflets (two

cells from one cell line).

Using the property that the two cell lines have independent origins and relaxing Mission

Bio’s standard filtering criteria, we identified an additional set of 5 validation loci with

distinct wild type/homozygous states among the two cell lines, i.e. each validation locus

has state wt (hom) in one cell line and hom (wt) in the other (Fig. 4.5a). Recall that a

singlet i will have an observed VAF vi,j/ci,j of approximately 1 if locus j is homozygous

and VAF 0 if locus j is wild type. As such, any droplets with observed VAF not close to

either 0 or 1 (Fig. 4.5a) indicate that the droplet may be a neotypic doublet comprised of

a cell from each cell line. We therefore assign a neotypic doublet confidence score (NCS)

to each droplet, counting the number of validation loci with VAF between 0.15 and 0.85.

This approach yielded 1,494 droplets with NCS = 0, 33 droplets with NCS = 1 and 42

droplets with NCS ≥ 2. Note that the NCS is specifically designed to express confidence

that a doublet is neotypic but does not capture selfets. Fig. E.26 shows a comparison of the

observed variant allele frequency (VAF) of droplets categorized by cell line droplets with a

neotypic doublet confidence score (NCS ≥ 2).

We ran doubletD, SCG:doublet (with 5 restarts), and Scrublet. Since we did not

know the true doublet probability δ, we used the maximum likelihood criterion to establish

the estimate the doublet probability for doubletD as δ = 0.05 (Fig. E.27a). However,

we provided SCG and Scrublet with the doublet probability δ = 0.09 as estimated by

Mission Bio in similar cell line experiments [127]. For each method and NCS, we calculated

the proportion of predicted singlets and doublets (Fig. 4.5b). doubletD identified the

most droplets as doublets (54), followed by SCG:doublet (42) and Scrublet 30. doubletD

predicted 100% of doublets with NCS ≥ 2 whereas SCG:doublet identifies 95.2% of these
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droplets with similarly high NCS. Scrublet is the worst performing, identifying only 61.9% of

such droplets (Fig.4.5b). In terms of running time, SCG:doublet took 16,259.7 s, doubletD

took 24.1 s and Scrublet took 2.4 s.

All three methods designated the same droplet at NCS = 1 as a doublet. This suggests

that for the remaining 32 droplets at NCS = 1 the observed VAF in [0.15, 0.85] at one of these

5 validation loci is likely attributable to amplification and sequencing error. The one doublet

identified by all methods does appear to be neotypic as evidenced by an observed VAF of 0.39

for the validation locus on chromosome 17, which is far from the cut off criterion of 0.15 and

is hard to explain by other errors. Furthermore, the VAF distribution across the 26 inference

loci for this droplet has a peak at 0.25 and is strikingly different from the distribution of

the other Raji droplets with NCS equal to 1 (Fig. E.27b). Lastly, doubletD identifies 11

(proportion: 0.007) putative selflets at NCS = 0, 3 of which are KG-1 and 8 are Raji. SCG

calls 1, which was also called by doubletD, and Scrublet calls 3 such droplets with only

one called by doubletD. Corroborating this, we note a visual difference in the aggregated

VAF distribution across the inference 26 loci between doubletD predicted singlets and

doublets with NCS = 0 (Fig. 4.5c). A Venn diagram of the droplets with different NCS

score that were predicted as doublets by the three competing methods is shown in Fig. E.28.

In summary, doubletD is able to recall all orthogonally validated high confidence neo-

typic doublets (with NCS ≥ 2) as well as successfully distinguish the VAF signal of neotypic

doublets from sequencing-related error. In addition, we suspect that doubletD is able to

recall a small number of selflets even in the presence of low ADO rates (β = 0.05).

4.3.3 Phylogeny Inference of an Acute Lymphoblastic Leukemia Patient

As discussed in Section 4.1, while nested doublets and selflets do not yield new genotypes,

neotypic doublets can be mistaken as an additional clone with a unique genotype [108]. In

the extreme case of a phylogeny with only two branches, neotypic doublets that correspond

to the two leaves of this tree will include all mutations. Consequently, phylogeny inference

under the infinite sites assumption will yield a linear phylogeny. Here, we investigate the

impact of doublets on phylogeny inference for a patient (Patient 1) in an acute lymphoblastic

leukemia cohort previously suspected to contain doublet droplets [95] — we refer to Table E.5

for doubletD results of the other patients.

[95] sequenced 243 droplets and identified 20 mutations for Patient 1. We analyzed this

patient using PhISCS-B [128], which is a phylogeny inference method that seeks to identify

a tree constrained by the infinite sites assumption. Since it does not account for doublets,

PhISCS-B requires doublets be removed in a pre-processing step. While SCG:doublet was

63



CAMSAP1

SMOC1

TUFT1

BBS4

RYR3

HIST1H2AG

DOCK3

MAL2

EPHA10

EYA4

RGS11

TTN

HIPK4

SERPINF2

OAZ3

PTPRQ

INTS8

MYOM3

SNF540

PPIG

(a) With
doublets

RYR3

MAL2

PTPRQ

SNF540

INTS8

BBS4

HIPK4

SMOC1

DOCK3

HIST1H2AG

TTN RGS11

SERPINF2
EYA4

CAMSAP1

OAZ3

MYOM3

PPIG

EPHA10

TUFT1

(b) Excluding
doublets

Figure 4.6: Doublets lead to incorrect phylogeny inference in acute lymphoblastic
leukemia patient 1. (a) PhISCS-B returns an linear phylogeny with mean log likelihood of
−2806.49/243 = −11.55 if the 50 doublets detected by doubletD are retained. (b) PhISCS-B
returns a branching phylogeny with higher mean likelihood of −1157.39/193 = −6.00.

unable to identify any doublets, doubletD identified 50 doublets for this patient. Fig. E.29

corroborates these doublets, showing distinct VAF distributions between singlets and dou-

blets for an orthogonal set of holdout loci. We ran PhISCS-B in single-cell data mode on the

complete set of droplets (including doublets) as well as the set of droplets without doublets

(details in Appendix E.7.3.3). Fig. 4.6 shows that doublet removal in this patient results

in a branching phylogeny with a higher mean likelihood (−1157.39/193 = −6.00) compared

to a linear phylogeny (−2806.49/243 = −11.55) on the complete set of droplets. Further-

more, the branching pattern observed in the inferred phylogeny after doublet removal is in

agreement with several other trees published for Patient 1, with identical grouping of the

mutations across the two branches [95, 113, 129].

Thus, phylogeny inference is an additional example of a downstream analysis where the
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inclusion of doublets may yield incorrect conclusions.

4.4 DISCUSSION

In this work we introduced doubletD, the first standalone method for detecting doublets

in single-cell DNA sequencing (scDNA-seq) data with medium to high-coverage (≥ 5×)

suitable for single-nucleotide variants. Our method operates directly on variant and total

read counts of mutation loci. Underlying our method is the observation that doublets in

scDNA-seq data have a characteristic VAF distribution. An additional signal that we exploit

is the shift in VAFs due to allelic dropout. This unique approach enables doubletD to

capitalize on a major downside of single-cell sequencing in order to identify selflets and

nested doublets, that are notoriously hard to detect by current methods. doubletD utilizes a

probabilistic model that specifically accounts for allelic imbalance and dropout during whole-

genome amplification in scDNA-seq as well as sequencing errors. We introduced a closed-

form solution for the inference problem. We demonstrated that our method outperforms

current methods for downstream analysis of scDNA-seq data that jointly infer doublets

and genotypes [103] as well as standalone approaches for doublet detection in scRNA-seq

data [111]. Moreover, we showed that removing doublets using doubletD improves the

accuracy and efficiency of downstream analyses such as genotype calling and phylogeny

inference.

There are several opportunities for future work. First, while this paper focused on can-

cer, doubletD can be applied to normal samples as well using heterozygous germline SNPs.

Moreover, the same characteristic signal used by our method to detect doublets can be used

to detect cells that have undergone whole-genome duplication or are in S-phase with ac-

tively replicating DNA. Second, our approach can be extended to support low (0.1− 0.5×)

to ultra-low (< 0.05×) coverage scDNA-seq samples, suitable for copy-number aberrations,

by pooling heterozygous germline SNPs located within haplotype blocks. Third, our current

formulation assumes that normal cells are diploid. As noted in our simulations, performance

slightly decreased in the presence of copy-number aberrations. We plan to extend our proba-

bilistic model to account for copy number. Finally, we envision that doubletD will improve

downstream analysis of current and future methods, making doublet detection and removal

a standard practice in scDNA-seq analysis.
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Chapter 5: Parsimonious Clone Tree Reconciliation

5.1 INTRODUCTION

Cancer results from an evolutionary process where somatic mutations accumulate in the

genomes of different cells. This process yields highly heterogeneous tumors composed of

different clones, each corresponding to a distinct subpopulation of cells with the same com-

plement of somatic mutations [4]. The resulting intra-tumor heterogeneity has been clearly

linked to critically important cancer phenotypes, including cancer prognosis and the po-

tential of developing resistance to cancer therapy [5, 6]. Therefore, important downstream

applications rely on accurate reconstructions of a tumor’s clonal architecture, which in turn

requires the identification of the different clones, their proportions and their evolutionary

history. However, the presence of different types of somatic mutations in the same clones

renders these tasks particularly challenging. In particular, the following two types of somatic

mutations are frequent in cancer [130, 131, 132]: (1) single nucleotide variants (SNVs), which

are substitutions of individual DNA nucleotides, and (2) copy number alterations (CNAs),

which are amplifications and deletions of large genomic regions.

Most cancer sequencing studies use bulk DNA sequencing technology, where one does

not directly measure the co-occurrence of different mutations in the same clone because the

generated DNA sequencing reads originate from unknown mixtures of millions of different

cells in a bulk tumor sample. To identify distinct clones from such data, one thus needs to

deconvolve the mixed sequencing data into the different clonal components [133]. Several

computational methods have been introduced to perform this task. However, the majority of

existing methods only focus on either SNVs [134, 135, 136, 137, 138] or CNAs [139, 140, 141,

142, 143, 144, 145], but rarely on both. Methods that attempt to identify clones in terms of

both SNVs and CNAs do not not scale to the numbers of current cancer sequencing datasets

(e.g., number of samples, mutations, clones, etc.) and often require heuristics to reduce the

size of input instances [146, 147, 148]. As a result, current cancer evolutionary analyses [8,

149] do not apply such proposed methods but rather perform a post hoc analysis, manually

assigning CNAs to a tree inferred from SNVs. Furthermore, we note that similar issues

arise with some single-cell DNA sequencing technologies, since the different features of these

technologies only allow the reliable measurement of either SNVs or CNAs [150]. For example,

targeted MDA single-cell sequencing technologies are more suited for the idenification of

SNVs whereas whole-exome/genome DOP-PCR single-cell technologies are more suited for

the identification of CNAs, and both these technologies have been used in parallel on the
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Figure 5.1: Overview. A tumor is composed of multiple subpopulations of cells, or clones,
with distinct somatic mutations, which can be measured using DNA sequencing. (a) Due
to limitations in inference algorithms and/or sequencing technologies, we are limited to
characterizing tumor clones in terms of either single-nucleotide variants (SNVs, stars) or
copy-number aberrations (CNAs, triangles). That is, we infer clones Π1, proportions U1 and
a clone tree T1 for the SNVs. Similarly, we infer clones Π2, proportions U2 and a clone tree T2

for the CNAs. (b) PACTION solves the Parsimonious Clone Tree Reconciliation
problem of inferring clones Π ⊆ Π1×Π2, a clone tree T and proportions U that characterize
the clones of the tumor in terms of both SNVs and CNAs.

same tumor sample [151].

In this study, we investigate whether tumor clonal compositions can be comprehensively

reconstructed by an alternative simpler and automated approach. Leveraging the SNV and

CNA clone proportions that can be independently and reliably inferred by existing meth-

ods, we introduce the Parsimonious Clone Reconciliation (PCR) and Parsimonious

Clone Tree Reconciliation (PCTR) problems to infer clones in terms of both SNVs

and CNAs, their proportions and, additionally for the PCTR problem, their evolutionary

relationships (Figure 5.1). We prove that the proposed problems are NP-hard and we intro-

duce PACTION (PArsimonious Clone Tree reconciliatION), an algorithm that solves these

problems using two mixed integer linear programming formulations. Using simulations, we

find that our approach reliably handles errors in input SNV and CNA proportions and scales

to practical instance sizes. On 49 samples from prostate cancer patients [8], we find that

our approach more comprehensively reconstructs tumor clonal architectures compared to

the manual approach adopted in the previous analysis of the same data.
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5.2 PROBLEM STATEMENTS

We introduce two reconciliation problem formulations to reconstruct tumor clonal compo-

sition from inferred SNV and CNA clone proportions1. The first problem aims at inferring

tumor clones and related proportions with both SNVs and CNAs given the clone propor-

tions of SNVs and CNAs independently (Section 5.2.1). The second problem additionally

considers phylogenetic trees describing the evolution of tumor clones with either different

SNVs or CNAs (Section 5.2.2).

5.2.1 Parsimonious Clone Reconciliation

Suppose a tumor is composed of a set Π of n = |Π| clones, which are characterised by

unique complements of two different features (e.g., SNVs and CNAs). These clones occur in

m samples at varying proportions, defined as follows.

Definition 5.1. An m×n matrix U = [up,`] is a proportion matrix for n clones Π provided

(i) up,` ≥ 0 for all samples p ∈ [m] and clones ` ∈ [n], and (ii)
∑n

`=1 up,` = 1 for all samples

p ∈ [m].

Due to limitations in inference algorithms and/or sequencing technologies, we only infer

clones and their proportions for one feature in isolation. These two features lead to two

distinct partitions of all tumor cells: a set Π1 = [n1] of clones induced by the first feature

(e.g., SNVs) and a set Π2 = [n2] of clones induced by the second feature (e.g., CNAs).

We refer to the original clones as Π-clones and the clones induced by the first and the

second features as Π1-clones and Π2-clones, respectively. The proportions of the Π1-clones

and Π2-clones are given by the m × n1 proportion matrix U1 = [u
(1)
p,i ] and the m × n2

proportions matrix U2 = [u
(2)
p,j ], respectively. How are the proportions U1 for Π1-clones and

the proportions U2 for Π2-clones related to the proportions U of the Π-clones?

To answer this question, recall that Π is a partition of all tumor cells induced by the

combination of both the two features, whereas Π1 and Π2 are partitions induced by each

feature in isolation (Figure 5.2a). As such, we have that the partition Π is a refinement

of partitions Π1 and Π2. Thus, each Π-clone ` corresponds to a unique Π1-clone i and a

unique Π2-clone j. In other words, we may view the set Π as a binary relation of sets Π1

and Π2 of clones composed of pairs ` = (i, j) of clones, i.e., Π ⊆ Π1 × Π2. This relation is

captured by the projection functions π1 : Π → Π1 and π2 : Π → Π2 such that π1((i, j)) = i

1While reconciliation is used in species phylogenetics, particularly in the context of gene-tree species-tree
reconciliation, here we will use this term to indicate the process of obtaining a comprehensive evolutionary
tree of tumor clones given input trees that each focus on a distinct genomic feature.
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Figure 5.2: The Parsimonious Clone Reconciliation (PCR) problem. (a) Given
clones Π1 and Π2 and corresponding proportions U1 and U2, we seek clones Π ⊆ Π1×Π2 and
corresponding proportions U consistent with U1 and U2. (b) There always exists a consistent
proportion matrix U ′ for the trivial solution Π′ = Π1×Π2, which can be identified by solving
a maximum flow problem. (c) We seek the solution Π with minimum number |Π| of clones.
Here, |Π| = 4, which is smaller than ground truth (see panel (a)). The corresponding matrix
U follows from solving the illustrated maximum flow problem. However, incorporating tree
constraints, as in the PCTR problem, will lead to ground truth (Figure 5.1).

and π2((i, j)) = j for all (i, j) ∈ Π. We relate the proportion matrix U for clones Π to the

proportion matrix U1 for clones Π1 and the proportion matrix U2 for clones Π2 as follows.

Definition 5.2. Given projection functions π1 : Π → Π1 and π2 : Π → Π2 induced by the

set Π ⊆ Π1 × Π2 of clones, the proportion matrix U = [up,`] for clones Π is consistent with

a proportion matrix U1 = [u
(1)
p,i ] for clones Π1 = [n1] and proportion matrix U2 = [u

(2)
p,j ] for

clones Π2 = [n2] provided (i) u
(1)
p,i =

∑
`:π1(`)=i up,` for all samples p ∈ [m] and clones i ∈ [n1],

and (ii) u
(2)
p,j =

∑
`:π2(`)=j up,` for all samples p ∈ [m] and clones j ∈ [n2].

The above definition formalizes the intuition that clones Π of the tumor are a refinement

of the input clones Π1 and Π2, and therefore their proportions U must be consistent with the

input proportions U1 and U2. Our goal is to recover the set Π ⊆ Π1×Π2 of clones and their

proportions U from the proportion matrices U1 and U2 for clones Π1 and Π2, respectively.

While there always exist trivial solutions given by the full set Π′ = Π1 × Π2 of n = n1 · n2

clones (Figure 5.2b), we seek a solution Π with the smallest number n of clones under the

principle of parsimony (Figure 5.2c).

Problem 5.1 (Parsimonious Clone Reconciliation (PCR)). Given proportions U1 for clones

Π1 = [n1] and proportions U2 for clones Π2 = [n2], find (i) the smallest set Π ⊆ Π1 × Π2 of

clones and (ii) proportions U for Π such that U is consistent with U1 and U2.
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5.2.2 Parsimonious Clone Tree Reconciliation

In practice, proportions U1 and U2 are not measured exactly but are affected by potential

measurement errors. As such, accurate recovery of the original clones Π and their proportions

U requires correcting U1 and U2. To accomplish this, we require additional information and

constraints. In this work, we propose to use the evolutionary relationships among the clones

Π1 and Π2 that can be inferred by existing methods in the form of clone trees [134, 135,

152, 153, 154, 155]. Specifically, a rooted tree T is a clone tree for clones Π provided the

vertex set V (T ) equals Π. Moreover, the root vertex r(T ) of a clone tree T corresponds to

the normal clone while each edge (u, v) ∈ E(T ) represents a mutation event that altered one

of the features of clone u and led to the formation of the clone v.

Similarly to the PCR problem, we are given two clone trees, one for each feature in

isolation. In the specific example of two features (e.g., SNVs and CNAs), let clone tree T1

describe the evolution of clones Π1 (e.g., SNVs) and clone tree T2 describe the evolution of

clones Π2 (e.g., CNAs). These trees are inferred using standard algorithms in the field [134,

135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145]. Since all clones share a common

evolutionary history the original clone tree T is a refinement [137, 156] of the clone trees T1

and T2, which is defined as follows.

Definition 5.3. Clone tree T for clones Π is a refinement of clone trees T1 for clones Π1

and clone tree T2 for clones Π2 provided

(i) for each edge (i, i′) ∈ E(T1) there exists exactly one j ∈ Π2 such that ((i, j), (i′, j)) ∈
E(T ),

(ii) for each edge (j, j′) ∈ E(T2) there exists exactly one i ∈ Π1 such that ((i, j), (i, j′)) ∈
E(T ),

(iii) for each ((i, j), (i′, j′)) ∈ E(T ), it holds that (i, i′) ∈ E(T1) and j = j′, or (j, j′) ∈ E(T2)

and i = i′.

Intuitively, the above definition states that when collapsing vertices of T corresponding to

identical Π1-clones one obtains T1, and, similarly, T2 is obtained by collapsing vertices of T

corresponding to identical Π2-clones.

Under a principle of parsimony and given clone trees T1, T2 with related proportions U1, U2,

our goal is to find a set Π ⊆ Π1 × Π2 of clones, a clone proportion matrix U , and a T1, T2-

refined clone tree T that require the smallest correction in U1 and U2. This motivates the

following problem statement.
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Problem 5.2 (Parsimonious Clone Tree Reconciliation (PCTR)). Given proportions U1 and

tree T1 for clones Π1 = [n1] and proportions U2 and tree T2 for clones Π2 = [n2], find (i) the

set Π of clones, (ii) clone tree T and (iii) proportions U for Π such that the clone tree T is

a refinement of T1 and T2 and minimizes the total error J(U,U1, U2) such that

J(U,U1, U2) =
m∑
p=1

n1∑
i=1

|u(1)
p,i −

∑
`:π1(`)=i

up,`|+
m∑
p=1

n2∑
j=1

|u(2)
p,j −

∑
`:π2(`)=i

up,`|. (5.1)

Note that J(U,U1, U2) = 0 if and only if U is consistent with U1 and U2. The clone trees T ,

T1 and T2 do not appear in the objective function J(U,U1, U2) and only provides constraints

to the optimization problem. Due to these constraints, unlike the previous PCR problem,

PCTR does not always admit a trivial solution with J(U,U1, U2) = 0 (as we further discuss

in Section 5.3.2).

