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ABSTRACT

Data science is an iterative, exploratory, and ad-hoc process performed by individuals and teams
possessing increasingly varied backgrounds and skill-sets. As such, we need data science to be
interactive, so that data scientists are not bottlenecked when trying out new hypotheses or confirming
existing ones. Moreover, data science must be safe, ensuring that data scientists, especially those
with limited programming or analysis experience, avoid making incorrect inferences. Safety and
interactivity are typically at odds with one another, since various notions of safety often eschew
“shortcuts” that make working with large-scale data tractable. In this dissertation, we aim to meet the
dual objectives of interactivity and safety at scale by leveraging distributional context—specifically
the distributions of the data and the operations performed by data scientists.

We apply this “recipe” to five different key data science settings: (i) for machine learning
development, we provide context-aware caching algorithms that allow model developers to benefit
from interactive iteration times during model development, while not requiring error-prone manual
tracking of reusable intermediates; (ii) for visualization search, we develop context-aware sampling
algorithms that support interactive search for patterns in visualizations, while ensuring that the
results meet rigorous quality guarantees; (iii) for browsing, we develop workload-aware learned
Bloom filters optimized for multidimensional data that allow analysts to quickly identify records that
have been examined before, all while guarding against false negatives; (iv) for report generation, we
develop context-aware aggregate approximation algorithms that provide rigorous distribution-aware
confidence intervals around aggregates, while ensuring that the intervals are “tighter”, allowing
analysts to make decisions sooner; and (v) finally, for error-prone interactions in computational
notebooks, we demonstrate approximate lineage-capture techniques that warn data scientists of

unsafe cell executions for many cases encountered in practice.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Data in recent times has grown to scales that tax the computational capabilities of many companies
and individuals, thereby impeding analysis and hindering the ability to extract valuable insights.
Data scientists, whose skills are already stretched thin from having to wear many hats (developer,
modeler, communicator), bear the brunt of the pain incurred from working with massive data.

While no kind of software development occurs in a vacuum, data science in particular is highly
interactive, with the analysis and development process adaptively guided while browsing, plotting
visualizations, generating reports, and modeling data. The types of unpredictable workloads
shouldered by data scientists are particularly sensitive to problems stemming from scale: while
certain computing tasks can be run “in batch” while out to lunch, data science tasks are fluid
and exploratory in nature, requiring a human-in-the-loop for continually monitoring results and
incrementally testing, rejecting, and refining hypotheses. In fact, recent work suggests that latencies
greater than 500ms cause significant frustration for end-users and lead them to test fewer hypotheses
and potentially identify fewer insights [1].

The demanding nature of data science at scale typically requires “cutting through the data jungle”
to accomplish even though most basic of tasks, necessitating shortcuts to help cope with the scale of
the data. To alleviate pain points of common data science tasks, recent work has developed strategies
based on sampling [2, 3, 4, 5, 6] and deterministic approximation [7] to aid with visualization and
report generation, caching and smart reuse [8, 9, 10] to optimize machine learning workflows, smart
indexing strategies [11] to aid with browsing of records that match desired criteria, and strategies
for provenance capture [12, 13, 14] to make computational notebooks less error prone. However,
facilitating these tasks at scale while optimizing for interactivity, and simultaneously ensuring safety

via correctness guarantees has remained an ideal largely beyond reach.

1.2 CHALLENGES BALANCING SAFETY AND INTERACTIVITY

A common observation is that existing systems tend to optimize for either safety or interactivity
at the expense of the other. We now illustrate such issues in the context of machine learning
development, data exploration and visualization, and computational notebooks.

Machine Learning Development. During machine learning model development, data scientists

iterate on existing ML workflows via small refinements, thereby admitting reuse opportunities.

Previous systems have leveraged such reuse opportunities [8, 9, 10] during machine learning



training, but for intermediates created during batch executions (e.g., for training that runs on a
schedule), as opposed to the interactive development performed by data scientists. While nothing in
principle prevents data scientists from performing their own manual caching and reuse, this kind of
manual workflow management is highly error-prone and cumbersome. As a result, modelers tend to

recompute their entire workflows from scratch, which slows development and hinders interactivity.

Index Structures for Browsing. Browsing is a common task whereby data scientists examine
records that match desired criteria. Bitmap index structures are commonly used to reduce the
amount of data fetched from storage media during browsing; unfortunately, for large datasets, the
index is itself oftentimes too large to fit in memory (especially if over multiple attributes) and
must be paged in from storage media, thereby increasing I/O cost. Therefore, novel approaches
for compressing bitmap index structures are paramount for enabling browsing at scale, and such
techniques should be lossless in order to ensure safety; i.e., to ensure that records are not mistakenly

omitted from the result set.

Visual Exploration. Data scientists often attempt to generate visualizations that match desired
criteria [15]. Histograms are a very common visualization type for which users attempt to slice their
data in order to generate matches, but the process of iterative “generate and test” occupies a large
part of visual data analysis [16, 17, 18], and is often cumbersome and time consuming, especially
on very large datasets that are increasingly the norm.

Sampling is a natural approach to cope with data at scale, but introduces error, compromising
safety in the form of the fidelity of the results. To rectify this and bolster safety, general sampling-
based algorithms with strong guarantees for distinguishing of top-k “desirable arms” [19] (matching
histograms in our setting), have been developed. Unfortunately, such techniques require too many

samples to be practical.

Report Generation. AVG and SUM aggregations are fundamental operations powering OLAP and
report generation; ensuring they run quickly is therefore of great importance. Over the years, many
attempts have been made to accelerate these operations. One category of optimizations leverages
approximation, using sampling-based techniques in order to estimate the aggregate on a subset of
the full data [2, 3, 4, 5, 6, 20, 21, 22, 23, 24].

Prior work relies on two kinds of classes of approximation techniques: asymptotic techniques that
use properties of the sample to compute error bounds that give accuracy guarantees as the size of the
sample approaches infinity [2, 3, 4, 21, 23], and sample-agnostic techniques that leverage intrinsic
properties of the data known a priori in order to compute error bounds that depend only on the size
of the sample taken, as opposed to properties of the sample itself [2, 6, 20, 24]. In both cases, the
goal of an error bound quantification procedure is to @ minimize the size of the error bounds (so

that the query can terminate with fewer samples and therefore more quickly), but @ subject to the



constraint that they enclose the true result following an exact computation of the aggregate. @ helps
to minimize latency, while @ ensures that query results fall within acceptable error tolerances.
These twin goals are at odds with one another. The aforementioned asymptotic techniques
prioritize @, but do so at the cost of safety. Conservative approximate query processing (AQP), on
the other hand, facilitates strong guarantees at the expense of @, as the traditional techniques based
on, e.g., Hoeffding’s inequality give error bounds that are far too loose to be applicable in a data

science setting where interactive latencies are required.

Computational Notebooks. The programming environment favored by modern data scientists
for undertaking the above tasks is the computational notebook. Computational notebooks such
as Jupyter [25] keep intermediate programming state in memory, thereby breaking out of the
batch programming paradigm and enabling rapid prototyping and exploration. Despite these
conveniences, notebooks’ hidden programming state accumulates over time and can be difficult to
reason about, leading to counter-intuitive and error-prone interactions, hindering reproducibility
and confusing users [26]. Thus, the very environment preferred for undertaking data science tasks

itself compromises on safety in order to facilitate interactivity.

1.3 OUR VISION

We envision systems capable of leveraging distributional context, i.e., of the data or workload
in question, that bolster the reliability of common data science tasks while preserving interactive
latencies, or vice versa (reducing latencies without compromising safety).

To illustrate the basic idea, consider an example from sampling-based AQP. Suppose we have a
query ¢; that asks whether the average of column C is higher or lower than 0, versus query ¢, that
directly asks for the average of column C. Answering either query exactly would have the same cost,
while ¢; can be less costly to approximate than g, in a way that gives correctness guarantees. This
is an example of leveraging workload context to enable safe (i.e., due to guarantees) interactivity at
scale, since we are able to use properties of g; to terminate sooner than if we were to use exact
processing (which would ascribe identical cost to ¢; and ¢,). To give an example of leveraging data
context, note that g, might be easier to compute (i.e., require fewer samples) if C has low variance,

compared to if C has high variance.

1.4 CONTRIBUTIONS AND OUTLINE

In this dissertation, we study techniques for moving toward both safety and interactivity in five
different data science scenarios. The remaining chapters are organized as follows:



Chapter | Safety Aspect(s) Interactivity Aspect(s) Context
Avoid use of invalidated | Optimal reuse of ML workflow | Similarity between adja-
Chapter 3 . . . . . .
workflow intermediates | intermediates cent workflow iterations
. . Differences between in-
Enforce no false nega- | Compressed index sizes can fit .
Chapter 4 | . . . . dexed data and queries
tives for index lookups | in memory more easily .
for out-of-index data
. Ability to prune poor
Guarantees on separa- | Reduced latencies thanks to .
Chapter 5 | . . . matches more quickly
tion and reconstruction | early stopping
than good matches
. Ability to safely com-
Strong guarantees on er- | Reduced latencies thanks to y Y
Chapter 6 . pute tighter bounds for
ror bounds early stopping .
low-variance data
Observe that trace-once
Chanter 7 Prevent incorrect stale | Bound lineage overhead using | semantics suffice for
P cell executions trace-once semantics most common notebook
usage patterns

Table 1.1: Breakdown of dissertation themes by chapter.