5.3 COMBINATORIAL CHARACTERIZATION AND COMPUTATIONAL
COMPLEXITY

We investigate the combinatorial structure and computational complexity of the two pro-

posed PCR and PCTR problems in the following two sections, respectively.

5.3.1 Parsimonious Clone Reconciliation

We characterize the combinatorial structure of feasible and optimal solutions (Π, U) for

the PCR problem. We first observe that the PCR problem always has a trivial solution.

Specifically, given a set Π1 of n1 = |Π1| clones and a set Π2 of n2 = |Π2| clones and

corresponding proportions U1 ∈ [0, 1]m×n1 and U2 ∈ [0, 1]m×n2 , a trivial feasible solution is

composed of n = n1n2 clones Π = Π1 × Π2, which may have many possible corresponding

proportions U (Figure 5.2b). For example, proportions U = [up,(i,j)] can be computed

greedily by considering the n clones in any arbitrary order, and assigning each clone (i, j) ∈ Π

a proportion of up,(i,j) = min(u
(1)
p,i , u

(2)
p,j) followed by subsequently updating u

(1)
p,i := u

(1)
p,i−up,(i,j)

and u
(2)
p,j := u

(2)
p,j − up,(i,j) for each sample p ∈ [m]. Thus, n = n1n2 is an upper bound on the

number of clones needed. Can we similarly identify a lower bound on n?

To answer this question, let the support S(U) of an m×n proportion matrix U be defined

as the number of non-zero entries in the vector U1m where 1m is a m × 1 vector with all

entries equal to one. That is, the support S(U) of a proportion matrix U of clones Π signifies

the number of clones with non-zero proportion in at least one of the samples p ∈ [m]. Any
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Figure 5.3: Reduction from 3-PARTITION. (a) Example instance of 3-PARTITION
with a multiset A of 6 elements and target sum B = 40. (b) Corresponding
PCR instance (Π1, U1,Π2, U2) and solution (Π, U). (c) Corresponding PCTR instance
(T1,Π1, U1, T2,Π2, U2) and solution (T,Π, U).

such clone must be part of at least one clone ` ∈ Π in the solution to the PCR problem to

ensure consistency of the proportion matrices. This leads to the following observation.

Observation 5.1. Given an instance (Π1, U1,Π2, U2) of the PCR problem with solution Π

we have n ≥ max(S(U1), S(U2)) where n = |Π|.

Given any set Π ⊆ Π1 × Π2 of clones, deciding whether there exists a proportion matrix

U that is consistent with given proportion matrix U1 for clones Π1 and U2 for clones Π2,

and constructing such a matrix is equivalent to solving a maximum flow problem, which

takes polynomial time [157]. Figure 5.2 illustrates the construction such that there exists

a consistent proportion matrix if and only the value of the flow is 1. Note that for m > 1

samples, we need to solve a multi-commodity rather than a single-commodity flow problem.

However, the PCR problem, where we simultaneously seek Π and U , is NP-hard and the

hardness comes from having to identify the smallest set Π of clones.

Theorem 5.1. The PCR problem is NP-hard even for number m = 1 of samples.

This follows by reduction from the 3-PARTITION problem, a known NP-complete prob-

lem [158, 159] stated as follows.

Problem 5.3 (3-PARTITION). Given an integer B ∈ N>0, a multiset A = {a1, · · · , a3q} of

3q positive integers such that ai ∈ (B/4, B/2) for all i ∈ [3q], and
∑3q

i=1 ai = Bq, does there

exist a partition of A into q disjoint subsets such that the sum of the integers in each subset

equals B?

Note that since each ai occurs within the open interval (B/4, B/2) and the elements in

each subset of the desired partition sum to B, it holds that each subset must be composed

of exactly three elements from the multiset A — hence the name of the problem.
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We represent the solution to an instance (A,B) of the 3-PARTITION problem as a

function σ : [3q]→ [q], which encodes the division of the elements of A = {a1, . . . , a3q} into

q disjoint subsets. The inverse of this function specifies the subset corresponding to each

j ∈ [q] as σ−1(j) = {i ∈ [3q] : σ(i) = j}. Note that any solution σ : [3q] → [q] of the

3-PARTITION problem satisfies the following constraint.∑
i∈σ−1(j)

ai = B, ∀j ∈ [q]. (5.2)

Figure 5.3a provides an example 3-PARTITION instance and solution.

Given a 3-PARTITION problem instance (A,B), we construct an instance of the PCR

problem with number m = 1 of samples as follows. The set Π1(A,B) of clones is given

by the set [3q]. The corresponding proportions are given by the 1 × 3q proportion matrix

U1(A,B) = [u
(1)
1,i ] where u

(1)
1,i = ai/Bq for all i ∈ [3q]. Clearly, U1(A,B) = [u

(1)
1,i ] is a

proportion matrix for Π1(A,B) as, by construction, we have that
∑3q

i=1 u
(1)
1,i = 1 and u

(1)
1,i ≥ 0

for all i ∈ [3q]. The second set Π2(A,B) of clones is given by [q]. The corresponding

proportions are given by the 1× q proportion matrix U2(A,B) = [u
(2)
1,j ] where u

(2)
1,j = 1/q for

all j ∈ [q]. It is easy to verify that U2(A,B) is a proportion matrix for Π2(A,B). Clearly, this

construction takes polynomial time. Figure 5.3b shows an example. The hardness follows

from the following lemma whose proof is in Appendix B.2.

Lemma 5.1. Given proportions U1(A,B) for clones Π1(A,B) = [3q] and proportions

U2(A,B) for clones Π2(A,B) = [q], there exists a set Π of clones of size n = |Π| ≤ 3q

with proportions U that are consistent with U1(A,B) and U2(A,B) if and only if there

exists a solution to the 3-PARTITION instance (A,B).

5.3.2 Parsimonious Clone Tree Reconciliation

We now characterize the combinatorial structure of feasible and optimal solutions (Π, U, T )

for the PCTR problem. Let T1 be the first input clone tree for the input set Π1 of n1 = |Π1|
clones. Similarly, let T2 be the second input clone tree for the input set Π2 of n2 = |Π2|
clones. Let T be a solution clone tree that is a refinement of both T1 and T2. First, we

observe that the clones that label the root vertices r(T1) and r(T2) of the two input trees

together label the root vertex r(T ) of the output tree T , i.e., r(T ) = (r(T1), r(T2)).

Observation 5.2. If clones Π, clone tree T and proportion matrix U form a solution to the

PCTR instance (Π1, T1, U1,Π2, T2, U2), then (r(T1), r(T2)) ∈ Π and r(T ) = (r(T1), r(T2)).
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Next, from Definition 5.3 it follows that in the output clone tree T it must hold that along

each edge there is either a change in corresponding Π1-clones or Π2-clones but not both.

Observation 5.3. For each (i, j) ∈ V (T ) \ {r(T )} it holds that either ((i′, j), (i, j)) ∈ E(T )

or ((i, j′), (i, j)) ∈ E(T ) where (i′, i) ∈ E(T1) and (j′, j) ∈ E(T2).

Combining these observations, we get that the number of vertices/clones in T equals

n = n1 + n2 − 1.

Observation 5.4. The number of clones V (T ) equals n = n1 + n2 − 1.

We note that T is a multi-state perfect phylogeny with two characters, i.e. each character

state labels at most one edge of T , whose two sets of states correspond to Π1 and Π2.

Moreover, T1 and T2 impose an ordering of two sets of states to which T must adhere –

i.e., the two characters are cladistic [160]. The problem of deciding whether there exists

an error-free solution of PCTR with J(U,U1, U2) = 0 is equivalent to a special case of the

Cladistic Multi-state Perfect Phylogeny Deconvolution problem [147]. Details

and precise definitions of these concepts are omitted due to space constraints. Although the

tree constraints alter the solution space of PCTR problem compared to the PCR problem

(see Figure 5.1 and Figure 5.2c), PCTR remains NP-hard, as we will show in the following.

Theorem 5.2. The PCTR problem is NP-hard even for number m = 1 of samples.

For a given instance (A,B) of the 3-PARTITION problem, we construct an instance

of the PCTR problem as follows. The first set Π1(A,B) of clones equals {0} ∪ [3q] with

corresponding 1× (3q + 1) proportion matrix U1(A,B) = [u
(1)
1,i ] where u

(1)
1,i = ai/(Bq) for all

i ∈ [3q], and u
(1)
1,0 = 0. The second set Π2(A,B) of clones equals {0}∪ [q] with corresponding

1× (q+ 1) proportion matrix U2(A,B) = [u
(2)
1,j ] where u

(2)
1,j = 1/q for all j ∈ [q], and u

(2)
1,0 = 0.

The clone tree T1(A,B) is a star phylogeny rooted at Π1-clone i = 0 with outgoing edges

to each of the remaining Π1-clones. Similarly, clone tree T2(A,B) is also a star phylogeny

rooted at Π2-clone j = 0 with outgoing edges to each of the remaining Π2-clones. It is easy

to verify that U1(A,B) and U2(A,B) are proportion matrices for Π1(A,B) and Π2(A,B),

respectively. Clearly, this construction takes polynomial time. Figure 5.3c shows an example.

The hardness follows from the following lemma whose proof is in Appendix B.2.

Lemma 5.2. Given proportions U1(A,B) and clone tree T1 for clones Π1(A,B) = {0}∪ [3q]

and proportions U2(A,B) and clone tree T2 for clones Π2(A,B) = {0} ∪ [q], there exists a

set Π of clones of size n = |Π| = 4q + 1, clone tree T and proportion matrix U such that T

is a refinement of T1 and T2 and J(U,U1, U2) = 0 if and only if there exists a solution of the

3-PARTITION instance (A,B).
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5.4 METHODS

We introduce two mixed integer linear programming (MILP) formulations to solve the

PCR (Section 5.4.1) and the PCTR problems (Section 5.4.2). We implement these two

formulations within the algorithm PACTION (PArsimonious Clone Tree reconciliatION),

which uses the MILP-solver Gurobi version 9.1. PACTION is available at https://github.

com/elkebir-group/paction.

5.4.1 Parsimonious Clone Reconciliation

To solve the PCR problem, we introduce an MILP formulation composed of O(n1n2m)

variables (including O(n1n2) binary variables) and O(n1n2m) constraints. We introduce

binary variables xi,j ∈ {0, 1} for each Π1-clone i ∈ [n1] and Π2-clone j ∈ [n2] that indicate

if clone (i, j) belongs to Π. As such, the corresponding proportion of clone (i, j) in sample

p ∈ [m] is denoted by the continuous variable up,i,j ∈ [0, 1]. In the following we define the

constraints on these variables by first describing the constraints for consistency and next

those for encoding the objective function.

Consistency constraints. This first set of constraints ensure that proportion matrix U is

consistent with proportion matrices U1 and U2. We begin by forcing up,i,j to 0 if (i, j) is not

a clone in the solution Π.

up,i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2]. (5.3)

These above constraints allow us to model consistency of the solution U with input propor-

tions U1 = [u
(1)
p,i ] and U2 = [u

(2)
p,j ] as follows.

n2∑
j=1

up,i,j = u
(1)
p,i ∀p ∈ [m], i ∈ [n1], (5.4)

n1∑
i=1

up,i,j = u
(2)
p,j ∀p ∈ [m], j ∈ [n2]. (5.5)

Note that these two sets of constraints imply that
∑n1

i=1

∑n2

j=1 up,i,j = 1 for all p ∈ [m].

Objective function. We minimize the total number of clones in the set Π by minimizing

the following objective function.

min

n1∑
i=1

n2∑
j=1

xi,j. (5.6)
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5.4.2 Parsimonious Clone Tree Reconciliation

To solve the PCTR problem, we introduce an MILP formulation composed of O(n1n2m)

variables (including O(n1n2) binary variables) and O(n1n2m) constraints. Similarly to the

PCR MILP, we introduce binary variables xi,j ∈ {0, 1} for i ∈ [n1] and j ∈ [n2] that indicate

if clone (i, j) belongs to Π. As such, the corresponding proportion of clone (i, j) in sample

p ∈ [m] is denoted by the continuous variable up,i,j ∈ [0, 1]. We introduce constraints to

model the error J(U,U1, U2) used in the objective function, as well constraints to enforce

that U is a proportion matrix, and finally constraints to enforce that T is a refinement of T1

and T2.

Correction constraints. Unlike the PCR problem, the proportion matrix U need not be

consistent with proportion matrices U1 and U2. We introduce continuous variables c
(1)
p,i ∈ [0, 1]

for p ∈ [m], i ∈ [n1] and c
(2)
p,j ∈ [0, 1] for p ∈ [m], j ∈ [n2] to model the entry-wise absolute

differences, i.e., c
(1)
p,i = |∑n2

j=1 up,i,j − u
(1)
p,i | and c

(2)
p,j = |∑n2

j=1 up,i,j − u
(2)
p,j |. We do so with the

following constraints.

c
(1)
p,i ≥

n2∑
j=1

up,i,j − u(1)
p,i ∀p ∈ [m], i ∈ [n1], (5.7)

c
(1)
p,i ≥ u

(1)
p,i −

n2∑
j=1

up,i,j ∀p ∈ [m], i ∈ [n1], (5.8)

c
(2)
p,j ≥

n1∑
i=1

up,i,j − u(2)
p,j ∀p ∈ [m], j ∈ [n2], (5.9)

c
(2)
p,j ≥ u

(2)
p,j −

n1∑
i=1

up,i,j ∀p ∈ [m], j ∈ [n2]. (5.10)

Proportion matrix constraints. To model that our output matrix U is a proportion

matrix, we begin by ensuring that up,i,j = 0 with xi,j = 0, i.e., the proportion of clone (i, j)

is zero when it is not part of the solution Π with the following constraints.

up.i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2]. (5.11)

Next, we ensure that matrix U is a valid proportion matrix by enforcing that the propor-

tions of the clones in each sample sum to 1.

n1∑
i=1

n2∑
j=1

up,i,j = 1 ∀p ∈ [m]. (5.12)
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Refinement constraints. We introduce constraints that ensure that the clone tree T is

a refinement of the clone trees T1 and T2. Following condition (iii) in Definition 5.3, we

require that for each clone (i, j) 6= (r(T1), r(T2)) there only two possible parents, i.e., either

(i′, j) or (i, j′) where (i′, i) ∈ E(T1) and (j′, j) ∈ E(T2). We model the first case with

continuous variables z
(1)
(i,i′),j ∈ [0, 1] and the second case with continuous variables z

(2)
i,(j,j′).

More specifically, we model the products z
(1)
(i,i′),j = xi,jxi′,j and z

(2)
i,(j,j′) = xi,jxi,j′ with the

following constraints.

z
(1)
(i,i′),j ≤ xi,j ∀(i, i′) ∈ E(T1), j ∈ [n2], (5.13)

z
(1)
(i,i′),j ≤ xi′,j ∀(i, i′) ∈ E(T1), j ∈ [n2], (5.14)

z
(1)
(i,i′),j ≥ xi,j + xi′,j − 1 ∀(i, i′) ∈ E(T1), j ∈ [n2]. (5.15)

z
(2)
i,(j,j′) ≤ xi,j ∀i ∈ [n1], (j, j′) ∈ E(T2), (5.16)

z
(2)
i,(j,j′) ≤ xi,j′ ∀i ∈ [n1], (j, j′) ∈ E(T2), (5.17)

z
(2)
i,(j,j′) ≥ xi,j + xi,j′ − 1 ∀i ∈ [n1], (j, j′) ∈ E(T2). (5.18)

We now enforce conditions (i) and (ii) in Definition 5.3 as follows.

n2∑
j=1

z
(1)
(i,i′),j = 1 ∀(i, i′) ∈ E(T1), (5.19)

n1∑
i=1

z
(2)
i,(j,j′) = 1 ∀(j, j′) ∈ E(T2). (5.20)

Objective function. Our goal is to minimize the difference between projections of propor-

tion matrix U with U1 and U2. To that end, we minimize the following objective function

min
m∑
p=1

n1∑
i=1

c
(1)
p,i +

m∑
p=1

n2∑
j=1

c
(2)
p,j . (5.21)

We provide the full MILP for reference in Appendix A.7.

5.5 RESULTS

5.5.1 Simulations

We perform simulations to investigate the performance of PACTION when solving the

PCR and PCTR problems under different simulation regimes.
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Setup. Given numbers n1, n2 of clones, number m of samples and noise parameter h ∈ [0, 1],

we use a three-step procedure to simulate a set Π of n = n1 + n2 clones whose SNV and

CNA evolution is described by a clone tree T and with clone proportions U on m samples.

From T and U , we obtain input trees T1 and T2 as well as input proportion matrices U1 and

U2 subject to additional noise h. We detail the three steps in the following.

First, we use an approach based on growing random networks [161] to simulate T : starting

from the root vertex (representing the normal clone (1, 1)) T ’s topology is built by itera-

tively adding descendant vertices, choosing each parent uniformly at random. Specifically,

we label each edge with a single event from either the first set {2, . . . , n1} or second set

{2, . . . , n2} of features. Thus, the overall clones Π are obtained by labeling all vertices with

a depth-first traversal. Second, we obtain the clone trees T1 and T2 by collapsing vertices of

T corresponding to identical Π1-clones and collapsing vertices of T corresponding to iden-

tical Π2-clones, respectively. Third, the proportions U of the Π-clones in each sample are

simulated by using a Dirichlet distribution with all concentration parameters equal to 1,

similarly to previous methods [135, 152]. Proportions U1 and U2 are thus obtained following

the consistency condition (Definition 5.2). Furthermore, we introduce noise in these two

proportion matrices by mixing in a second draw from the same Dirichlet distribution using

the parameter h ∈ [0, 1] — a value of h = 0 indicates the absence of noise. Details are in

Appendix D.4.

We ran PACTION in both PCR and PCTR mode on 360 simulated instances that we

obtained by generating 10 instances for each combination of varying parameters. Matching

numbers observed in recent cancer genomics studies [8, 141, 149], we varied the numbers

n1 ∈ {3, 5, 8} and n2 ∈ {3, 5, 8} of clones, the number m ∈ {1, 2, 5} of samples and noise

level h ∈ {0, 0.05, 0.1, 0.15}. Note that both proportions U1, U2 and the simulated trees

T1, T2 are taken in input in PCTR mode, while only proportions U1, U2 are considered in

PCR mode.

Results. We measure the performance of PACTION based on recall, which is the frac-

tion of ground truth clones that are predicted by our method, i.e., the clone recall equals

|Π ∩ Π∗|/|Π∗| where Π is the set of clones inferred by PACTION and Π∗ are the ground

truth clones. As expected, PACTION in PCTR mode leverages additional information

from the clone trees T1 and T2 and thus resulted in higher recall compared to PCR mode

(Figure 5.4a). Interestingly, recall increased with increasing number m of samples, as each

additional samples provides additional constraints regarding consistency of the output clone

proportions. Breaking down the clone recall by noise level h, we found that performance

decreased with increasing noise levels in both PCR mode (Figure 5.4b) as well as PCTR

mode (Figure 5.4c). However, we found that the PCTR solver better handles increasing
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Figure 5.4: Simulations show that PACTION quickly and accurately reconstructs
comprehensive clonal architectures. (a) Clone recall of PACTION in the PCR and
PCTR mode for simulation instances with increasing number m of samples. Clone recall
of PACTION in the (b) PCR mode and (c) PCTR mode for different noise levels h and
number m of samples. (d) Parent-child distance between the clone tree in the ground truth
and the solution of PACTION in the PCTR mode for simulation instances with increasing
number m of samples. (e) Number of solutions to the error-free version of the PCTR
problem (with additional constraint of J(U,U1, U2) = 0) by SPRUCE [147] for increasing
number n of clones. (f) Running time of PACTION in the PCR and PCTR modes for
simulation instances with increasing number m of samples. Running time of PACTION
in the (g) PCR mode and the (h) PCTR mode for simulation instances with increasing
number n of clones and number m of samples.

noise levels h, with a medial clone recall of 1 for noise level h = 0 as well as h = 0.05 when

number m of samples is 5 (Figure 5.4c and Figure E.30).

Next, we investigated how well PACTION in PCTR mode infers ground truth clone

trees T ∗. To that end, we computed the parent-child distance [36] between the predicted

clone tree T and the clone tree T ∗ in the ground truth. Specifically, the parent-child dis-

tance equals the ratio between the size |E(T )4 E(T ∗)| of the symmetric difference of the

edge sets by the size |E(T ) ∪ E(T ∗)| of the union of edge sets. We observed that the clone

tree distance is inversely correlated with the clone recall and when the clone recall is 1, the
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predicted clone tree matches the ground truth perfectly (Figure 5.4d). Indeed, we observed

that performance increases with increasing number m of samples, e.g., for m = 5 samples

the median parent-child distance is 0 for noise levels h ∈ {0, 0.05, 0.1} indicating that in the

majority of these instances PACTION perfectly inferred ground truth trees. The reason

why performance drops for decreasing number of samples is because the number of solutions

increases with decreasing number of samples (Figure 5.4e). We used the correspondence

between the PCTR problem (subject to the constraint that J(U,U1, U2) = 0, i.e., the pro-

portions are error-free) and the perfect phylogeny mixture problem solved by SPRUCE [147]

to enumerate all solutions for h = 0 instances. For instances with a large number of optimal

solutions, the PCTR problem and consequently the MILP lacks additional constraints to

disambiguate between solutions, thus sometimes reporting solutions that do not match the

ground truth.

Finally, we investigated the running times of PACTION in PCR and PCTR modes.

Overall, the running times in PCR mode (median of 0.79 s and mean of 385.52 s) were

larger than PCTR mode (median of 0.77 s and mean of 0.95 s), likely due to the tree

constraints providing more guidance for the MILP solver. Interestingly, while running time

decreased with increasing number m of samples in PCR mode, the opposite is true in PCTR

mode. The reason is that in PCTR mode the MILP is often solved in the first iteration

prior to branching, where the running time of solving the linear programming relaxation

will depend on the size of the formulation, which in turn depends on m. However, in PCR

mode, the solver requires branching, and here additional constraints due to more samples

will provide stronger bounds that will lead to more pruning and reduction in overall running

time.

In summary, our simulations demonstrate that PACTION is able to quickly and accu-

rately reconstruct ground truth clonal architectures under varying noise levels h, especially

when the number m is large and when run in PCTR mode.

5.5.2 Metastatic Prostate Cancer

In this study, we analyze whole-genome sequencing data from 49 tumor samples from 10

metastatic prostate cancer patients [8]. In a previous analysis of this data, Gundem et al. [8]

identified SNV clones and reconstructed the SNV clone tree for each of the 10 patients. To

further investigate the role of CNAs on tumor evolution, the authors annotated the SNV

clone trees with CNA events in a post hoc analysis by manually comparing and matching

frequencies of SNVs and CNAs. However, this approach does not allow us to identify tumor

clones that are only distinguished by different CNAs and have the same SNVs. Therefore,
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Figure 5.5: Overview of PACTION results on samples from 10 metastatic prostate
cancer patients [8]. (a) The corrections made by PACTION to the SNV and CNA clone
proportions in the samples from each of the 10 patients. (b) The total correction made to
clone proportions J(U,U1, U2) in samples from each patient.

there is no information about CNA-only driven tumor clones nor information about the

ordering of the CNA events and the SNV events on the same edge of the tree. Such in-

formation is crucial to understand cancer progression [162] and is the subject of numerous

studies [163, 164, 165]. Therefore, we investigated whether we can use PACTION to pro-

vide a more comprehensive analysis of these tumor clonal compositions by jointly considering

SNVs and CNAs.

We applied PACTIONto previously inferred SNV and CNA clone proportions. First, we

used the SNV clone proportions as well as the SNV clone tree T1 inferred for each patient

by Gundem et al. [8]. Note that each edge of the SNV tree represents a cluster of SNV

mutations. As such, we computed the SNV clone proportions U1 using the published cancer

cell fractions of SNVs (details in Appendix E.8). Second, we used the CNA clones obtained

from a previous copy-number analysis [141] of the same patients. Since this previous analysis

does not provide CNA clone trees, we enumerated all possible binary trees [166] with the CNA

clones as the leaves and independently ran PACTION in PCTR mode with each tree as

input. We then selected the CNA clone tree with the smallest correction J(U,U1, U2), which

for each patient was unique. Overall, we ultimately obtained SNV trees with n1 ∈ {5, . . . , 16}
clones and CNA trees with n2 ∈ {4, . . . , 8} clones acrossm ∈ {2, . . . , 10} samples (Table E.6).

In all patients but A29, we found that one cannot reconcile independently-inferred SNV

and CNA clone trees without additional corrections to the clone proportions. Importantly,

this observation highlights that the clone proportions inferred by existing methods are gen-

erally characterized by errors (Figure 5.5a). As previously demonstrated in our simulation
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Figure 5.6: PACTION results for patient A12. (a) The SNV clone tree reported by
Gundem et al. [8] where the authors manually annotated edges with CNA events. (b) SNV
clone tree T1 and CNA clone tree T2 describing the evolution of the SNV clones Π1 and
CNA clones Π2 in the tumor samples of patient A12, respectively. (c) Proportions U1 of
SNV clones Π1 and proportions U2 of CNA clones Π2 in the four samples of patient A12. (d)
Proportions U of tumor clones Π in the four samples of patient A12 inferred by PACTION.
(e) Reconciled clone tree T inferred by PACTION. amp: amplification, del: deletion, LOH:
loss of heterozygosity.

study, PACTION, however, reliably handles the presence of noise, enabling the inference

of the complete clonal composition and tumor evolution with limited corrections for all pa-

tients. Specifically, the corrections applied by PACTION were limited to only a few sam-

ples per patient, potentially indicating sample-specific errors in previous analysis or samples

with higher levels of noise. Importantly, we also observed that corrections were uniformly

needed for both SNV and CNA clone proportions (Figure 5.5). This important observation

highlights that both features are generally characterized by errors and, therefore, one cannot

simply leave one feature fixed and use it to reconcile the other feature, as done previously [8].

Notably, we found that the reconciled clone trees inferred by PACTION reveal additional

branching events that were previously missed. As an example, in patient A12, Gundem et

al. [8] inferred an SNV clone tree with five clones and annotated this tree with five clonal

CNA events, including loss-of-heterozygosity (LOH) of gene TP53 and chromosomes 8p and

13q, as well as deletions of genes FOXP1 and FANCD2 (gray edge in Figure 5.6a). The

tree also contains a single subclonal CNA event, amplification of gene FGFR1 (green edge

in Figure 5.6a). When using PACTION to analyze the previously-inferred SNV and CNA
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Figure 5.7: PACTION results for patient A10. (a) The SNV clone tree reported by
Gundem et al. [8] where the authors manually annotated edges with CNA events. (b)
SNV clone tree T1 and CNA clone tree T2 describing the evolution of the SNV clones Π1

and CNA clones Π2 in the tumor samples of patient A12, respectively. (c) Proportions
U1 of SNV clones Π1 and proportions U2 of CNA clones Π2 in the four samples of patient
A10. (d) Proportions U of tumor clones Π in the four samples of patient A10 inferred by
PACTION. (e) Reconciled clone tree T inferred by PACTION. amp: amplification, LOH:
loss of heterozygosity.

clone proportions, we reconstructed a reconciled clone tree with higher resolution. In fact,

PACTION reconstructed a more refined clone tree with 12 clones while only applying

modest corrections to the input clone proportions (Figure 5.5a). Similarly to the published

tree, PACTION’s inferred clone tree contains a trunk with the same four clonal CNA

events. However, PACTION’s tree contains additional branching events that are absent in

the published SNV tree. Specifically, we observed that two SNV clones in the published tree

(i.e., 2 and 3) were split into multiple clones in PACTION’s refined tree (i.e., (2, 2), (2,

4), and (2, 5) for SNV clone 2, and (3, 3), (3, 6), and (3, 7) for SNV clone 3). Importantly,

a subset of these refined clones are present at large proportions in the sequenced samples

(Figure 5.6d), thus showing that PACTION enables a more fine-grained analysis of current

sequencing data.

Finally, we found that the more refined clone trees inferred by PACTION also reveal

novel insights about the relative temporal ordering of SNVs and CNAs. This phenomenon is

particularly interesting in patient A10 (Figure 5.7a), for which PACTION inferred a clone

tree with 17 clones and relatively high corrections to the previous SNV clone proportions

(Figure 5.7b-d). PACTION’s tree recapitulates the same four clonal CNAs identified in
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the previous tree, including gain of chromosome 8q and amplifications of genes NCOA2,

CTNNB1 and MDM2 (gray edge in Figure 5.7a). Importantly, PACTION’s tree also re-

capitulates subclonal CNA events as in the previous tree but further revealed that these

CNA events precede the SNV events placed on the same edges in the published SNV clone

tree (Figure 5.7e). More specifically, PACTION revealed that LOH of chromosome 8p and

amplification of gene NCOA2 occur on the edge from clone (2, 3) to (2, 7) which precedes the

SNV cluster represented by the edge from clone (2, 7) to (3, 7). Similarly, PATION revealed

that LOH of chromosome 8p occurs on the edge from clone (1, 1) to (1, 2) which precedes

the SNV cluster represented by the edge from clone (1, 2) to (6, 2).

In summary, we demonstrated on metastatic prostate cancer patients that PACTION

is able to resolve the temporal ordering of mutations and reveal branching events that are

either unclear or hidden when the SNV tree or the CNA tree are considered in isolation.

5.6 DISCUSSION

In this paper, we introduced PACTION, a new algorithm that infers comprehensive tumor

clonal compositions by reconciling the clones proportions of both SNVs and CNAs that are

inferred by existing methods. Our algorithm can additionally leverage SNV and CNA clone

trees reconstructed by existing methods to obtain a refined tumor clone tree and correct

potential errors in the input proportions. We formulated two problems, the PCR problem

to infer the clones and their proportions, and the PCTR problem to additionally infer tumor

clone trees with both SNVs and CNAs. We showed that both problems are NP-hard and can

be solved exactly by PACTION using two mixed inter linear programming formulations.

We demonstrated the performance of PACTION on simulations, showing that our method

accurately reconciles clone trees, reliably handles errors in clone proportions, and scales

to practical input sizes. Finally, we applied our method to whole-genome sequencing data

from 10 metastatic prostate cancer patients [8], obtaining a higher resolution view of tumor

evolution than previously reported.

In addition to the contributions of this study, we foresee four major avenues for future

research. First, building upon the established relationship of the error-free PCTR and the

cladistic multi-state perfect phylogeny deconvolution problems, we can adapt the existing

method SPRUCE [147] to enumerate all possible solution of the PCTR problem in the

presence of errors in the input proportions. Second, PACTION can be extended to account

for uncertainty in the input clone trees and quantify its effect on the solution space. One way

of incorporating the uncertainty in the input clone trees, is to consider a set of possible clone

trees for each feature instead of a single input tree, choosing the best tree that leads to the
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most parsimonious solution. Moreover, we plan to adapt the PCR and PCTR to incorporate

probabilistic models that account for uncertainty in the estimated clone proportions. Third,

the PCR and PCTR problems can be generalized to reconcile more than two features. For

instance, in addition to SNVs and CNAs, tumor cells may be partitioned into clones based on

RNA expression or DNA methylation profiles. Finally, a likelihood-based objective function

could be used to incorporate a joint evolutionary model for SNVs and CNAs [104].
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Chapter 6: Discussion

In this dissertation, we introduced four novel methods solving problems from infection

and cancer genomics. The research presented in this thesis broadly spans three themes:

• Addressing uncertainty in the solution space.

• Employing a comprehensive model that incorporates all the relevant biological pro-

cesses.

• Developing algorithms that can scale to large datasets.

For each biological question addressed in this thesis, we pose an optimization problem. This

is followed by characterization of the solution space and determining the hardness of the

problem. Finally, we propose an algorithm which is benchmarked against existing methods

on both simulated and real data.

In the context of infection genomics, we introduce two new methods called TiTUS and

Jumper. TiTUS reconstructs the transmission history of an outbreak using genetic and

epidemiological data collected from infected hosts. Our method accounts for biologically rele-

vant processes such as within-host evolution and multi-strain infections while also accounting

for uncertainty in the solution space. Specifically, TiTUS uniformly samples from the so-

lution space of feasible transmission histories for a given timed phylogeny of the pathogen

and epidemiological data of the outbreak. The candidate solutions are then summarized

the sampled candidate solutions using an efficient consensus-based method in a biologically

meaningful way. Jumper, on the other hand, reconstructs viral transcriptome using RNA-

sequencing data from infected cells. Our method focuses on viruses in the Coronaviridae

family, such as SARS-CoV-2, that express genes by a process of discontinuous transcription

mediated by the viral RNA-dependent RNA polymerase. Jumper uses an novel combina-

torial characterization of the viral transcripts that enables the formulation of an efficient

mixed integer linear program. Our results show that Jumper accurately infers the viral

transcripts, outperforming existing transcript assembly methods, and enables the study of

coronavirus transcriptomes under varying conditions.

In the context of cancer genomics, we develop two novel methods, doubletD and

PACTION. doubletD is the first stand-alone doublet detection method for single-cell

DNA-sequencing data. Underpinning the doubletD algorithm is the observation that dou-

blets exhibit a characteristic variant allele frequency (VAF) distribution which is distinct

from a single-cell. We also observe that this signal is bolstered by allelic dropouts, which are

a common source of error in single-cell sequencing. Using a simple probabilistic model with

86



closed-form maximum likelihood solution, doubletD is able to accurately detect doublets

while scaling to large datasets. We show, on multiple real datasets, that doublet identification

and removal using doubletD improves downstream analysis such as genotype calling and

phylogeny reconstruction. The second method, PACTION, generates a comprehensive tu-

mor phylogeny consisting of both small-scale somatic mutations, specifically single nucleotide

variations (SNVs) and large-scale somatic mutations, specifically copy number aberrations.

We leverage the power of existing tumor phylogeny reconstruction method, that only focus

on either SNVs or CNAs, but not both. Specifically, PACTION reconciles SNV and CNA

clone proportions and phylogenies inferred by existing methods for the same cancer tumor.

Using simulations, we show that PACTION reliably handles errors in input SNV and CNA

proportions and scales to practical instance sizes. On real datasets, PACTION reconstructs

tumor clonal architectures that are more reliable and comprehensive than previous studies

that employed a manual approach

In the future, the techniques used in the four methods proposed in this thesis, can be ex-

tended to other applications as well. For instance, uncertainty in the solution space exists in

transcript assembly problems. None of the existing methods completely address the possibil-

ity of multiple equally likely reconstructions of the transcriptome. The approach employed

in TiTUS can also be extended to transcript assembly problems. Another interesting direc-

tion of future work is to employ the reconciliation approach of PACTION to multi-omic

and epigenomic data. While the current implementation of PACTION focuses on SNVs

and CNAs, the underlying principle of integration of multiple modalities and reconciliation

of the phylogenetic trees is extremely general.

In conclusion, while ongoing innovations genomic sequencing technologies are opening

new ways of seeing the biological world, each technological advancement raises the need for

computational methods that can leverage the new modes of data.
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Appendix A: Algorithmic details

A.1 NAIVE REJECTION SAMPLING ALGORITHM

Here we describe the naive rejection sampling algorithm introduced in Section 2.5.2.1. Let

h[v, s] denote the number of vertex labelings ` ∈ LREL in the subtree Tv of T rooted at vertex

v when `(v) = s. We define h[v, s] recursively as

1, if v ∈ L(T ), ˆ̀(v) = s,

0, if v ∈ L(T ), ˆ̀(v) 6= s,

0, if v 6∈ L(T ), τ(v) 6∈ I(s),∏
w∈δT (v)

∑
t∈ΓC(s)

h[w, t], if v 6∈ L(T ), τ(v) ∈ I(s),

(A.1)

where I(s) = [τe(s), τr(s)] and ΓC(s) = {s, δC(s)}. Let Σ∗ = {s1, . . . , sk} be the set of

possible labels for the root vertex r(T ), i.e. Σ∗ = {s ∈ Σ | τ(r(T )) ∈ I(s)}. The number of

vertex labelings |LREL| is given by
∑

s′∈Σ∗ h[r(T ), s′].

Using the count matrix h[u, s], we introduce a subroutine that takes a vertex v and host

s as input, and uniformly samples a vertex labeling `u of subtree Tu rooted at u subject to

the restriction that `u(u) = s (Algorithm A.3). The fraction ps of the vertex labelings `

where `(r(T )) = s equals h[r(T ), s]/
∑

s′∈Σ∗ h[r(T ), s′]. Thus, to sample all vertex labelings

uniformly at random, we draw a s ∈ Σ∗ according to the categorical probability distribution

defined by (p1, . . . , pk). Algorithm A.4 is then used on T with `(r(T )) = s to sample

minimum transmission host labeling ` of T uniformly at random. This takes O(nm) time

per sample.

For a given phylogeny and vertex labeling (T, `), it is possible to find the minimum num-

ber of transmission events in polynomial time [25]. The direct transmission constraint is

satisfied by the vertex labeling when the number of transmission events is m−1, where each

transmission event corresponds to an edge of the transmission tree. We can therefore draw

vertex labelings from LREL and only retain the solutions that belong to L in polynomial time.

Since we are uniformly sampling from LREL, the retained solutions will also be uniformly

sampled from L. For the counting problem we estimate the number of vertex labelings in

L by the success rate of the sampling algorithm. Say after K draws of samples from LREL,

we retain K ′ vertex labelings that belongs to L. In that case the estimate of the size of L,
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denote by 〈|L|〉, is given by

〈|L|〉 =

(
1− K ′

K

)1/K

(A.2)

From the law of large numbers, as K → ∞ we have 〈|L|〉 → |L|. We now present the

algorithms for naive rejection based sampling.

Algorithm A.1: EnumRelDTI(T, ˆ̀, u, s)

Output: Set Lu of vertex labelings ` of Tu where `(u) = s

1: if u ∈ L(T ) then

2: Let s be the unique host where ˆ̀(u) = s

3: return {{(u, s)}}
4: else

5: Let v1, . . . , vk be the children of v

6: L1, . . . ,Lk ← ∅, . . . , ∅
7: for v ∈ {v1, . . . , vk} do

8: for t ∈ Γ((u, v), s) do

9: Lv ← Lv ∪EnumRelDTI(T, g, v, t)

10: end for

11: end for

12: Lu ← ∅
13: for `1, . . . , `k ∈ L1 × . . .× Lk do

14: Lu ← Lu ∪ {`1 ∪ . . . ∪ `k ∪ {(u, s)}}
15: end for

16: return Lu
17: end if

Algorithm A.2: EnumRelDTI(T, g)

Output: Set L of optimal host labelings ` of T

1: Let Σ∗ be the set of hosts s where τ(r(T )) ∈ I(s)

2: L ← ∅
3: for s ∈ Σ∗ do

4: L ← L ∪EnumRelDTI(T, ˆ̀, r(T ), s)

5: end for

6: return L
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Algorithm A.3: SampleRelDTI(T, h, u, s)

Output: Random, optimal host labeling ` of Tu where `(u) = s

1: Let δT (u) = {v1, . . . , vk} be the children of u

2: for v ∈ {v1, . . . , vk} do

3: K ←∑
t∈ΓC(s) h[v, t]

4: for t ∈ Σ = {1, . . . ,m} do

5: if t ∈ ΓC(s) then

6: p(t)← h[v, t]/K

7: else

8: p(t)← 0

9: end if

10: end for

11: Draw host t∗ ∈ Σ randomly according to (p1, . . . , pm)

12: `v ← SampleRelDTI(T, g, h, v, t∗)

13: for w ∈ V (Tv) do

14: `(w)← `v(w)

15: end for

16: end for

17: `(u)← s

18: return `

Algorithm A.4: SampleRelDTI(T, h)

Output: Random, optimal host labeling ` of T

1: Let Σ∗ be the set of hosts s where τ(r(T )) ∈ I(s)

2: K ←∑
s∈Σ∗ h[r(T ), s]

3: for s ∈ Σ do

4: if s ∈ Σ∗ then

5: ps ← h[r(T ), s]/K

6: else

7: ps ← 0

8: end if

9: end for

10: Draw s∗ ∈ Σ according to probabilities p1, . . . , pm

11: return SampleRelDTI(T, h, r(T ), s∗)
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A.2 MIXED INTEGER LINEAR PROGRAM FOR DTA PROBLEM

In the following, we introduce variables and constraints to encode the following.

(i) The composition of each transcript Ti as a set σ(Ti) of non-overlapping discontinuous

edges.

(ii) The abundance ci and length Li of each transcript Ti.

(iii) The total abundance
∑

i∈X(T ,σ⊕j ,σ
	
j ) ci of transcripts supported by characteristic dis-

continuous edges (σ⊕j , σ
	
j ).

(iv) A piecewise linear approximation of the log function.

We describe (iii) and (iv) in the following and refer to Section 3.4 for (i) and (ii).

Contribution of transcripts to each pair of characteristic discontinuous edges.