In Chapter 2, Literature Review, we survey work related to various data science tasks considered
in this dissertation along the axes of safety and interactivity, calling to particular attention prior

examples that leverage data or workload characteristics to benefit one or the other.

Following the literature review, we have the core content chapters of this dissertation:

In Chapter 3, Safe Reuse In Machine Learning Workflows, we develop HEL1x, a system capable
of jointly managing workflow state and optimizing across workflow iterations. Pushing the
workflow state into the HELIx system enables safety, and smart policies for materialization and
reuse benefit from the incremental workflow aspect in order to enable interactivity at scale.
The contents of Chapter 3 have appeared in our VLDB’ 19 paper [27]. This was work led by
Doris Xin, but our contribution was the algorithm for optimal reuse.

In Chapter 4, Safe Browsing with Learned Bloom Filters, we demonstrate workload-aware or
learned Bloom filters that use less space than their traditional counterparts to enable safe
browsing (without false negatives for lookups) over massive sets of multidimensional records.
The contents of this chapter have appeared in our ML for Systems workshop paper [28] at
NeurIPS’18.

In Chapter 5, Safe Approximation for Visual Exploration, we develop a system, FASTMATCH,
capable of sampling in order to rapidly find the k histograms that best match an analyst-provided

target. FAsTMATCH uses an adaptive technique to prune confidently matching / non-matching



histograms from the sampling routine, coupled with a lookahead technique that exploits
locality when querying bitmap indexes to find blocks containing samples for still-uncertain
histograms. By facilitating a correctness guarantee, the system guarantees safety; thanks to
the extensive optimizations that enable matching queries to be performed at fast latencies,
the system facilitates interactivity at scale. The contents of Chapter 5 have appeared in our
VLDB’18 paper [29].

In Chapter 6, Safe Approximation for Report Generation, we jointly improve safety and
interactivity of report generation at large scales by providing a set of data-aware sampling
techniques for computing aggregates. These techniques are designed to rectify common issues
faced by traditional conservative AQP, and are able to leverage properties of data learned during
sampling to compute error bounds, but without sacrificing strong probabilistic guarantees. We
develop these distribution-sensitive report generation techniques within the context of a system,
FastFraME, which extends the FAstMatcH architecture from Chapter 5. The contents of this
chapter have appeared in our ICDE’21 paper [30].

In Chapter 7, Approximate Lineage for Safe Notebook Interactions, we develop NBSAFETY, a
custom kernel built on top of the Jupyter runtime which combines runtime tracing and static
analysis to track at fine granularity the lineage of variables and other state introduced by the
data scientist. We show that NBSAFETY is able to effectively use this lineage to provide hints
and warnings about cells that may be unsafe to execute. Tracking this lineage can introduce
significant overhead, however. Fortunately, we show that we are able to retain virtually all
of NBSAFETY’s safety benefits by tailoring the tracked lineage to characteristics specific to
computational notebooks. To do so, we introduce trace-once semantics in order to guarantee
that the tracked lineage accumulates only in proportion to the amount of code written by the
data scientist, and never grows without bound. The contents of Chapter 7 will have appeared in
our VLDB’21 paper [31].

Chapters 3 to 7 constitute the core chapters of this dissertation. Table 1.1 summarizes the themes of

safety, interactivity, and distributional awareness within the context of each of these chapters.

In Chapter 8, Conclusion and Future Work, we conclude and suggest avenues for further

exploration based on the the core ideas outlined in this dissertation.



CHAPTER 2: LITERATURE REVIEW

In this chapter, we survey related directions toward enabling safe and interactive data science.
Although the majority of prior efforts have focused on reducing latency of data science tasks (and
thereby improving interactivity), we call to particular attention efforts related to safety aspects
wherever relevant, as well as how workload or data characteristics are used to improve aspects of
interactivity under safety constraints, or vice versa. We will typically categorize safety concerns
along two axes: those that ensure that data science-related queries are correctly formulated, which
we deem query safety; and those that, given a correctly formulated query, ensure that the underlying

system returns a correct result (within acceptable error tolerance), which we deem result safety.