The objective function has m terms, one corresponding to each pair (σ⊕j , σ
	
j ) ∈ S

of characteristic discontinuous edges (see Eq. (3.4)). Specifically, each term j equals

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j ) ci where dj is a constant, for all j ∈ [m]. We introduce non-negative

continuous variables q = {q1, . . . , qm} such that

qj =
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci =
k∑
i=1

ci ∏
e∈σ⊕j

xe,i
∏
e′∈σ	j

xe′,i

 , (A.3)

where the last equality uses the characterization of candidate transcripts of origin for a

given read described in Proposition 3.2. We introduce continuous variables yj ∈ [0, 1]k that

encode the product yj,i = ci
∏

e∈σ⊕j
xe,i
∏

e′∈σ	j
xe′,i. Intuitively, each variable yj,i encodes the

contribution of a transcript Ti for the given characteristic discontinuous edge sets (σ⊕j , σ
	
j ).

We linearize the product ci
∏

e∈σ⊕j
xe,i
∏

e′∈σ	j
xe′,i as follows.

yj,i ≤ ci, ∀i ∈ [k], j ∈ [m], (A.4)

yj,i ≤ xe,i, ∀e ∈ σ⊕i , i ∈ [k], j ∈ [m], (A.5)

yj,i ≤ 1− xe,i, ∀e ∈ σ	i , i ∈ [k], j ∈ [m], (A.6)

yj,i ≥ ci +
∑
e∈σ⊕j

xe,i +
∑
e∈σ	j

(1− xe,i)− |σ⊕j | − |σ	j |, ∀i ∈ [k], j ∈ [m]. (A.7)
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Hence, we have

qj =
k∑
i=1

yj,i. (A.8)

Objective function. The objective function (see Eq. (3.4)) can be written in terms of

continuous variables q as

J(q) =
m∑
j=1

dj log qj, (A.9)

where dj is a constant and q is as in (A.8). We use the lambda method to approximate our

objective method using a piecewise linear function [167]. Following the method described

in [167], we partition the domain (0, 1] with h breakpoints b1 ≤ b2 ≤ . . . ≤ bh. We introduce

continuous variables λj ∈ [0, 1]h with the constraints

h∑
o=1

λj,o = 1, ∀j ∈ [m], (A.10)

h∑
o=1

boλj,o = qj, ∀j ∈ [m]. (A.11)

Note that bo for o ∈ [h] are constants. Since each of the m terms in the objective function are

individually concave and we are maximizing, the adjacency condition of breakpoints does

not need to be enforced. For each j ∈ [m], the log function is then approximated as

log(qj) ≈
h∑
o=1

λj,o log(bo), (A.12)

where log(bo) is a constant for each o ∈ [h]. Therefore the objective function we wish to

maximize is

m∑
j=1

dj

h∑
o=1

λj,o log(bo). (A.13)

Note that since we have a log-likelihood objective function, feasibility of the solution

requires that qj > 0 for j ∈ [m]. This means that for each characteristic discontinuous edge

sets (σ⊕j , σ
	
j ), there must be at least one candidate transcript of origin Ti with non-zero

abundance ci > 0. This leads to the solution containing a large number of transcripts and
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making the problem intractable while also preventing us from finding parsimonious sets of

transcripts that support most but not all of the observed reads in the sample. Finding

such parsimonious solutions is often desirable since they provide a reasonable explanation of

the observed reads while keeping the problem computationally tractable. In order to allow

us to generate solutions that can partially explain the observed reads, we slightly modify

our objective function. We introduce a new breakpoint b0 = 0 and associated continuous

variables λj,0 ∈ [0, 1] for j ∈ [m] so that

h∑
o=0

λj,o =1, ∀j ∈ [m], (A.14)

h∑
o=0

boλj,o =qj, ∀j ∈ [m]. (A.15)

The objective function we maximize is

m∑
j=1

dj

(
λj,0 log(δ) +

h∑
o=1

λj,o log(bo)

)
, (A.16)

where δ > 0 is a small constant. Note that instead of evaluating the log function at b0, we

include log(δ) which is well defined since δ > 0. In this study, we choose δ = b1/100 =

1/(2h−1 × 100) while h is left as the user’s choice with default value of 16.

Moreover, the choice of breakpoints to approximate the objective function can have a

significant impact on the accuracy of the MILP solver. As a result, there has been research

in efficient methods for choosing optimal breakpoint locations for convex functions, such as

recursive descent algorithms [168]. In this work we take a simpler approach, by choosing

breakpoints such that their spacing around a given breakpoint is proportional to the lo-

cal gradient of the objective function. For the log function, this is equivalent to choosing

breakpoints such that bi = 2i−1/2h−1. Note that b0 = 1/2h−1 while bh = 1.

Number of variables and constraints. The total number of binary variables x is |Ey|k.

Note that q are auxiliary (intermediate) variables that are uniquely determined by c,y, z

and λ. Therefore, the total number of required continuous variables (i.e. c, y, z and λ) is

k+mk+ |Ey|k+mh. The number of constraints is O(k|E|2 + |E|km). We provide the full

MILP for reference.
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max
m∑
j=1

dj

h∑
o=1

λj,o log(bo) (A.17)

s.t. xe,i + xe′,i ≤ 1, ∀i ∈ [k] and e, e′ ∈ Ey, (A.18)

s.t. I(e) ∩ I(e′) 6= ∅, (A.19)

yj,i ≤ ci, ∀i ∈ [k], j ∈ [m], (A.20)

yj,i ≤ xe,i, ∀e ∈ σ⊕j , i ∈ [k], j ∈ [m], (A.21)

yj,i ≤ 1− xe,i, ∀e ∈ σ	j , i ∈ [k], j ∈ [m], (A.22)

yj,i ≥ ci +
∑
e∈σ⊕j

xe,i +
∑
e∈σ	j

(1− xe,i)− |σ⊕j | − |σ	j |, ∀i ∈ [k], j ∈ [m], (A.23)

ze,i ≤ ci, ∀i ∈ [k], (A.24)

ze,i ≤ xe,i, ∀e ∈ Ey, i ∈ [k], (A.25)

ze,i ≥ ci + xe,i − 1, ∀e ∈ Ey, i ∈ [k], (A.26)

k∑
i=1

ciL−
k∑
i=1

∑
e∈Ey

ze,iL(e) = `∗, (A.27)

h∑
o=1

λj,o = 1, ∀j ∈ [m], (A.28)

h∑
o=1

boλj,o =
k∑
i=1

yj,i, ∀j ∈ [m], (A.29)

xe,i ∈ {0, 1}, ∀i ∈ [k], e ∈ Ey, (A.30)

ci ≥ 0, ∀i ∈ [k], (A.31)

yj,i ≥ 0, ∀j ∈ [m], i ∈ [k], (A.32)

ze,i ≥ 0 ∀e ∈ Ey, i ∈ [k], (A.33)

λj,o ≥ 0, ∀j ∈ [m], o ∈ [h]. (A.34)

A.3 PROGRESSIVE HEURISTIC FOR THE DTA PROBLEM

Here we describe the subproblems that are solved at each iteration of the greedy heuristic.

For a given set of transcripts T and characteristic discontinuous edge sets S, consider the
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optimization problem which we denote by P1,

max
T ′,c,c′

m∑
j=1

dj log

 ∑
i∈X(T ,σ⊕j ,σ

	
j )

ci + 1(X({T ′}, σ⊕j , σ	j )) 6= ∅)c′
 (A.35)

s.t. π(T ′) is an s− t path in the segment graph G (A.36)

|T |∑
i=1

ciLi + c′L′ = D, (A.37)

ci ≥ 0 ∀i ∈ [|T |] (A.38)

c′ ≥ 0 . (A.39)

and the following optimization problem denoted by P2,

max
c

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci (A.40)

|T |∑
i=1

ciLi = D, (A.41)

ci ≥ 0 ∀i ∈ [|T |]. (A.42)

Solution to P1 We obtain the solution of P1 by solving the optimization problem given in

Eq. (3.4) to (3.7) with additional constraints to fix the values of the variables that encode

the presence/absence of discontinuous edges for the transcripts in T . More specifically, for

each transcript Ti ∈ T , we enforce xe,i = 1 for each edge e ∈ σ(Ti) and xe,i = 0 otherwise.

Note that ci for Ti ∈ T are still variables and are solved for in the optimization problem. By

doing so, we only solve for the structure of the transcript T ′ while solving for the abundance

of all transcripts.

Solution to P2 Similar to the approach taken to solve P1, we fix the values of the variables

that encode the presence/absence of discontinuous edges in the transcripts. This results in

all the binary variables in the MILP with fixed values rendering the resulting optimization

problem a simpler linear program.

Heuristic Algorithm The Algorithm 3.1 is re-written here in form of an itemized list.

1. Initialize T = {}, i = 1
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2. Solve P1 with T to get a new transcript T ′ with abundance c′

3. Generate a new set of transcripts T ← T ∪ expand(T ′) where expand(T ′) = {T :

σ(T ) ∈ 2σ(T ′)}.

4. Solve P2 with T as input

5. Select i transcripts from T . If i < k go to step (2) else return (T , c)

A.4 FILTERING FALSE POSITIVE DISCONTINUOUS EDGES

In practice, we see spurious discontinuous edges in the resulting segment graph due to

sequencing and alignment errors. We filter these edges by requiring a minimum number Λ

of spliced reads to support each discontinuous edge in the segment graph. The higher the

value of Λ, fewer will be the number of edges and nodes in the resulting segment graph.

It is not trivial to infer the optimal value of Λ to remove all false positive discontinuous

edges. Several heuristics are used in existing methods to remove spurious splicing events.

Scallop removes an edge e from its splice graph if the coverage of the exons of either end of

the edge is more than 2w(e)2+18, where w(e) is the number of spliced reads that support the

edge e. StringTie on the other hand, terminates its algorithm of assembling transcripts

when the coverage of all the paths in the splice graph build from the un-assigned reads drops

below a threshold, set by default to 2.5 reads per base-pair. By default, Jumper requires a

support of 100 reads for a discontinuous edge to be included in the segment graph.

Another parameter that can be used to filter false-positive splicing events is the number of

discontinuous edges allowed in the segment graph. From tests on simulated instances emu-

lating SARS-CoV-2 samples, we found that focusing on the 35 most abundant discontinuous

edges is sufficient to get a summary of the transcriptome and highly expressed canonical

and non-canonical transcripts in the sample. A higher value can be used to capture more

complexity of the transcriptome. By default, we set this parameter to 35.

A.5 ALLELIC DROPOUT MODEL

Table A.1 shows the value of P (yi,j | xi,j, zi) for all possible combinations of post-ADO

VAF yi,j, pre-ADO VAF xi,j and doublet status zi.
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xi,j

H
HHH

HHHH
zi

yi,j
0 1/4 1/3 1/2 2/3 3/4 1 NaN

0 0 1− β2 0 0 0 0 0 0 β2

1/2 0 β(1− β) 0 0 (1− β)2 0 0 β(1− β) β2

1 0 0 0 0 0 0 0 1− β2 β2

0 1 1− β4 0 0 0 0 0 0 β4

1/4 1

β(1−β)3 +

3β2(1−
β)2 +

3β3(1− β)

(1− β)4 3β(1− β)3 3β2(1−β)2 0 0 β3(1− β) β4

1/2 1

β2(1−
β)2 +

2β3(1− β)

0 2β(1− β)3
(1− β)4 +

4β2(1−β)2
2β(1− β)3 0

β2(1−
β)2 +

2β3(1− β)

β4

3/4 1 β3(1− β) 0 0 3β2(1−β)2 3β(1− β)3 (1− β)4

β(1−β)3 +

3β2(1−
β)2 +

3β3(1− β)

β4

1 1 0 0 0 0 0 0 1− β4 β4

Table A.1: This table shows the value of P (yi,j | xi,j, zi), i.e. the probability of having VAF
yi,j at locus j in droplet i after allelic dropout (ADO) given pre-ADO VAF xi,j and doublet
status zi. The last column ’NaN’ represents the case when all the alleles are dropped and,
as a result, no reads span locus j in droplet i. The values in each row sum to 1.

A.6 PARAMETER ESTIMATION IN DOUBLETD

doubletD requires the user to input mutation probabilities µwt, µhet and µhom at each

locus j used in the genotype model (Section 2.1.2), and the precision parameter s used in

the read count model (Section 2.1.4). In this section we describe a data-driven approach to

estimate these parameters.

Due to the evolutionary pressures on the cells in the sample, the rate of mutations can

change significantly across loci. We therefore use the data to get the mutation probabilities

µwt,j, µhet,j and µhom,j for each locus j which serve as the input parameters for the genotype

model (Section 2.1.2). The observed VAFs vi,j/ci,j for each droplet i at locus j are mapped

to the closest value in Σsinglet. For x ∈ Σsinglet, let dj(x) be the number of cells in which the

VAF at site j was mapped to x. We estimate the mutation rate µwt,j as follows,

µwt,j =
dj(0)

dj(0) + dj(1/2) + dj(1)
. (A.43)
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Similarly, the mutation rates µhet,j and µhom,j are estimating as follows.

µhet,j =
dj(1/2)

dj(0) + dj(1/2) + dj(1)
, (A.44)

µhom,j =
dj(1)

dj(0) + dj(1/2) + dj(1)
. (A.45)

Fig. E.24a shows that this method gives reliable estimates of the mutation probabilities in

simulations.

To estimate the precision parameter s for the beta-binomial distribution, the observed

VAFs vi,j/ci,j for each droplet i at locus j are mapped to a value in Σsinglet. For each

x ∈ Σsinglet, let ωx be the the set of observed VAFs mapped to x. We first fit shape

parameters α̂x, β̂x for each x ∈ Σsinglet set ωx, utilizing method of moments estimation [169]

and obtain observed precision ŝx = α̂x + β̂x. Since our method utilizes a global precision

parameter for all droplets and loci, we set the precision parameter to the median of the set

{ŝx | x ∈ Σsinglet}. The estimation of this parameter can be supplemented from non-variant

loci or SNP positions in addition to the observed VAFs. Fig. E.24b shows that we recover

reliable estimates of the precision parameter s in simulations. See [170] for an alternative

estimation procedure and MDA specific shape parameters that scale linearly with sequencing

coverage.

98



A.7 MILP FORMULATION FOR THE PCTR PROBLEM

min

m∑
p=1

n1∑
i=1

c
(1)
p,i +

m∑
p=1

n2∑
j=1

c
(2)
p,j (A.46)

s.t. c
(1)
p,i ≥

n2∑
j=1

up,i,j − u
(1)
p,i ∀p ∈ [m], i ∈ [n1], (A.47)

c
(1)
p,i ≥ u

(1)
p,i −

n2∑
j=1

up,i,j ∀p ∈ [m], i ∈ [n1], (A.48)

c
(2)
p,j ≥

n1∑
i=1

up,i,j − u
(2)
p,j ∀p ∈ [m], j ∈ [n2], (A.49)

c
(2)
p,j ≥ u

(2)
p,j −

n1∑
i=1

up,i,j ∀p ∈ [m], j ∈ [n2], (A.50)

up.i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2], (A.51)
n1∑
i=1

n2∑
j=1

up,i,j = 1 ∀p ∈ [m], (A.52)

z
(1)
(i,i′),j ≤ xi,j ∀(i, i′) ∈ E(T1), j ∈ [n2], (A.53)

z
(1)
(i,i′),j ≤ xi′,j ∀(i, i′) ∈ E(T1), j ∈ [n2], (A.54)

z
(1)
(i,i′),j ≥ xi,j + xi′,j − 1 ∀(i, i′) ∈ E(T1), j ∈ [n2]. (A.55)

z
(2)
i,(j,j′) ≤ xi,j ∀i ∈ [n1], (j, j

′) ∈ E(T2), (A.56)

z
(2)
i,(j,j′) ≤ xi,j′ ∀i ∈ [n1], (j, j

′) ∈ E(T2), (A.57)

z
(2)
i,(j,j′) ≥ xi,j + xi,j′ − 1 ∀i ∈ [n1], (j, j

′) ∈ E(T2), (A.58)

n2∑
j=1

z
(1)
(i,i′),j = 1 ∀(i, i′) ∈ E(T1), (A.59)

n1∑
i=1

z
(2)
i,(j,j′) = 1 ∀(j, j′) ∈ E(T2), (A.60)

xi,j ∈ {0, 1}, ∀i ∈ [n1], j ∈ [n2], (A.61)

u
(1)
p,i ∈ [0, 1], ∀p ∈ [m], i ∈ [n1], (A.62)

u
(2)
p,j ∈ [0, 1], ∀p ∈ [m], j ∈ [n2], (A.63)

c
(1)
p,i ∈ [0, 1], ∀p ∈ [m], i ∈ [n1], (A.64)

c
(2)
p,j ∈ [0, 1], ∀p ∈ [m], j ∈ [n2], (A.65)

z
(1)
(i,i′),j ≥ 0 ∀(i, i′) ∈ E(T1), j ∈ [n2], (A.66)

z
(2)
i,(j,j′) ≥ 0 ∀i ∈ [n1], (j, j

′) ∈ E(T2). (A.67)
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Appendix B: Complexity Proofs

B.1 COMPLEXITY OF DIRECT TRANSMISSION INFERENCE PROBLEM

This section shows the hardness of the decision and the counting versions of the DTI

problem by reduction from the one-in-three SAT (1-in-3 SAT).

Problem B.1 (1-in-3SAT). Given a Boolean formula φ =
∧k
i=1(yi,1 ∨ yi,2 ∨ yi,3) in 3-

conjunctive normal form (3-CNF) with n variables and k clauses, decide whether there

exists a truth assignment θ : [n] → {0, 1} so that each clause has exactly one true literal

(and thus exactly two false literals).

B.1.1 Decision Problem

To relate literals to variables, we use the function ν : [k]×{1, 2, 3} → [n] such that ν(i, j)

is the variable corresponding to literal yi,j. We define σ(i, j) to be 1 if yi,j is a positive literal

(i.e. yi,j = xν(i,j)), otherwise σ(i, j) = 0 if yi,j is a negative literal (i.e. yi,j = ¬xν(i,j)). A

truth assignment θ satisfies φ if for each clause i ∈ [k] there exists a j ∈ {1, 2, 3} such that

σ(i, j) = θ(ν(i, j)).

Given φ, we construct a timed phylogeny T (φ) with leaf labeling ˆ̀, a contact map

C(φ) and time-stamps τ, τe, τr, as depicted in Fig. B.1 and detailed below. We set

Σ = {⊥, x1, . . . , xn,¬x1, . . . ,¬xn c1, . . . , ck}. Let ε > 0 be a small positive constant. As

for entry and removal time-stamps, we set τe(⊥) = 0, τr(⊥) = ε, and τe(xi) = τe(¬xi) = ε

and τr(xi) = τr(¬xi) = 3ε for each variable i ∈ [n]. For each clause ci, i ∈ [k] we set

τe(ci) = τr(ci) = 3ε. Timed phylogeny T (φ) is composed of 3k clause gadgets and n variable

gadgets, each corresponding to a subtree that is directly attached to the root r(T (φ)). The

root vertex has time-stamp τ(r(T (φ)) = 0. The leaves of T have identical time-stamps 3ε.

For each variable i ∈ [n], we have a subtree T [xi] whose root has time-stamp τ(r(T [xi])) = 2ε.

The two children of r(T [xi]) have identical time-stamps 3ε, with one child leading to two

leaves labeled by positive literal xi and the other child leading to two leaves labeled by neg-

ative literals ¬xi. Similarly, for each clause ci, i ∈ [k], we have 3 subtrees T [yi,1], T [yi,2] and

T [yi,3]. The root of the subtree T [yi,j] has time-stamp ε and two children, one of which is the

leaf labeled by xν(i,j) if yi,j = ¬xν(i,j) and ¬xν(i,j) if yi,j = xν(i,j). The other child node, de-

noted as vi,j, has time-stamp τ(vi,j) = 2ε and has only one child which is a leaf labeled by ci.

The contact map C(φ) is constructed as follows. The vertex set for the contact map is given

by Σ. We have a directed edge from ⊥ to each of the variables {x1, · · · , xn,¬x1, · · · ,¬xn}.
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τ = 0

τ = ε

τ = 2ε

τ = 3ε
time

· · ·

x1 ¬x1

T [x1]
xn ¬xn
T [xn]

n variable subtrees

¬yk,3 ck
T [yk,3]

¬yk,2 ck
T [yk,2]

¬yk,1 ck
T [yk,1]

· · ·

¬y1,3 c1

T [y1,3]
¬y1,2 c1

T [y1,2]
¬y1,1 c1

T [y1,1]

3k clause subtrees

Figure B.1: Construction of T (φ) for reduction from 1-in-3SAT to DTI. Let φ be an
1-in-3SAT formula with k clauses and n variables. T (φ) is built with a root node r(T (φ)) can
is connected to 3k clause subtrees {T [y1,1], T [y1,2], T [y1,3], · · · , T [yk,1], T [yk,2], T [yk,3]} and n
variable subtrees {T [x1], · · · , T [xn]}. We set τe(⊥) = 0, τr(⊥) = ε, and τe(xi) = τe(¬xi) = ε
and τr(xi) = τr(¬xi) = 3ε for each variable i ∈ [n]. For each clause ci, i ∈ [k] we set
τe(ci) = τr(ci) = 3ε. We prove that there exits a truth assignment so that each clause of φ
has exactly one true literal if and only if there exists a vertex labeling for T (φ) that results
in a transmission tree that is a spanning arborescence of the contact map C(φ) (Fig. B.2).

⊥

x1 ¬x1 xn ¬xn

c1 ck

· · ·
· · ·

Figure B.2: Construction of C(φ) for reduction from 1-in-3SAT to DTI. Let
φ be an 1-in-3SAT formula with k clauses and n variables. The host set is Σ =
{⊥, x1, · · · , xn,¬x1, · · · ,¬xn, c1, · · · , ck}. We have a directed edge from ⊥ to each of the
variables {x1, · · · , xn,¬x1, · · · ,¬xn}. Each each i ∈ [n], variable xi has an outgoing edge to
¬xi and similarly variable ¬xi has an outgoing edge to xi. Finally, each clause ci has three
incoming edges, one from each of the literals that form the clause, i.e. yi,1, yi,2 and yi,3.

For i ∈ [n], each variable xi has an outgoing edge to ¬xi and similarly variable ¬xi has an

outgoing edge to xi. Finally, each clause ci has three incoming edges, one from each of the

literals that form the clause, i.e. yi,1, yi,2 and yi,3. For instance, if c1 := (x1 ∨ x2 ∨ ¬x3),

then we have the directed edges (x1, c1), (x2, c1) and ¬x3, C1. Clearly, T (φ) and C(φ) can be

obtained in polynomial time from φ. An example of this reduction is shown in Fig. B.3.

Lemma B.1. For any vertex labeling ` of T (φ), ⊥ is the root host.

Proof. Under the direct transmission constraint, root host is given by the host that labels the

root node of the timed phylogeny. The time stamp of the root node of T (φ) is τ(r(T (φ))) = 0.
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τ = 0

τ = ε

τ = 2ε

τ = 3ε
time x1 ¬x1 x2 ¬x2 x3 ¬x3¬x2 c1 x3 c1c1¬x1

⊥

¬x1 ¬x2 ¬x3

x1 x2 x3 c1

2 2 4

1 1 2 3

Figure B.3: Example of reduction. Consider the 1-in-3SAT Boolean formula φ = (x1 ∨
x2 ∨ ¬x3). φ is satisfiable with truth assignment θ(1) = 0, θ(2) = 0 and θ(3) = 0. Figures
(on the left) shows a vertex labeling ` corresponding to θ. Since the vertex labeling admits
a transmission tree (one the right), φ is Exactly-1 satisfied with truth assignment θ.

The only host that has entry time before τe ≤ 0 is ⊥. Therefore, for any vertex labeling we

have `(r(T (φ))) = ⊥, which makes ⊥ the root host. QED.

Lemma B.2. For any variable x, either {(⊥, x), (x,¬x)} ⊆ E(S) or {(⊥,¬x), (¬x, x)} ⊆
E(S).

Proof. For any variable x, consider the subtree T [x]. By construction we have, τ(r(T [x])) =

2ε and the node only has two children labeled by x and ¬x. From the contact map we know

that the only possible infectors for x has ⊥ and ¬x and similarly for ¬x are ⊥ and x. Given

that τr(⊥) < τ(r(T [x])), the only remaining choices for `(r(T [x])) are x and ¬x.

If `(r(T [x])) = x then we have {(⊥, x), (x,¬x)} ⊆ E(S) and if `(r(T [x])) = ¬x we have

{(⊥,¬x), (¬x, x)} ⊆ E(S). QED.

Lemma B.3. For any clause ci = (yi,1∨yi,2∨yi,3), if (yi,j, ci) ∈ E(S) then `(r(T [yi,j])) = yi,j

and `(r(T [yi,j′)) = ⊥ for j′ 6= j.

Proof. Consider the subtree T [yi,j]. Let us denote the node that is child of r(T [yi,j]) and

parent of the leaf of T [yi,j] labeled with ci as vj.

Since S is a spanning arborescence of C(φ) we have either (yi,1, ci), (yi,2, ci) or (yi,3, ci) in

E(S). Without loss of generality, let us assume that (yi,1, ci) ∈ E(S).

The edges (v1, δT (v1)), (v2, δT (v2)) and (v3, δT (v3)) need to be transmission edges since

τ(v1) = τ(v2) = τ(v3) < τe(ci). Since (yi,1, ci) ∈ E(S), we require `(v1) = `(v2) = `(v3) =

yi,1. Looking at r(T [yi,2]) and r(T [yi,3]), since each clause consists of distinct variables,

we can only have `(r(T [yi,2])) = `(r(T [yi,3])) = ⊥. Consequently, the transmission edges

(r(T [yi,2]), v2) and (r(T [yi,3]), v3) results in a edge (⊥, yi,1) in E(S). By Lemma B.2, this

also means (yi,1,¬yi,1) ∈ E(S) and therefore `(r(T [yi,1])) = yi,1. QED.

Lemma B.4. For any literal yi,j in clause ci, (⊥, yi,j) ∈ E(S) if and only if (yi,j, ci) ∈ E(S).
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Proof. Consider the subtree T [yi,j]. Let us denote the node that is child of r(T [yi,j]) and

parent of the leaf of T [yi,j] labeled with ci as v.

(⇒) If (⊥, yi,j) ∈ E(S), then by Lemma B.2 we know that (yi,j,¬yi,j) ∈ E(S). Therefore,

`(r(T [yi,j])) = yi,j. Given that `(r(T [yi,j])) = yi,j, `(δT (v)) = ci and τ(v) = ε, the only

feasible label for v is yi,j. Therefore `(v) = yi,j and (yi,j, ci) ∈ E(s).

(⇐) If (yi,j, ci) ∈ E(S), then since τ(v) < τe(ci), we have `(v) = yi,j. From Lemma B.3

we know that `(r(T [yi,j])) is either ⊥ or yi,j. If `(r(T [yi,j])) = ⊥, then we will have

{(⊥, yi,j), (⊥,¬yi,j)} which is not possible due to Lemma B.2. Therefore `(r(T [yi,j])) = yi,j

and consequently (⊥, yi,j) ∈ E(S). QED.

Proposition B.1. There exists a vertex labeling ` of T (φ) under the direct transmission

constraint such that the corresponding transmission tree S(`) is a spanning arborescence of

C(φ) if and only if φ is satisfiable with a truth assignment θ so that each clause has exactly

one true literal.

Proof. (⇒) Let ` be a vertex labeling of T (φ) under the direct transmission constraint such

that the corresponding transmission tree S is a spanning arborescence of C(φ). We construct

the corresponding truth assignment θ for φ as follows. From Lemma B.2 we know that for

any variable x, either (⊥, x) ∈ E(S) or (⊥,¬x) ∈ E(S). We set θ(i) = 1 if (⊥, xi) ∈ E(S)

and θ(i) = 0 if (⊥,¬xi) ∈ E(S). We claim that the this truth assignment satisfies φ with

exactly one literal for each clause.

We need to show that, for any clause ci = (yi,1∨yi,2∨yi,3), exactly one of (⊥, yi,1), (⊥, yi,2)

and (⊥, yi,3) is in E(S). From Lemma B.4 we know that (⊥, yi,j) ∈ E(S) if and only if

(yi,j, ci) ∈ E(S). Since S is a spanning arborescence, exactly one of (y(i, 1), ci), (yi,2, ci) and

(yi,3, ci) is in E(S). Therefore, exactly one of (⊥, yi,1), (⊥, yi,2) and (⊥, yi,3) is in E(S) which

renders the clause ci satisfied with exactly one literal.

(⇐) Consider the truth assignment θ that satisfies φ with exactly one literal for each clause

in φ. We build the vertex labeling ` for T (φ) as follows. From Lemma B.1 it is clear that ⊥
is the root host and therefore r(S) = ⊥. We set `(T [xi]) = xi if θ(i) = 1 and `(T [xi]) = ¬xi
if θ(i) = 0. For any clause ci in φ, if yi,j is true we set `(r(T [yi,j])) = yi,j and if ¬yi,j is

true we set `(r(T [yi,j])) = ⊥. Finally, we set `(vi,j) = yi,j for all j ∈ {1, 2, 3}. We need to

show that constructed vertex labeling satisfies the direct transmission constraint and that

the resulting transmission tree is a spanning arborescence of the contact map C(φ). We do

this by first showing that (i) each variable has a unique infector and (ii) all transmission

edges between the same pair of hosts have time intervals that overlap.

Consider all the variables that are assigned true by the truth assignment. The infector for

all these variables is ⊥ since `(r(T (φ))) = ⊥ and `(T [xi]) = xi if θ = 1 and `(r(T [yi,j])) = ⊥
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if ¬yi,j is true. This agrees with C(φ). The time intervals of the outgoing edges from r(T (φ))

and r(T [yi,j]),∀i ∈ [k], j ∈ {1, 2, 3} contain τ = ε. Therefore, all possible transmission edges

from ⊥ overlap at τ = ε.

Consider the variables that are assigned false by the truth assignment. From Lemma B.2

we know that for any such variable x, they are infected by ¬x. This agrees with C(φ).

Moreover, these variables do not label any of the interval vertices of the tree T and all the

leaves of T are at the same time-stamp τ = 3ε. Therefore, all possible transmission edges

to any such variable x overlap at τ = 3ε.

Finally, consider any clause ci. All the internal vertices vi,j, j ∈ {1, 2, 3} are labeled by

the same variable yi,j that renders the clause ci satisfied. As a result, yi,j is a unique infector

of ci and (yi,j, c) exists in E(C(φ)) by construction. Also, time-stamp of all vertices vi,j are

the same τ = 2ε and therefore, the transmission edges overlap at τ = 2ε. QED.

B.1.2 Counting Problem

This section proves the #P-completeness of the #DTI problem.

Proposition B.2. There exists a parsimonious reduction from #1-in-3SAT to #DTI.

Proof. Consider the reduction shown in Section B.1.1. Here we show that this reduction

is parsimonious, i.e. it preserves the number of solutions in the solution spaces of the two

problems. We show a bijection between the solution space of a 1-in-3SAT and the solution

space of the corresponding DTI instance.

Consider the Boolean formula φ. For a given truth assignment θ that satisfies each clause

of φ with exactly one true literal, we construct the vertex labeling of T (φ) as following. We

let `(T [xi]) = xi if θ(i) = 1 and `(T [xi]) = ¬xi if θ(i) = 0. We will show that this unique

determines the labeling for the rest of the internal vertices of T (φ). Consider the clause ci

and the corresponding subtrees T [yi,1], T [yi,2] and T [yi,3]. Since the truth assignment satisfies

each clause with exactly one literal, without loss generality, assume that yi,1 is true. Then

using Lemma B.4, since (⊥, yi,j) ∈ E(S), we have (yi,j, ci) ∈ E(S). For the nodes vi,j we

have τ(vi,j) < τe(ci) and therefore `(vi,j) = yi,j, ∀j ∈ {1, 2, 3}. Finally, the vertex labels

for the roots of the clause subtrees `(r(T [yi,1])) = `(r(T [yi,2])) = `(r(T [yi,3])) = yi,1 due to

Lemma B.3. Proof of Proposition B.1 shows that this vertex labeling is a solution of the

DTI problem.

From a given vertex labeling `, we construct the truth assignment as follows. We set

θ(i) = 1 if `(r(T [xi])) = xi and θ(i) = 0 if `(r(T [xi])) = ¬xi. Proof of Proposition B.1 shows

that this is a truth assignment that satisfies each clause with exactly one true literal.
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The construction of θ from ` and ` from θ are inverses of each other. If we view these

constructions as functions then they show a bijection in the solutions spaces of #1-in-3SAT

and #DTI. This shows that the number of solutions is preserved. Obviously, the reduction

can be performed in polynomial time. Therefore, the reduction is parsimonious. QED.

B.2 COMPLEXITY OF PCR AND PCTR PROBLEMS

The following two Lemmas prove the hardness of the PCR (Section 5.2.1) and the PCTR

((Section 5.2.2)) problems.

Lemma B.5. Given proportions U1(A,B) for clones Π1(A,B) = [3q] and proportions

U2(A,B) for clones Π2(A,B) = [q], there exists a set Π of clones of size n = |Π| ≤ 3q

with proportions U that are consistent with U1(A,B) and U2(A,B) if and only if there

exists a solution to the 3-PARTITION instance (A,B).

Proof. (⇒) Let clones Π and proportion matrix U be a solution to the PCR problem instance

(Π1(A,B), U1(A,B),Π2(A,B), U2(A,B)). By the premise, we have that n = |Π| ≤ 3q. Note

that since n1 = |Π1| = 3q > q = |Π2| = n2 and u
(1)
1,i > 0 for all i ∈ [3q], by Observation 5.1,

we have n = |Π| ≥ 3q. Putting this together with the upper bound n = |Π| ≤ 3q, obtained

from the premise, we have that the PCR solution has n = 3q clones. Note that since

|Π1| = |Π|, for every i ∈ [3q], there is a unique j ∈ [q] such that (i, j) ∈ Π. Since U is

consistent with U1 and u2, we have that

u1,(i,j) = u
(1)
1,i . (B.1)

We claim that the solution to the 3-PARTITION problem instance (A,B) is given by the

function σ(i) = j where (i, j) ∈ Π, for each i ∈ [3q].

We show that σ defined above satisfies Equation (5.2). Recall that π1((i, j)) = i and

π2((i, j)) = j. For any j ∈ [q], we have∑
i∈σ−1(j)

ai =
∑

(i,j′)∈Π:π2((i,j′))=j

ai (B.2)

=
∑

(i,j′)∈Π:π2((i,j′))=j

Bqu
(1)
1,s (B.3)

=
∑

(i,j′)∈Π:π2((i,j′))=j

Bqu1,(i,j) (B.4)

= Bqu
(2)
1,j = B, (B.5)
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where the second equality follows from construction with u
(1)
1,i = ai/(Bq), the third equality

uses Equation (B.1), the fourth equality uses consistency of proportion matrix U with respect

to U2 given projection function π2 and the fifth equality uses the construction u
(2)
1,j = 1/q.

(⇐) Let σ : [3q] → [q] be a solution to the 3-PARTITION problem instance (A,B). We

claim that Π = {(i, σ(i)) : i ∈ [3q]} with n = |Π| = 3q clones and 1× n proportion matrix

U = [u1,(i,σ(i))] where u1,(i,σ(i)) = u
(1)
1,i = ai/(Bq) is a solution to the corresponding PCR

problem.

To see why, recall that π1((i, σ(i))) = s and π2((i, σ(i))) = σ(i). Given these projection

functions, we need to show that U is consistent with U1(A,B) and U2(A,B). The consistency

with respect to the Π1-clones is trivial as for each i ∈ Π1 = [3q] there exists exactly one pair

(i, j) ∈ Π, i.e., the pair (i, j) where j = σ(i), with proportion u1,(i,σ(i)) = u
(1)
1,i . To see the

consistency with respect to the Π2-clones, consider for any j ∈ Π2 = [q],

∑
(i,σ(i)):σ(i)=j

u1,(i,σ(i)) =
∑

i∈σ−1(j)

u
(1)
1,i =

∑
i∈σ−1(j)

ai
Bq

=
1

Bq
B =

1

q
, (B.6)

where the second to last equality uses Equation (5.2). Since u
(2)
1,j = 1/q for all j ∈ [q], we

have ∑
(i,σ(i)):σ(i)=j

u1,(i,σ(i)) = u
(2)
1,j , ∀j ∈ [q],

which is the required condition for consistency. QED.

Lemma B.6. Given proportions U1(A,B) and clone tree T1 for clones Π1(A,B) = {0}∪ [3q]

and proportions U2(A,B) and clone tree T2 for clones Π2(A,B) = {0} ∪ [q], there exists a

set Π of clones of size n = |Π| = 4q + 1, clone tree T and proportion matrix U such that T

is a refinement of T1 and T2 and J(U,U1, U2) = 0 if and only if there exists a solution of the

3-PARTITION instance (A,B).

Proof. (⇒) Let clones Π, clone tree T and proportion matrix U be a solution to the

PCTR problem instance (Π1(A,B), T1(A,B), U1(A,B),Π2(A,B), T2(A,B), U2(A,B)). By

the premise, we have that J(U,U1, U2) = 0, which implies that U is consistent with U1 and

U2.

Note that by Observation 5.2, since r(T1) = 0 and r(T2) = 0, we have (0, 0) ∈ Π and

r(T ) = (0, 0). Recall that π1 : Π→ Π1 maps each clone in Π to its corresponding Π1-clone.

We claim that this function is a bijection for this construction. That is, |π−1
1 (i)| = 1 for all

i ∈ [3q]. Clearly |π−1
1 (i)| ≥ 1 by Definition 5.3 condition (i) and Observation 5.2. As for why

|π−1
1 (i)| ≤ 1, assume for a contradiction, there exists an i ∈ [3q] such that {j, j′} ⊆ π−1

1 (i),
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i.e. (i, j), (i, j′) ∈ Π for two distinct j, j′ ∈ Π2. Since (i, j) ∈ Π, by Observation 5.3 either

((0, j), (i, j)) ∈ E(T ) or ((i, 0), (i, j)) ∈ E(T ). Similarly since (i, j′) ∈ Π, by Observation 5.3,

either ((0, j′), (i, j′)) ∈ E(T ) or ((i, 0), (i, j′)) ∈ E(T ). Putting these two conditions together,

either {((0, j), (i, j)), ((0, j′), (i, j′))} ⊆ E(T ) or {((i, 0), (i, j)), ((i, 0), (i, j′))} ∈ E(T ). We

analyze these two cases as follows.

• Case 1: Consider {((0, j), (i, j)), ((0, j′), (i, j′))} ⊆ E(T ). This violates condition (i)

in the Definition 5.3 of T being a refinement of T1 and T2.

• Case 2: Consider {((i, 0), (i, j)), ((i, 0), (i, j′))} ∈ E(T ). Note that the proportion u
(1)
1,i

of each clone i ∈ Π1 \ {0} occurs within the open interval (1/4q, 1/2q) and therefore

u
(1)
1,i < 1/q. Since the proportion u

(2)
1,j = 1/q for any clone j ∈ Π2 \ {0}, we have

|π−1
2 (j)| > 1. Let i′ ∈ π−1

2 (j) such that i 6= i′. Since (i′, j) ∈ Π, by Observation 5.3, ei-

ther ((i′, 0), (i′, j)) ∈ E(T ) or ((0, j), (i′, j)) ∈ E(T ). If ((i′, 0), (i′, j)) ∈ E(T ), since by

premise {((i, 0), (i, j)), ((i, 0), (i, j′))} ∈ E(T ), it will violate condition (ii) in the Defini-

tion 5.3 of T being refinement of T1 and T2. Alternatively, ((0, j), (i′, j)) ∈ E(T ) implies

that (0, j) ∈ Π, which by condition (iii) in Definition 5.3 entails ((0, 0), (0, j)) ∈ E(T ).

However, since ((i, 0), (i, j)) ∈ E(T ), this would violate condition (ii) in Definition 5.3.

Therefore, |π−1
1 (i)| = 1 for i ∈ [3q]. Also, since u

(2)
1,0 = 0 and since the proportion matrix

U is consistent with U1 and U2, we have π−1
1 (i) = j ∈ [q] for each i ∈ [3q]. We claim that the

solution of the 3-PARTITION problem instance (A,B) is σ(i) = j for (i, j) ∈ Π, for each

i ∈ [3q]. We show that σ defined above satisfies Equation (5.2). Recall that π1((i, j)) = i

and π2((i, j)) = j. For any j ∈ [q], we have∑
i∈σ−1(j)

ai =
∑

(i,j′)∈Π:π2((i,j′))=j

ai (B.7)

=
∑

(i,j′)∈Π:π2((i,j′))=j

Bqu
(1)
1,s (B.8)

=
∑

(i,j′)∈Π:π2((i,j′))=j

Bqu1,(i,j) (B.9)

= Bqu
(2)
1,j (B.10)

= Bq
1

q
(B.11)

= B, (B.12)

where the second equality follows from construction with u
(1)
1,i = ai/(Bq), the third equality

uses Equation (B.1), the fourth equality uses consistency of proportion matrix U with respect
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to U2 given projection function π2 and the fifth equality uses the construction u
(2)
1,j = 1/q.

(⇐) Let σ : [3q]→ [q] be a solution to the 3-PARTITION problem instance (A,B). We

claim that Π = {(0, j) : j ∈ [q]∪{0}}∪{(i, σ(i)) : i ∈ [3q]} with n = |Π| = 4q+1 clones, clone

tree T with edges E(T ) = {((0, 0), (0, j)) : j ∈ [q]} ∪ {((0, j), (i, j)) : i ∈ σ−1(j), j ∈ [q]} and

1× (4q + 1) proportion matrix U = [u1,(i,j)] where u1,(i,σ(i)) = u
(1)
1,i = ai/(Bq) when i ∈ [3q],

u1,(0,j) = 0 for j ∈ [q] ∪ {0} is a solution to the PCTR problem with J(U,U1, U2) = 0.

We first show that U is consistent with respect to U1 and U2 which is equivalent to the

condition J(U,U1, U2) = 0. Recall the projection functions π1((i, j)) = i and π2((i, j)) = j.

We show consistency with respect to U1 as follows. For i = 0, since π−1
1 (0) = [q] ∪ {0}, we

have ∑
j∈π−1

1 (0)

u1,(0,j) =
∑
j=0

u1,(0,j) = 0 = u
(1)
1,0. (B.13)

For i ∈ [3q], since π−1
1 (i) = σ(i) we have,∑

j∈π−1
1 (i)

u1,(i,j) = u1,(i,σ(i)) = ai/(Bq) = u
(1)
1,i . (B.14)

We show consistency with respect to U2 as follows. For j = 0, since π−1
2 (0) = 0, we have∑

i∈π−1
2 (0)

u1,(i,0) = u1,(0,0) = 0 = u
(2)
1,0. (B.15)

For j ∈ [q], since π−1
2 (j) = σ−1(j), we have∑

i∈π−1
2 (j)

u1,(i,j) =
∑

i∈σ−1(j)

u1,(i,j) =
∑

i∈σ−1(j)

ai/(Bq) = B/(Bq) = 1/q = u
(2)
1,j , (B.16)

where the third equality uses the premise that σ is a solution of the 3-PARTITION problem

instance (A,B).

Now we show that T is a refinement of T1 and T2. We address the three conditions in

Definition 5.3 as follows.

• Condition (i): Recall that E(T1) = {(0, i) : i ∈ [3q]}. For each edge (0, i) ∈ E(T1),

we have a unique j = σ(i) ∈ [q] such that ((0, j), (i, j)) ∈ E(T ).

• Condition (ii): Recall that E(T2) = {(0, j) : j ∈ [q]}. For each edge (0, j) ∈ E(T2),

we have a unique i = 0 such that ((0, 0), (0, j)) ∈ E(T ).
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• Condition (iii): Recall that E(T ) = {((0, 0), (0, j)) : j ∈ [q]} ∪ {((0, j), (i, j)) : i ∈
σ−1(j), j ∈ [q]}. For each edge ((0, 0), (0, j)) ∈ E(T ), j ∈ [q], we have (0, j) ∈ E(T2)

and for edge ((0, j), (i, j)) ∈ E(T ), i ∈ σ−1(j), j ∈ [q], we have (0, i) ∈ E(T1).

QED.

109



Appendix C: Other Proofs and Derivations

C.1 TRANSMISSION TREE DISTANCE METRIC

In this section we show that WPCD is a distance metric. To show that WPCD is a

distance metric, for any transmission tree Si, we define the function qi : Σ× Σ→ N as

qi(s, t) =

wi(s, t), (s, t) ∈ E(Si),

0, otherwise.
(C.1)

Observe that, by construction, qi uniquely determines the transmission tree Si since for any

edge (s, t) ∈ E(Si) we have wi(s, t) > 0. Further, the WPCD between any two transmission

trees S1 and S2 can be alternatively written in terms of q1 and q2 as follows,

d(S1, S2) =
∑

(s,t)∈Σ×Σ

|q1(s, t)− q2(s, t)|. (C.2)

Proposition C.1. WPCD is a distance metric on the space of transmission trees T .

Proof. First, we show that for any two transmission trees S1 and S2, d(S1, S2) = 0 if and

only if S1 = S2. Clearly when S1 = S2, we have d(S1, S2) = 0. Now, let us consider the case

d(S1, S2) = 0. For any (s, t) ∈ Σ×Σ, |q1(s, t)− q2(s, t)| ≥ 0. Therefore, if d(S1, S2) then for

all (s, t) ∈ Σ× Σ we have q1(s, t) = q2(s, t) implying that S1 = S2.

By definition, WPCD is always nonnegative and symmetric. We only need to show the

triangle inequality, i.e. given trees S1, S2 and S3, we must show

d(S1, S3) ≤ d(S1, S2) + d(S2, S3). (C.3)

We show this as follows.

d(S1, S3) =
∑

(s,t)∈Σ×Σ

|q1(s, t)− q3(s, t)| (C.4)

=
∑

(s,t)∈Σ×Σ

|q1(s, t)− q2(s, t) + q2(s, t)− q3(s, t)| (C.5)

≤
∑

(s,t)∈Σ×Σ

(|q1(s, t)− q2(s, t)|+ |q2(s, t)− q3(s, t)|) (C.6)

= d(S1, S2) + d(S2, S3). (C.7)
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QED.

C.2 CONSENSUS TRANSMISSION TREE ALGORITHM

Theorem C.1. Given a set S = {S1, · · · , Sk} of k transmission trees with edge weights

wS1 , · · · , wSk
, the minimum weight spanning arborescence of the corresponding weighted

parent-child graph P defines a tree R that is a solution to the SCTT problem with the

distance measure used is weighted parent-child distance.

Proof. Consider the weighted parent-child graph P for the set of transmission trees S. Since

P is a complete graph, the optimal consensus tree R is necessarily a spanning arborescence

of P . The weights of the edges in R are given by w∗ (Proposition 2.1).

w∗(s, t) = arg min
z>0

∑
Si∈S

|qi(s, t)− z|. (C.8)

The total WPCD of R from the set of transmission trees S is given by d(R,S) =∑
Si∈S d(R, Si) where

d(R, Si) =
∑

(s,t)∈E(R)

|qi(s, t)− w∗(s, t)|+
∑

(s,t)/∈E(R)

|qi(s, t)| (C.9)

=
∑

(s,t)∈E(R)

(|qi(s, t)− w∗(s, t)| − |qi(s, t)|) +
∑

(s,t)∈Σ×Σ

|qi(s, t)|. (C.10)

Consequently,

d(R,S) =
∑
Si∈S

∑
(s,t)∈Σ×Σ

|qi(s, t)|+
∑

(s,t)∈E(R)

wP (s, t), (C.11)

where the first term is a constant with respect to R and minimizing the second term is the

sum of the weights of a minimum weight spanning arborescence R of P . QED.

C.3 LIKELIHOOD MODEL FOR DISCONTINUOUS TRANSCRIPTION

We use the segment graph G to compute the probability Pr(R | T , c) of observing the

alignment R given transcripts T and abundances c. We follow the generative model de-

scribed in [171], which has been extensively used for transcription quantification [68, 69, 75].

Let the set R of reads be {1, . . . , rn} and the set T of transcripts be T = {T1, . . . , Tk} with

lengths L1, . . . , Lk and abundances c = [c1, . . . , ck]. In line with current literature, reads
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R are generated independently from transcripts T with abundances c. Further, we must

marginalize over the set of transcripts T as the transcript of origin of any given read is

typically unknown, due to `� L. Thus,

Pr(R | T , c) =
n∏
j=1

Pr(rj | T , c) (C.12)

=
n∏
j=1

k∑
i=1

Pr(rj, Zi,j | T , c) (C.13)

=
n∏
j=1

k∑
i=1

Pr(rj | Zi,j) Pr(Zi,j | T , c), (C.14)

where Zi,j is the indicator random variable for the event that Ti is the transcript of origin

for read rj. We denote by Pr(rj | Zi,j) the probability of observing read rj given that it is

generated from transcript Ti and Pr(Zi,j | T , c) denotes the probability of generating a read

from transcript Ti given transcripts T and abundances c.

Assuming no amplification and sequencing bias, the probability Pr(Zi,j | T , c) of generat-

ing a read from a transcript Ti of length Li is given by

Pr(Zi,j | T , c) =
ciLi∑k
j=1 cjLj

. (C.15)

We now derive the probability Pr(rj | Zi,j) of transcript Ti generating read rj of fixed

length `. We do so using the segment graph G = (V,E). Recall that a transcript T must

correspond to an s to t path in G. Let π(T ) ⊆ E denote the path corresponding to transcript

T . Similarly, each read r induces a path π(r) ⊆ E in G. Read r can only be generated by

transcript T if π(r) ⊆ π(T ). Hence, the probability of transcript Ti generating a given read

rj is given by

Pr(rj | Zi,j) =

1/L′i, if π(rj) ⊆ π(Ti),

0, otherwise,
(C.16)

where L′i = Li − ` is the effective length of the transcript. We assume that the transcripts
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are much longer than the reads and as such L′i/Li ≈ 1. Putting it all together we get

Pr(R | T , c) =
n∏
j=1

k∑
i=1

Pr(rj | Zi,j) Pr(Zi,j | T , c) (C.17)

=
n∏
j=1

k∑
i=1

1{π(rj) ⊆ π(Ti)}
L′i

· ciLi∑k
b=0 cbLb

(C.18)

=
n∏
j=1

∑
i:π(Ti)⊇π(rj)

1

L′i
· ciLi∑k

b=0 cbLb
(C.19)

=
n∏
j=1

1∑k
b=1 cbLb

∑
i:π(Ti)⊇π(rj)

ci
Li
L′i

(C.20)

=
n∏
j=1

1∑k
b=1 cbLb

∑
i:π(Ti)⊇π(rj)

ci. (C.21)

C.4 RECHARACTERIZATION OF SOLUTIONS USING DISCONTINUOUS EDGES

We prove the following two propositions.

Proposition C.2. There is a bijection between subsets of discontinuous edges that are

pairwise non-overlapping and s− t paths in G.

Proof. Let Π be the set of s − t paths in G. We indicate with Σ the family of subsets of

discontinuous edges that are pairwise non-overlapping. Note that Σ ⊆ 2E
y

.

For an s−t path π ∈ Π, let f(π) be the set of discontinuous edges in π, i.e. f(π) = π∩Ey.

Since π is an s− t path of G, we have that for each edge (v = [v−, v+],w = [w−, w+]) ∈ π it

holds that v+ ≤ w−. Therefore, f(π) is composed of pairwise non-overlapping disconnected

edges.

Now, consider a subset σ ∈ Σ of discontinuous edges that are pairwise non-overlapping. We

obtain the corresponding s−t path f−1(σ) by first ordering the edges of σ in ascending order.

That is, let σ = {(v1 = [v−1 , v
+
1 ],w1 = [w−1 , w

+
1 ]), . . . , (v|σ| = [v−|σ|, v

+
|σ|],w|σ| = [w−|σ|, w

+
|σ|])}

such that w+
i ≤ v−i+1 for all i ∈ {1, . . . , |σ| − 1}. For every two consecutive discontinuous

edges (vi = [v−i , v
+
i ],wi = [w−i , w

+
i ]) and (vi+1 = [v−i+1, v

+
i+1],wi+1 = [w−i+1, w

+
i+1]), we include

the corresponding subpath of continuous edges from wi to vi+1 into f−1(σ). In addition, we

include the subpath of continuous edges from node s to node v1 as well as the subpath from

node w|σ| to t into f−1(σ). By construction, f−1(σ) is an s− t path. QED.

Proposition C.3. Let G be a segment graph, T be a transcript and r be a read. Then,

π(T ) ⊇ π(r) if and only if σ(T ) ⊇ σ⊕(r) and σ(T ) ∩ σ	(r) = ∅.
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Proof. (⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒) By the premise, π(T ) ⊇ π(r). By definition, σ(T ) = π(T ) ∩ Ey. By Defini-

tion 3.4, σ⊕(r) = π(r)∩Ey. As π(T ) ⊇ π(r), we have that σ(T ) = π(T )∩Ey ⊇ π(r)∩Ey =

σ⊕(r). By definition, σ	(r) is the subset of discontinuous edges in Ey \ σ⊕(r) that overlaps

with an edge in π(r). Since π(T ) ⊇ π(r), every edge included in σ	(r) because of an overlap

with an edge in π(r) must also overlap with the same edge in π(T ). Since π(T ) is an s− t

path, and thus does not contain pairwise overlapping edges, we infer that σ	(r)∩ σ(T ) = ∅.
(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐) By the premise, σ(T ) ⊇ σ⊕(r) and σ(T ) ∩ σ	(r) = ∅. As σ(T ) ⊇ σ⊕(r), we have

that π(T ) ∩ Ey = σ(T ) ⊇ σ⊕(r) = π(r) ∩ Ey. Since σ(T ) ∩ σ	(r) = ∅, we have by

Definition 3.4, that no discontinuous edge in σ(T ) overlaps with any edge in π(r). Since

π(T ) is an s − t path containing the subset σ⊕(r) of discontinuous edges in π(r), it holds

that π(T ) ∩ E→ ⊇ π(r) ∩ E→. Finally, as Ey ∪ E→ = E, π(r) ⊆ E and π(T ) ⊆ E, we get

π(T ) ⊇ π(r). QED.

Using this proposition, we derive a simpler form of the likelihood given in Eq. (3.3). Let

S = {(σ⊕1 , σ	1 ), . . . , (σ⊕m, σ
	
m)} be the set of characteristic discontinuous edges generated by

the reads in alignment R. Let d = {d1, · · · , dm} be the number of reads that map to each

pair in S. Using that distinct reads rj and rj′ with the same characteristic discontinuous

edges (σ⊕(rj), σ
	(rj)) = (σ⊕(rj′), σ

	(rj′)) have the same likelihood in terms of Eq. 3.3, we

have

Pr(R | T , c) =
n∏
j=1

1∑k
b=1 cbLb

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci =
m∏
j=1

 1∑k
b=1 cbLb

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci


dj

. (C.22)

Now, taking the logarithm yields

log Pr(R | T , c) =
m∑
j=1

dj

log

(
1∑k

b=1 cbLb

)
+ log

∑
i∈X(T ,σ⊕j ,σ

	
j )

ci


=−

m∑
j=1

dj

(
log

k∑
b=1

cbLb

)
+

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci


=

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n log
k∑
b=1

cbLb. (C.23)
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The goal is the remove the second sum in the above equation, as it is convex and we are

maximizing. In order to do so, we first prove the following lemma.

Lemma C.1. For any given scaling factor α > 0, we have that log Pr(R | T , c) = log Pr(R |
T , αc).

Proof.

log Pr(R | T , αc) =
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

αci

− n log
k∑
b=1

αcbLb (C.24)

=
m∑
j=1

dj log

α ∑
i∈X(T ,σ⊕j ,σ

	
j )

ci


− n logα

k∑
b=1

cbLb (C.25)

=
m∑
j=1

dj logα +
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n logα− n log
k∑
b=1

cbLb

(C.26)

= n logα +
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n logα− n log
k∑
b=1

cbLb (C.27)

=
m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci

− n log
k∑
b=1

cbLb (C.28)

= log Pr(R | T , c). (C.29)

QED.

This enables us to prove the following lemma.

Lemma C.2. Let D > 0 be a constant, ci(c) = ciD/
∑k

j=1 cjLj and ci(c) = ci/
∑k

j=1 cj for

all i ∈ [k]. Then, (T , c = [c1(c), . . . , ck(c)]) is an optimal solution for Eq. (3.4) to (3.7) if
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and only if (T , c = [c1(c), . . . , ck(c)]) is an optimal solution for

max
T ,c

m∑
j=1

dj log
∑

i∈X(T ,σ⊕j ,σ
	
j )

ci (C.30)

s.t. π(Ti) is an s− t path in the segment graph G ∀i ∈ [k], (C.31)

k∑
i=1

ciLi = D, (C.32)

ci ≥ 0 ∀i ∈ [k]. (C.33)

Proof. We will refer to the optimization problem in Eq. (3.4) to (3.7) as P and the opti-

mization problem in Eq. (C.30)-(C.33) as Q. Further, we will refer to the objective function

in Eq. (3.4) as J(T , c) and the objective function in (C.30) as K(T , c). Observe that

K(T , c) = log Pr(R | T , c) + n log
k∑
b=1

cbLb

=J(T , c) + n log
k∑
b=1

cbLb, (C.34)

where the last equality uses (C.23).

(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒)(⇒) Let (T , c) be an optimal solution to problem P . We begin by showing that (T , c)

is a feasible solution to Q where c = [c1(c), . . . , ck(c)]. By definition of ci(c), constraints

Eq. (C.32) are satisfied. Hence, (T , c) is a feasible solution to problem Q.

We now show that if (T , c) is an optimal solution to problem P , then (T , c) is an optimal

solution to problem Q. Let (T ′, c′) be an optimal solution to problem Q. Then, by optimality

of (T ′, c′), we have

K(T ′, c′) ≥ K(T , c). (C.35)

Let c′ = [c1(c′), . . . , ck(c
′)]. Note that c′ satisfies constraints in Eq. (5). Thus (T ′, c′) is a

feasible solution to problem P . Since (T , c) is an optimal solution of P , we have

J(T , c) ≥ J(T ′, c′). (C.36)

Since c′ and c′ only differ by a positive scaling factor α = 1/
∑k

i=1 c
′
i, we use Lemma C.1 to

get J(T ′, c′) = J(T ′, c′). Similar result holds for c and c, i.e. J(T , c) = J(T , c). Applying
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this to (C.36), we get

J(T , c) ≥ J(T ′, c′). (C.37)

Using (C.32) and (C.34), we get

J(T , c) ≥ J(T ′, c′)

=⇒ K(T , c)− n log
k∑
b=1

cbLb ≥ K(T ′, c′)− n log
k∑
b=1

c′bLb

=⇒ K(T , c)− n logD ≥ K(T ′, c′)− n logD

=⇒ K(T , c) ≥ K(T ′, c′). (C.38)

Finally, using (C.35) and (C.38), we get K(T , c) = K(T ′, c′). Hence, (T , c) is an optimal

solution of Q.

(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐)(⇐) Let (T , c) be an optimal solution to problem Q. We begin by showing that (T , c)

is a feasible solution to P where c = [c1(c), . . . , ck(c)]. By definition of ci(c), constraints in

Eq. (3.6) are satisfied. Hence, (T , c) is a feasible solution to problem P .

Next, we need to show that (T , c) is an optimal solution to problem P . Let (T ′, c′) be an

optimal solution to problem P .

Then, from the optimality condition, we get

J(T ′, c′) ≥ J(T , c). (C.39)

Let c′ = [c1(c′), . . . , ck(c
′)]. Note that c′ satisties constraint (C.32) and thus (T ′, c′) is a

feasible solution to problem Q. Using (C.34) and the fact that (T , c) is an optimal solution

of problem P we get

K(T , c) ≥ K(T ′, c′)

=⇒ J(T , c) + n log
k∑
b=1

cbLb ≥ J(T ′, c′) + n log
k∑
b=1

c′bLb

=⇒ J(T , c) + n logD ≥ J(T ′, c′) + n logD

=⇒ J(T , c) ≥ J(T ′, c′). (C.40)

Observe that c′ and c′ only differ by a positive scaling factor α = D/
∑k

j=1 c
′
jLj. Therefore,

using Lemma C.1, we have J(T ′, c′) = J(T ′, c′). Similarly, for c and c, we have J(T , c) =
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J(T , c). Using this together with (C.40), we obtain

J(T , c) ≥ J(T ′, c′). (C.41)

Moreover, (C.39) and (C.41) simultaneously imply J(T , c) = J(T ′, c′). Hence, (T , c) is an

optimal solution to problem P . QED.
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Appendix D: Simulation Details

D.1 SAMPLING SCENARIOS IN AN OUTBREAK

The weak transmission bottleneck has some interesting implications for the sampling of

the within-host diversity of the infected hosts. Fig. D.1 gives an overview, with schematic

representations, of 4 different scenarios that can occur for real outbreaks.

D.2 SIMULATION PIPELINE FOR DISCONTINUOUS TRANSCRIPTION

Our simulations are based on a widely believed model of discontinuous transcrip-

tion. Briefly, there are two competing models of discontinuous transcription for coron-

aviruses [172]. Both models agree that the RdRp jump is mediated by matching core-

sequences (motifs) present in the TRSs in the viral genome. The only point of difference

between the two models is whether discontinuous transcription occurs during the plus-strand

synthesis or the minus-strand synthesis. The negative-sense discontinuous transcription

model [173] proposes that the it is during the minus-strand synthesis that the RdRp per-

forms discontinuous transcription. Transcription is initiated at the 3’ end of the plus-strand

RNA and the RdRp jumps to the TRS-L region when it reaches a TRS-B region adjacent

to a gene, thereby generating a minus-strand subgenomic RNA. The minus-strand subge-

nomic RNA is then replicated by the RdRp to produce a plus-strand RNA which can be

translated to a viral protein. Currently, this model is largely believed to be true due to the

considerable experimental support from genetic studies detecting minus-strand subgenomic

RNAs [174, 175, 176, 177, 178].

We now describe the procedure to simulate transcripts and their abundances following

the negative-sense model of discontinuous transcription for a given segment graph. The

model is parameterized by the function p : E → [0, 1]. According to the negative-sense

discontinuous transcription model, the transcription process is modeled as an t − s walk

in the reverse graph Ḡ where the direction of each original edge is reversed. At each node

the RdRp randomly chooses an outgoing edge to traverse in the reverse graph Ḡ (which

would be an incoming edge to the node in the original graph G) where the probabilities are

given by the function p. Hence, the corresponding constraint on p under the negative-sense

discontinuous transcription model is
∑

e∈δ−(v) p(e) = 1. The probabilities are drawn from a

Dirichlet distribution with concentration parameter α set to 10 for edges that are present

in the path corresponding to any of the canonical transcripts and 1 otherwise. This is done
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S2,1
S2,2

H1

H2

(a) Unsampled Host

S1,1

S2,1
S2,2

H1

H2

(b) Unsampled Lineage

S1,1

S2,1
S2,2

H1

H2

(c) Unsampled Strain

S1,1

S1,2

S2,1
S2,2

H1

H2

(d) Complete Sampling

Figure D.1: Schematic representation of different sampling scenarios during an
outbreak. Different hosts H1 and H2 are represented by rectangular boxes and the samples
taken from the hosts are indicated by blue or green circles inside the boxes respectively.
Red lines represent the evolution of pathogen lineages. Different scenarios described are
(a) Unsampled Host scenario where host H1 is not sampled even though it is part of the
outbreak and infects H2 with multiple strains (b) Unsampled Lineage where even though
host H1 is sampled with sample S1,1, the lineage that passes two strains into host H2 remains
unsampled (c) Unsampled Strain scenario where the host H1 is sampled and the right lineage
is also sampled however the two strains that are transmitted to host H2 are not sampled (d)
Complete Sampling scenario where there is no incomplete lineage sorting (ILS) and all the
strains transmitted from H1 to H2 are sampled.
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to ensure that canonical transcripts are generated with high enough abundance, making the

simulations similar to real data.

The next step of our simulation pipeline is to generate transcripts T and their abun-

dances c for the given segment graph. We simulate the transcription process by generating

100,000 s−t paths on the segment graph and report the number of unique paths/transcripts

T and their abundances c. We repeat this process to generate 5 independent sets of tran-

scripts and abundances for the positive and the negative model each. Figure 3.3b shows the

number of transcripts generated from each simulation using the negative-sense discontinuous

transcription model. To contrast, the total number of s− t paths in the underlying segment

graph is 3440.

Once the transcripts are generated, the next step in our pipeline is to simulate the gener-

ation and sequencing of RNA-seq data. We use polyester [79] for this step as it allows the

user to provide the number of reads generated from each transcript. For a given total number

n of reads, the number of reads generated from transcript Ti is given by nciLi/
∑k

j=1 cjLj

where Li is the length of the transcript Ti. We use the default parameters for read length

(` = 100) and fragment length distribution (Gaussian with mean µr = 250 and standard

deviation σr = 25) to generate 3,000,000 reads. For each set of transcript and abundances

generated in the previous step of the pipeline, we simulate 5 replicates of the sequencing

experiment.

The final step of the simulation pipeline is to align the generated reads to the reference

genome NC 045512.2 using STAR [71]. The resulting BAM file serves as the input for the

transcription assembly methods. To summarize, we generated 5 independent pairs (T , c) of

transcripts and abundances under the negative-sense discontinuous transcription model. For

each pair (T , c) we run 5 simulated sequencing experiments using polyester [79]. Therefore,

we generated a total of 5× 5 = 25 simulated instances.

D.3 SIMULATION DETAILS FOR DOUBLETD

D.3.1 Simulation Setup

We generate variant V and total read counts C for 500 in silico droplets as follows. First,

we evolve 10 genotypes under an evolutionary model that incorporates CNAs and SNVs

(detailed below) and use a symmetric Dirichlet distribution to obtain clonal abundances

(concentration parameter α = 2). The minimum allowable clonal abundance for any geno-

type was 0.02, which we enforce using rejection sampling. We vary the number of SNVs

m ∈ {10, 50, 100}. Next, we decided for each droplet whether it is a doublet with proba-
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bility δ ∈ {0.1, 0.2, 0.4}. Depending on the outcome, we randomly sample one or two cells

from the 10 genotypes to comprise the droplet. We also vary the mean sequencing coverage

c ∈ {10, 50, 100} and ADO probability β ∈ {0.0, 0.05, 0.25}. To draw total reads C, we

use a negative binomial distribution parameterized by the mean sequencing coverage c and

a dispersion of 5. The copy error rate was fixed at αfp = αfn = 0.001 for all experiments

in accordance with [106]. Finally, we set the beta-binomial precision to s = 15 — a sim-

ulation regime that matches the Tapestri platform by Mission Bio (Section 3.2 as well as

MDA-based single-cell DNA sequencing (Section 3.3). Using the drawn total read counts C

and the above parameters, we draw variant read counts V. Each combination of simulation

parameters was replicated with five different random number generator seeds, amounting to

a total of 405 experiments.

D.3.2 Evolutionary Model

We now describe the model that we used to simulate the evolutionary history of k = 10

genotypes comprised of both CNAs and SNVs. Using Prüfer sequences [179], we begin by

drawing a labeled tree T comprised of 10 nodes uniformly at random. For each of the m

SNVs, we decide whether that mutation will undergo copy-neutral loss of heterozygosity

(CN-LOH) with a probability of 0.1 (as described above). Then, we uniformly assign each

mutation to a node of T to generate mutation clusters when m > k. For each non CN-LOH

mutation, we decide with probability γ if that mutation will undergo a CNA event. These

define a set of CNA events. For the set of CNA events, we then decide if that event is a loss

with probability ` or a gain otherwise. For any gain events, we determine the number of

copies gained by drawing a number uniformly between 1 and the max number of copies (3

for base simulations and 5 for our extreme CNA scenario). Next, we randomly assign CNA

events to nodes of the tree T . We then generate the set of k genotypes by evolving SNV

events (het or hom) and CNV events down the tree. We start with a pair (ωi, ρi) representing

the number of variant alleles and reference alleles of each SNV locus i ∈ [m]. At each node,

we update this genotype in accordance with the events encountered on the path from the

root to the node. When applying CNA events, if the current number of mutated alleles

is non-zero, we select either the mutated or reference allele to undergo the CNA event.

Otherwise, it is applied to the reference allele. If an SNV and CNA are introduced at the

same time, we randomly determine which event to apply first.
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D.4 SIMULATION DETAILS FOR PARSIMONIOUS CLONE TREE
RECONCILIATION

We perturb the proportion matrices U1 and U2 by introducing noise following a user-defined

level h ∈ [0, 1]. For each sample p ∈ [m], let u
(1)
p = [u

(1)
p,i ] for i ∈ [n1] and u

(2)
p = [u

(2)
p,j ] for

j ∈ [n2]. The perturbed proportions ū
(1)
p and ū

(2)
p are drawn from the following distributions

ū(1)
p ∼ (1− h)u(1)

p + hDir(1n1), ∀p ∈ [m], (D.1)

ū(2)
p ∼ (1− h)u(2)

p + hDir(1n2), ∀p ∈ [m]. (D.2)

The resulting proportion matrices are Ū1 = [ū
(1)
p,i ] for p ∈ [m], i ∈ [n1] and Ū2 = [ū

(2)
p,j ] for

p ∈ [m], j ∈ [n2]. Note that when noise level h = 0, we have Ū1 = U1 and Ū2 = U2. Also,

for any h ∈ [0, 1], the matrices Ū1 and Ū2 satisfy the conditions laid out in the definition of

proportion matrices (Definition 5.2).
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Appendix E: Supplementary Results

E.1 MULTIPLE SOLUTIONS TO THE DTI PROBLEM

Fig. E.1 shows all the feasible solutions to the representative DTI problem described in

the Fig. 2.1.

(a) (b) (c)

Figure E.1: The timed phylogeny shown in Fig. 2.1 has 3 possible vertex labeling solutions.

E.2 ADDITIONAL SIMULATION RESULTS FOR THE DTI PROBLEM
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Figure E.2: (a) The number of vertices n in the timed phylogeny T for increasing number
m of simulated hosts and bottleneck size κ. (b) Time taken to generate 100,000 uniformly
sampled solutions to the DTI problem using TiTUS for increasing values of simulated
bottleneck size κ.
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Figure E.3: Comparison of SharpTNI and TiTUS on simulated, partially sampled outbreaks.
Transmissions in simulated instances followed a tree-like pattern (i.e. direct transmission)
but not all strains within a host were sampled. (a) The number of solutions where the
vertex labeling induces a transmission tree (rather than a general graph) for increasing
bottleneck size κ. (b) The fraction of simulation instances for which each method identified
a transmission tree, for increasing values of simulated bottleneck size κ.

E.3 ADDITIONAL HIV DATA ANALYSIS AND IMPLEMENTATION DETAILS

host transmission window known infector latest sample time entry time removal time

A ? - 14/05/90 B 7/11/05 τ(r(T )) 7/11/05

F 01/02/95 - 02/08/95 A 19/09/05 01/02/95 19/09/05

G 16/01/02 - 16/04/02 F 16/04/02 16/01/02 16/04/02

H 29/06/95 - 24/07/95 B 25/05/98 29/06/95 25/05/98

I 01/02/93 - 28/04/93 B 06/10/99 01/02/93 06/10/99

C 23/09/93 - 10/01/94 B 15/12/03 23/09/93 15/12/03

D 16/03/95 - 01/07/95 C 24/03/03 16/03/95 24/03/03

L 23/09/93 - 12/03/06 C 24/03/06 23/09/93 24/03/06

E 15/06/00 - 01/02/01 C 22/02/06 15/06/00 22/02/06

K 01/06/04 - 15/09/04 E 30/09/04 01/06/04 30/09/04

Table E.1: This table shows the epidemiological information provided in the HIV dataset [1].
The transmission window of a host is the expected time-interval during which the host was
infected.
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(a) (b)

Figure E.4: (a) Transmission number and (b) number of unsampled lineages of all the
solutions generated using TiTUS on the HIV dataset vs different infection recall values.
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Figure E.5: The infection recall of the consensus transmission tree for solutions sampled
using TiTUS on the HIV dataset for increasing values of the percentile threshold α.

E.4 HUMAN GENE TRANSCRIPT ASSEMBLY RESULTS

We evaluate the performance of Jumper, Scallop and StringTie on simulated samples

of the human gene FAS as well. This gene is located on the long arm of chromosome 10 in

humans and encodes the Fas cell surface receptor which leads to programmed cell death if

it binds its ligand (Fas ligand). The FAS gene has 15 exons, yielding the following seven

isoforms via alternative splicing (https://www.uniprot.org/uniprot/P25445).

1. P25445-1 with length of 335aa

https://useast.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000652046
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2. P25445-2 with length of 103aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000484444

3. P25445-3 with length of 86aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000479522

4. P25445-4 with length of 149aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000494410

5. P25445-5 with length of 132aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000492756

6. P25445-6 with length of 314aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000357339

7. P25445-7 with length of 220aa

https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=

ENSG00000026103;r=10:88990731-89014619;t=ENST00000355279

The region between the first and the last exon span position 5001 to 30255 of the FAS gene.

We used this region as the reference genome in our simulations1.

We include the seven isoforms with equal proportion of 1/7 in the ground truth. We add

a poly-A tail of length 85 at the end of the reference genome as well as each of the isoforms

to emulate the transcription process. We use polyester [79] to simulate the sequencing of

35,000,000 paired-end reads of the sample with a Gaussian fragment length distribution

with mean 250 and standard deviation of 25. We simulate 5 replicates of the sequencing

experiment. The simulated reads are aligned to the selected region of the FAS gene using

STAR [71]. The resulting BAM file serves as the input for the transcription assembly methods

We evaluate the recall and precision of the three methods focusing on transcripts with

abundance of more than 0.01. Figure E.6 shows that Jumper (median F1 score of 1)

outperforms Scallop (median F1 score of 0.83) in terms of both recall and precision, while

StringTie is not able to recall any of the 7 transcripts in the ground truth. We run the

1NCBI reference sequence NG 009089.2: https://www.ncbi.nlm.nih.gov/nuccore/NG_009089.2?

from=5001&to=30255&report=fasta
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simulations again with only 3 of the isoforms, P25445-1, P25445-6 and P25445-7. Figure E.7

shows that StringTie is able to perform better with a median recall of 0.33, but still not

as well as either Scallop (median recall of 1) or Jumper (median recall of 1).
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Figure E.6: Jumper outperforms Scallop and StringTie for all simulation instances of
the FAS gene (on human chromosome 10) with all 7 isoforms of the gene in terms of F1 score,
recall and precision while maintaining a modest running time. (a) F1 score (b) recall and
(c) precision of the three methods for the simulated instances. The ground truth contained
seven isoforms of the FAS gene with uniform relative abundances.
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Figure E.7: Jumper outperforms Scallop and StringTie for all simulation instances of
the FAS gene (on human chromosome 10) with only 3 isoforms (P25445-1, P25445-6 and
P25445-7) in terms of F1 score, recall and precision while maintaining a modest running time.
(a) F1 score (b) recall and (c) precision of the three methods for the simulated instances. The
ground truth contained three isoforms of the FAS gene with uniform relative abundances.
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E.5 TRANSCRIPT ASSEMBLY OF MERS-COV SAMPLES
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(a) transcript abundances
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Figure E.8: Jumper finds all canonical transcripts and some non-canonical transcripts from
three MERS-CoV samples. (a) Abundance of the detected transcripts in the three samples,
SRR10357372, SRR10357374 and SRR10357375. (b) A Venn diagram of the non-canonical
transcripts reconstructed for each sample showing that there are 7 non-canonical transcripts
that are present in all the three samples. Table E.2 shows the abundance of the 8 canonical
transcripts that are present in all the samples and 14 non-canonical transcripts that are
present in more than 1 sample.

MERS-CoV has a genome of length 30119 bp, and consists of 10 ORFs (1ab, S, 3, E, M, 4a,

4b, 5, 8b, N). We ran Jumper on three published MERS-CoV samples [70], SRR10357372,

SRR10357373 and SRR10357374, with a median coverage of 41,999, 36,663 and 45,235 re-

spectively. These samples correspond to MERS-CoV infected Calu-3 cell lines [70]. Similar

to previous analyses in this paper, we used fastp to trim the short reads (trimming pa-

rameter set to 10 nucleotides) and we aligned the resulting reads using STAR in two-pass

mode. Scallop identified at most two canonical transcripts in each of the three samples

(transcripts corresponding to ORF3 and ORF M in SRR10357372, ORF5 and ORF3 in

SRR10357373, and ORF N in SRR10357374). We ran Jumper with the 35 most abundant

discontinuous edges in the segment graph and restrict our attention to transcripts identified

by Jumper that have more than 0.001 abundance as estimated by Salmon [69].

Jumper reconstructs transcripts corresponding to all canonical ORFs of MERS-CoV in all

the samples, except for ORF4b and ORF8b which are the only canonical ORFs that are not

preceded by well supported TRS-B regions [90]. The most abundant transcript corresponds

to ORF N (median abundance of 0.348), in line with the observations for SARS-CoV-2, while

the least abundant canonical transcript encodes for protein E (median abundance of 0.0053).

Figure E.8a shows, for each sample, the relative abundances of each canonical transcript as

well as the total abundances of all non-canonical transcripts. Firstly, we observe that the
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abundance of each canonical transcript is consistent across the three samples. Secondly, we

see that all the three samples have high total abundance of non-canonical transcripts (me-

dian total abundance of 0.3908). Figure E.8b shows a Venn diagram for the non-canonical

transcripts present in the three samples. We see out of the 25 distinct non-canonical tran-

scripts, 7 are present in all the three samples and 14 are present in at least two of the

samples. Table E.2 shows the abundance of the 8 canonical transcripts present in all the

samples and the 14 non-canonical transcripts present in at least two samples. We will now

describe the most abundant non-canonical transcripts in each sample.

The most abundant non-canonical transcript in samples SRR10357372 and SRR10357373

is ‘NC8’, which has a single discontinuous edge from position 1317 (5’ end) to 29600 (3’ end).

The abundance of this transcript is 0.1019 in sample SRR10357372 and 0.1639 in sample

SRR10357372, which is higher than all the canonical transcripts in both the samples except

the transcript corresponding to ORF N. The 5’ end of the discontinuous edge is in ORF1ab

(nsp2 region) and the 3’ end is in ORF N. Interestingly the most abundant non-canonical

transcript in the third sample SRR10357374 is ‘NC12’, which has a single discontinuous edge

with the same 3’ end of 29600 while the 5’ end is at position 1297 (also in the nsp2 region

of ORF1ab). This transcript has abundance of 0.1486 in sample SRR10357374, higher than

all the canonical transcripts in SRR10357374 except the transcript corresponding to ORF

N, and 0.0483 in sample SRR10357372. We were not able to attribute the occurrence of

transcripts NC8 and NC12 to matching motifs at the 5’ and 3’ ends of the discontinuous

edges. Given the high abundance of these non-canonical transcripts in the sample, further

investigation is required to ascertain their function.

E.6 ADDITIONAL RESULTS ON THE DTA PROBLEM

We have the following supplementary figures.

• Figure E.9 shows that Jumper outperforms Scallop and StringTie on simulated

instances while maintaining a modest running time.

• Figure E.10 shows that Jumper outperforms Scallop and StringTie for varying

values of thresholding parameter Λ.

• Figure E.11 shows that Jumper produces better recall and precision when compared

to Scallop and StringTie for every simulation instance (T , c).

• Figure E.12 shows a core sequence potentially explaining a non-canonical discontinuous

transcription that is conserved across Sarbecovirus species.
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Transcript Discontinuous Edges SRR10357372 SRR10357373 SRR10357374
1ab - 0.0195 0.0190 0.0213

ca
n
on

ic
al

S (59, 21402) 0.0251 0.0261 0.0284
3 (59, 25518) 0.0789 0.0840 0.0876
E (61, 27582) 0.0055 0.0049 0.0053
M (58, 27834) 0.0812 0.0699 0.08
5 (55, 26826) 0.0266 0.0261 0.0294
4a (59, 25840) 0.0237 0.0246 0.0241
N (53, 28536) 0.3483 0.3542 0.34

NC1 (62, 28626) 0.0017 0.0016 0.0015

n
on

-c
an

on
ic

al

NC2 (65, 29106) 0.0043 0.0029 0.0026
NC3 (61, 29503) 0.0016 0.0014 0.0015
NC4 (61, 29582) 0.003 0.0027 0.0029
NC5 (1727, 28983) 0.016 0.0169 0.0198
NC6 (2343, 29204) 0.0736 0.1047 0.0575
NC7 (7120, 24104) 0.0086 0.0088 0.0087
NC8 (1317, 29600) 0.1019 0.1639 -
NC9 (2333, 29203) 0.055 - 0.049

NC10
(63, 680)

(1727, 28983)
0.0019 - 0.0017

NC11
(59, 21402)

(24103, 27938)
0.0011 - 0.0011

NC12 (1297, 29600) 0.0483 - 0.1486
NC13 (64, 29105) 0.0011 - 0.001
NC14 (2333, 29150) - 0.0613 0.0363

Table E.2: Abundance of 8 canonical transcript present in all three MERS-CoV samples and
14 non-canonical transcript present in more than 1 sample. The canonical and non-canonical
transcripts with the highest abundance in each sample are highlighted. Figure E.8b shows
the Venn diagram of all the transcripts in the solution.

• Figure E.13 shows an example of a supporting read for a transcript with two discon-

tinuous edges.

• Figure E.14 shows that transcript X is supported in both long-read and short-read

samples deposited in SRA.

• Figure E.15 shows the number of supporting reads with the 5’ end mapping to the

leader sequence in the short and long read sequencing data.

• Figure E.17 shows the abundances of the predicted transcripts by Jumper in two

SARS-CoV-1 infected samples.

• Table E.3 describes 18 transcripts (including 9 canonical transcripts) detected from

SARS-CoV-2 infected samples with and without pre-treatment of ruxolitinib.

• Table E.4 shows summary of the results from the simulations.
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Figure E.9: Jumper outperforms Scallop and StringTie for all simulation instances in
terms of F1 score, recall and precision while maintaining a modest running time. (a) F1 score
(b) recall, (c) precision and (d) time taken by the three methods for the simulated instances.
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Figure E.10: Jumper outperforms Scallop and StringTie for varying values of thresh-
olding parameter Λ. (a) F1 score (b) recall, (c) precision and (d) time taken by the Jumper
for different values of Λ compared to Scallop and StringTie on the simulated instances.
As expected, the recall value drops for increasing Λ while the precision increases. We set
the default value of Λ to 100 which incurs runtime comparable to Scallop while producing
higher recall and precision solutions.
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Figure E.11: While all three methods return consistent results when generating techni-
cal sequencing replicates, Jumper produces better recall and precision when compared to
Scallop and StringTie for every simulation instance (T , c). Varying simulation instances
(T , c) correspond to distinct panels. Each panel shows the recall and precision of the three
methods for 5 sequencing experiments of the same simulated instance (T , c).
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Leader …ACGAACTTTAAAA…
X, X’ …AAGAACTTTAAGT…

15780 15788

72 80

(a) Core sequence

15780 1578872 80

(b) MSA and sequence logo with 34 Sarbecoviruses and 1 Hibecovirus.

(c) Sequence logo of 11 Nobecoviruses, 27 Merbecoviruses and 36 Embecoviruses

Figure E.12: The core sequence of transcript X is conserved within the Sarbecovirus subgenus
but not in other subgenera of the Betacoronavirus genus. (a) Core sequence for the transcript
X and X’. (b) Sequence logo for the positions 15780 to 15788 in SARS-CoV-2 genome built
from the multiple sequence alignment of the leader sequence and ORF1ab of 34 Sarbecovirus
and a Hibecovirus. (c) Sequence logo for positions 15780 to 15788 in SARS-CoV-2 genome
built from multiple sequence alignment with the remaining subgenera of Betacoronaviruses.
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Figure E.13: A schematic showing an example of a supporting read for a transcript
T1 with σ⊕(T1) = 2. Transcript T1 is supported by r2 because π(r2) = π(T1) and
|σ⊕(r1)| = |σ⊕(T1)| = 2. Reads r1, r3 and r4 do not support T1 since |σ⊕(r1)| < |σ⊕(T1)| and
π(r3), π(r4) * π(T1). No reads support T2 since |σ⊕(rj)| < |σ⊕(T2)| for all reads rj.
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Figure E.14: Transcript X has supporting reads in multiple independent publicly available
samples of SARS-CoV-2 infected cells on SRA. Distribution of number of (a) short-read and
(b) long-read SRA samples with varying proportion of leader-sequence spanning reads that
support transcript X. All the short-read samples were aligned using STAR [71] while the long-
read samples were aligned using minimap2 [82]. In this plot we only consider samples with
more than 100 reads that map to the leader-sequence (position 55 to 85 in the SARS-CoV-2
reference genome).
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Figure E.15: Supporting phasing reads with 5’ end mapping to the leader sequence in short
and long-read sequencing samples of SARS-CoV-2 infected Vero cells [55]. Supporting phas-
ing reads in the (a) short-read sequencing sample and (b) long-read sequencing sample.
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Figure E.16: Jumper enables analysis of drug response of the virus in infected cells at the
transcript level. (a) A Venn diagram of recalled transcripts from sample with and without
treatment of ruxolitinib and a bar plots showing the number of samples containing each of
the 18 common transcripts. Table E.3 described each of the 18 common transcripts. The
transcripts are named based on the protein they yield, with ∇ indicating presence of out of
frame deletions and ∆ indicating in-frame deletions.
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Figure E.17: Abundances of the canonical and non-canonical transcripts predicted
by Jumper are consistent in the two SARS-CoV-1 infected samples (SRR194256 and
SRR194257). Jumper predicts 10 canonical and 3 non-canonical transcripts across the
two samples.

Transcript Discontinuous Edges Description

1ab - canonical transcript with no discontinuous edges

1ab’ (23593, 23630) single discontinuous edge downstream of ORF1ab

S (65, 21552) single discontinuous edge from TRS-L to TRS-B of ORF S

∆S1
(65, 21552)

(23593, 23630)

single discontinuous edge from TRS-L to TRS-B of ORF S

and an in-frame 12 amino-acid deletion overlapping the furin cleavage site

∆S1
(65, 21552)

(23593, 23615)

single discontinuous edge from TRS-L to TRS-B of ORF S

and an in-frame 7 amino-acid deletion overlapping the furin cleavage site

3a-1 (65, 25381) single discontinuous edge from TRS-L to TRS-B of ORF3a

3a-2 (66, 27385) single discontinuous edge from TRS-L to TRS-B of ORF3a

E (69, 26237) single discontinuous edge from TRS-L to TRS-B of ORF E

M (64, 26468) single discontinuous edge from TRS-L to TRS-B of ORF M

∇M

(64, 26468)

(26779, 26817)

(28525, 28577)

single discontinuous edge from TRS-L to TRS-B of ORF M

with an out of frame deletion with motifs ‘CAATGGCTT’ to ‘CATTGCTT’

and another downstream deletion within ORF N

6 (69, 27041) single discontinuous edge from TRS-L to TRS-B of ORF6

7a (66, 27385) single discontinuous edge from TRS-L to TRS-B of ORF7a

8 (65, 27884) single discontinuous edge from TRS-L to TRS-B of ORF8

8’
(65, 27884)

(28270, 28970)

single discontinuous edge from TRS-L to TRS-B of ORF8

with a single deletion downstream of ORF8

N-1 (64, 28255) single discontinuous edge from TRS-L to TRS-B of ORF N

N-2 (68, 28263) single discontinuous edge from TRS-L to TRS-B of ORF N

NC1 (6001, 27376) matching motif ‘AGAGCAACCAAT’ on the 5’ and 3’ ends of the jump

NC2 (731, 29307) matching motif ‘ATTTTCAA’ to ‘AATTTCAA’

Table E.3: 18 transcripts (including 9 canonical transcripts) detected from SARS-CoV-2
infected A549 cell line samples with and without pre-treatment of ruxolitinib. Figure 3.5
shows the abundances of these transcripts in the samples.
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Simulation Jumper Scallop StringTie

seed rep can non-can
TP

FP
TP

FP
TP

FP
can non-can can non-can can non-can

0 1 14 94 7 9 1 7 4 8 2 0 14

0 2 14 94 8 11 0 7 2 8 1 0 13

0 3 14 94 7 11 2 4 1 8 1 0 11

0 4 14 94 6 9 2 7 2 8 1 0 13

0 5 14 94 7 11 0 4 1 8 1 0 7

1 1 14 78 3 13 1 3 0 12 2 0 13

1 2 14 78 4 11 1 2 0 10 1 0 13

1 3 14 78 3 16 1 3 0 2 1 0 12

1 4 14 78 3 11 1 2 0 8 0 0 16

1 5 14 78 4 13 1 2 0 8 1 0 15

2 1 14 150 5 11 1 3 1 8 1 0 16

2 2 14 150 4 14 3 5 1 4 2 0 15

2 3 14 150 5 13 3 5 1 8 2 0 13

2 4 14 150 7 16 1 5 1 8 2 0 16

2 5 14 150 4 14 1 3 1 8 2 0 14

3 1 14 72 4 7 2 3 0 8 1 0 9

3 2 14 72 6 8 2 3 0 4 0 0 8

3 3 14 72 7 6 4 4 0 8 0 0 20

3 4 14 72 4 8 3 3 0 8 2 0 9

3 5 14 72 4 9 2 3 0 6 0 0 4

4 1 14 115 4 13 1 1 0 4 1 0 19

4 2 14 115 5 12 1 1 0 0 0 0 12

4 3 14 115 6 14 1 1 0 8 2 0 10

4 4 14 115 6 10 1 1 0 4 0 0 16

4 5 14 115 6 13 1 1 0 4 0 0 12

Table E.4: Simulation results for the three methods Jumper, Scallop and StringTie.
Each distinct value in the column ‘seed’ is a unique instance of (T , c) and each distinct value
in the column ‘rep’ is a unique sequencing experiment for the given (T , c). (rep: replicate,
can: canonical, non-can: non-canonical, TP: true positives, FP: false positives)

E.7 ADDITIONAL RESULTS ON THE DOUBLET DETECTION PROBLEM

E.7.1 Sensitivity of doubletD to Input Parameters

Our method takes several parameters as input (Fig. 2). The ADO probability β and

the sequencing error rates αfp, αfn are sequencing platform specific and typically known a

priori. While the doublet probability δ is also typically known beforehand, we find that

maximum likelihood is good criterion for estimating this parameter in case it is unknown.

Specifically, varying the doublet probability in {0.01, 0.1, 0.2, 0.4, 0.7, 0.9} and selecting value

with maximum likelihood, we achieve similar precision and recall values as using the ground
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truth doublet rate (Fig. E.21). Further, the likelihood function is maximized at or close to

the simulated doublet rate indicating that it can be used as a reliable criteria for estimating

the true doublet rate (Fig E.22).

doubletD estimates the beta-binomial precision parameter s and mutation probabilities µ

from input data. We find that procedure outlined in Section A.6 for estimation the beta-

binomial precision parameter s and mutation probabilities µ from input data results in only

minor error with a deviation of 0.08, −0.11, 0.02, and 6.0 for µwt, µhet and µhom (Fig. E.24a)

and s (Fig. E.24a), respectively. We then fixed the inference doublet rate at the simulated

rate and varied the beta precision by inputting half and twice the simulated beta precision

into doubletD (Fig. E.23). We found that halving or doubling in inference beta precision

parameter with respect to the simulated parameter had no significant impact when the

simulated precision was high (1000). When the simulated precision was low (15), we noted

that overestimation by utilizing double the simulated precision parameter did result in a

small decrease in the median precision of 0.86 to 0.81 (Fig. E.23). Conversely, utilizing half

the simulated rate resulted in improved precision without a reduction in recall. Thus, in the

presence of uncertainty of this parameter, preference should be given to underestimation or

lower values. In conclusion, we found that doubletD is resilient to variations in the user-

inputted doublet rate parameter, especially in the range of typical experimental doublet rates

(0.1-0.4). As the inference doublet rate increases beyond this range, precision is reduced since

the threshold for calling an experiment a doublet is significantly lowered. The likelihood

function calculated as a function of the predicted experimental labels is maximized at or

close to the simulated doublet rate (Fig E.21).

E.7.2 Two Cell Line Mixture

We followed the procedure outlined in the vignette accompanying this dataset2. The one

notable exception is that we used relaxed filtering criteria to identify additional loci for

orthogonal doublet validation. The filtering criteria were as follows.

gt.filter=TRUE, gt.gqc = 30, \

gt.dpc = 10, gt.afc = 20, \

gt.mv = 50, gt.mc = 50, \

gt.mm = 0.5, gt.mask = TRUE

We extracted variant and total read counts from the AD and DP layers of the loom file

for 1592 droplets. To identify a subset of 26 high-quality inference loci among the total

2https://support.missionbio.com/hc/en-us/articles/360045899834-Installation-instructions-for-tapestriR
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number of 133 loci, we excluded loci that had a copy number greater than 2 (using the

compute ploidy function in the Tapestri R package).

Upon performing a preliminary dimensionality reduction (t-sne) and hierarchical clustering

on the ‘zygosity’ (binning of VAFs into homozygous, heterozygous or wild type) of all 133

loci, we noted the existence of a third cluster composed of 23 droplets with a distinct genotype

and mutually exclusive mutations from the other two cell lines. We excluded these droplets

from our analyses. Further, we identified a set of 5 validation loci distinct from the 23

inference loci that were homozygous (hom) in one cell line cluster but wild type (wt) in the

other. We use these loci to establish the ground truth assignment of droplets to the two cell

lines, Raji and KG-1, and to compute the NCS score for each droplet.

E.7.3 Acute Lymphoblastic Leukemia Tumors

E.7.3.1 Preprocessing

We utilized scDNA-seq data in the form of FASTQ files from the Sequence Read Archive

database (accession no. SRP044380). After adaptor trimming (Trimmomatic), read align-

ment (bwa) to reference genome hg19 and PCR duplicate removal (Picard), we performed a

pileup of the variant positions called by [95] to obtain the variant V and total read counts

C.

E.7.3.2 Doublet Detection

To mitigate the impact of CNAs on doublet detection, we only included loci that were

heterozygous and had a median VAF ∈ [0.45, 0.55]. We ran doubletD directly on the total

and variant read count data obtained from the pileup utilizing the ADO rates reported by

[95]. Since no information was published on the expected doublet rate, we performed a

grid search to obtain the maximum likelihood estimate of the prior doublet probability δ.

Fig. E.29 shows that the identified doublets have distinct VAF distributions compared to

the remaining singlet droplets, both on the set of inference loci (that met the heterozygosity

filtering criterion) as well as an orthogonal set of holdout loci (that did not meet the filtering

criterion). Table E.5 shows the statistics and results generated by applying doubletD on data

from all the patients in the dataset. Section 3.3 shows detailed analysis of Patient 1.
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patient n m′ m mean coverage ADO β doubletD

1 243 20 14 14.3× 0.20 50 (0.21)

2 256 16 9 15.6× 0.18 22 (0.09)

3 266 48 31 9.1× 0.25 86 (0.32)

4 276 78 50 7.1× 0.24 92 (0.33)

5 225 105 59 7.0× 0.25 55 (0.24)

6 224 10 7 16.2× 0.18 46 (0.21)

Table E.5: Statistics and doublet detection results of an acute lymphoblastic leukemia cohort
of six patients. From left to right, the table shows for each patient the number n of droplets,
the number m′ of loci identified by [95], the number m of loci that meet our filtering criteria,
the mean coverage of the samples, the ADO rate reported by [95] and the number (and
fraction) of doublets identified by doubletD.
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Figure E.18: F1 score, recall and precision of doublet detection using doubletD for varying
mean read depths c, ADO rates β and doublet probabilities δ. All simulations are run without
copy number aberrations γ = 0 and precision parameter s = 15.

140



E.7.3.3 Phylogeny Inference with PhISCS-B

PhISCS-B operates on a discretized input matrix that codes for the presence (‘1’) or

absence (‘0’) of a mutation in a droplet as well as missing data (‘?’). To discretize the input

matrix, we used the binomial exact test to determine mutation status for each corresponding

entry in the total and variant read count matrices C and V with a null error rate of 0.001

and a p-value of 10−6. We provided PhISCS-B with the ADO rate β = 0.2 reported by

[95] and a false positive rate of 0.001 that is typical for multiple displacement amplification

(MDA) whole-genome amplification [180]. We imposed a maximum time limit of 3600 s.
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Figure E.19: F1 score, recall and precision of doublet detection using doubletD on sim-
ulations without copy number losses and only gains. Results are shown for copy number
aberrations probability γ ∈ {0, 1} and ADO rates β ∈ {0.05, 0.25}. All simulations are
run with doublet probability δ = 0.2, mean read depth c = 50×, number of mutations
m ∈ {10, 50, 100} and precision parameter s = 15.
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Figure E.20: Running time for doublet detection using doubletD, SCG:doublet and
Scrublet for simulations without CNAs (γ = 0) with varying number of mutations m.
All simulations have doublet probability δ = 0.2, mean read depth c = 50× and precision
parameter s = 15.
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Figure E.21: Precision and recall for doublet detection using doubletD with maximum
likelihood estimate of the doublet probability δ and the true doublet probability used in
the simulations for varying ADO rates β and mean read depth c. Results are shown for
simulations with doublet probability δ = 0.2, number of mutations m ∈ {10, 50, 100} and
precision parameter s = 15.
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Figure E.22: F1 score, precision, recall and posterior likelihood of doublet detection using
doubletD with varying input doublet probability δ. The simulations are run with doublet
probability δ = {0.1, 0.2, 0.4}, number of mutations m = 50, coverage 50× and precision
parameter s = 15. Copy number aberration probability γ was set to 0.
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Figure E.23: F1 score, precision, recall and posterior likelihood of doublet detection using
doubletD with varying input precision parameter s. The simulations are run with doublet
probability δ = 0.2, number of mutations m ∈ {10, 50, 100} and precision parameter s = 15.
Copy number aberration probability γ was set to 0.
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Figure E.24: Error in the estimation of (a) the mutation probabilities µ = {µwt,µhet,µhom}
and (b) the precision parameter s from simulated data with varying number of mutations
m and ADO rates β. All simulations are run with doublet probability δ = 0.2, copy number
aberration probability γ = 0 and precision parameter s = 15.
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Figure E.25: Number of genotypes called by doubletD+SCG:singlet, SCG:doublet and
SCG:singlet on simulations with varying number of muations m and ADO rates β. All
simulations have doublet probability δ = 0.2, mean read depth c = 50×, precision parameter
s = 15 and copy number aberration γ = 0.
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Figure E.26: Heatmap showing the observed variant allele frequency (VAF) of cell line
droplets categorized by cell line or droplets with a neotypic doublet confidence score (NCS ≥
2).
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Figure E.27: doubletD results on cell line data. (a) The posterior likelihood (non-
normalized) as a function of input doublet probability δ. Due to non-normalization, the
log-likelihood is shifted by a constant explaining the positive values observed in the plot.
(b) The observed VAF distributions for doubletD predicted doublets (1) and singlet droplets
(8) for Raji droplets with neotypic doublet confidence score NCS = 1.
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Figure E.28: Venn diagram of the droplets with NCS score of (a) 0 (b) 1 and (c) ≥ 2 that
were predicted as doublets by the three methods, doubletD, SCG:doublet and Scrublet.
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Figure E.29: Aggregated observed variant allele frequency distribution by patient and dou-
bletD prediction for (a) across holdout loci (b) across inference loci.
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E.8 COMPUTATION OF SNV CLONE PROPORTIONS

Each edge of the SNV clone tree T1 reported by Gundem et al. [8] represents a set of

mutations, also known as mutation clusters. As such, for a SNV clone tree T1 with n1

vertices, there are n1 − 1 mutation clusters. The authors have provided the cancer cell

fraction (CCF) for each of the mutation clusters in each sample of the ten patients. They

used pigeonhole principle (PPH) to construct the SNV clone tree manually. For a given

patient, let F ∈ [0, 1]m×(n1−1) be the CCF matrix such that F = [fp,k] and fp,k is the CCF

of mutation cluster k ∈ [n1 − 1] in sample p ∈ [m]. The SNV clone tree T1, excluding

the root vertex which represent the normal cell, is used to construct a perfect phylogeny

matrix B [181]. We use the perfect phylogeny matrix B and the CCF matrix F to get the

proportion U ′ of SNV clones, excluding the normal clone, in each sample of the ten patients

by solving the following linear program

min |F −BU ′|1, (E.1)

s.t. 0 ≤ up,i ≤ 1, ∀p ∈ [m], i ∈ [n1 − 1], (E.2)

n1−1∑
i=1

up,i = 1, ∀p ∈ [m], (E.3)

where | · |1 is the entry-wise L1 norm. Finally, we correct the proportion matrix U ′ for the

purity of the tumor samples (also known as tumor cellularity), which is the proportion of

cancer cells in the tumor. We use the proportion of normal cells in each sample, inferred by

HATCHet [141], to compute the purity of the tumor samples. Let γ ∈ [0, 1]m×1 be a vector

such that γp,1 is the purity of sample p ∈ [m] inferred using HATCHet. The proportion

matrix U ∈ [0, 1]m×n1 of the SNV clones is given by

U =
[
Diag(γ)U ′ 1m − γ

]
(E.4)

where 1m is a m × 1 vector with all entries equal to 1 and Diag(γ) is a m × m diagonal

matrix with the diagonal elements given by the entries of the vector γ. It is easy to see

that the proportion matrix U satisfies the conditions for being a proportion matrix (see

Definition 5.1).
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E.9 ADDITIONAL RESULTS ON PCTR PROBLEM
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Figure E.30: Clone recall for the two modes of PACTION on the simulated instances. We
show the clone recall of PACTION with the PCR and the PCTR mode on the simulated
instances for varying noise levels h and number m of samples. For majority of simulated
instances, PACTION in the PCTR mode has a higher recall compared to the PCR mode.

patient number m of samples number n1 of SNV clones number n2 of CNA clones

A10 4 10 8

A12 3 5 8

A17 5 11 6

A21 8 15 6

A22 10 16 4

A24 4 10 4

A29 2 6 4

A31 5 11 6

A32 5 13 6

A34 3 14 6

Table E.6: Statistics of the metastatic prostate cancer data [8]. Number m of samples,
number n1 of SNV clones and number n2 of CNA clones for the 10 patients from Gundem
et al. [8]. The CNA clones were identified using HATCHet [141].
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