2.1 MACHINE LEARNING WORKFLOWS

We now survey prior work on machine learning systems. We segment our review along two
axes: user-facing systems that aim to improve the development process, and production-focused
systems that attempt to automate aspects of machine learning productionization. We shall see that
user-facing systems typically focus on improving interactivity with relatively little consideration
given to safety, while production systems typically focus on safety, with little attention given to
developer convenience. Furthermore, we are aware of no prior work along either axis that considers
the interplay between safety and interactivity in the context of the highly iterative and incremental

process of machine learning development.

User-Facing ML Systems. Prior efforts toward user-facing systems for ML workflow development
have focused on reducing latency while improving expressiveness of such systems. These twin
goals can also be framed in terms of safety and interactivity: latency reductions tighten the feedback
cycle and improve interactivity, while improvements to expressiveness (typically facilitated by
providing a predefined set of declarative ML building blocks) reduce time needed for development
and furthermore reduce errors during the development process by allowing for reuse of existing,
well-tested software components. However, safety is typically not the primary goal of such systems,
but a byproduct of the convenience they offer.

Expressiveness has traditionally been facilitated by making it easier to specify ML workflows
declaratively. Boehm et al. categorize declarative ML systems into three groups based on the usage:
declarative ML algorithms, ML libraries, and declarative ML tasks [32]. Systems that support
declarative ML algorithms, such as TensorFlow [33], SystemML [34], OptiML [35], ScalOps [36],
and SciDB [37], allow ML experts to program new ML algorithms, by declaratively specifying

linear algebra and statistical operations at higher levels of abstraction.



ML libraries, such as Mahout [38], Weka [39], GraphLab [40], Vowpal Wabbit [41], MLIib [42]
and Scikit-learn [43], provide simple interfaces to optimized implementations of popular ML
algorithms. TensorFlow has also recently started providing TFLearn [44], a high level ML library
targeted at deep learning.

Systems that support declarative ML tasks allow application developers with limited ML knowledge
to develop models using higher-level primitives than in declarative ML algorithms. DeepDive [9, 10]
and KeystoneML [8] also fall into this group of systems, which perform workflow-level optimizations
to reduce end-to-end execution time, thereby improving interactivity. Declarative ML task systems
can seamlessly make use of improvements in ML library implementations, such as MLIib [42],
CoreNLP [45] and DeepLearning4j [46], within UDF calls. Unlike declarative ML algorithm
systems, that are targeted at ML experts and researchers, these systems focus on end-users of ML.
They improve interactivity for their specific respective tasks at the cost to flexibility.

In general, all of the above systems help improve interactivity via reduced latencies, but they
tend to ignore the highly error-prone and interactive aspects of iterative ML workflow development.
The focus is more on end-to-end optimization of a single workflow run expressed via convenient
high-level primitives, as opposed to optimizations and error reductions across multiple runs.
Production-Focused ML Systems. A number of industry frameworks [47, 48, 49, 50, 51, 52, 53],
attempt to automate typical steps in deploying machine learning by providing a Platform-as-a-
Service (PaaS) capturing common use cases. These systems vary in generality — frameworks
like SageMaker [51], Azure Studio [49], and MLFlow [52] are built around services provided by
Amazon, Microsoft, and Databricks, respectively, and along with Apache Airflow [53] provide
general solutions for production deployment of ML models for companies that in-house infrastructure.
On the other hand, TFX [47], FBLearner Flow [48], and Michelangelo [50] are optimized for
internal use at Google, Facebook, and Uber, respectively. For example, TFX is optimized for
use with TensorFlow, and Michelangelo is optimized for Uber’s real-time requirements, allowing
production models to use features extracted from streams of live data.

The underlying “workflow” these frameworks manage is not always given an explicit representation,
but the common unifying thread is the automation of aspects of machine learning production pipelines:
allocation and fault tolerance of cluster resources, production deployment, monitoring dashboards,
and continuous retraining steps, to name a few. The purpose of this automation is to free up
engineering resources from the toil and manual labor of tailoring bespoke pipelines for each new
business use case, and to provide a set of “guard rails” for catching bugs and other production issues
via workflow schema validation, monitoring, and gradual rollout.

While such systems pay lip service to safety (enabling aspects of, for example, our notion of
query safety by requiring workflow components to undergo schema validation), they still tend to

fall under the umbrella of batch computing rather than interactive computing, as their focus is

7



productionization rather than development. Furthermore, one could consider optimizations enabled
by the aforementioned systems as helping to facilitate interactivity, but such optimizations tend to
focus on management, allocation, and efficient use of cluster resources, rather than on making the
life of the data scientist easier. For example, while FBLearner Flow [48] will attempt to memoize
workflow intermediates for operators whose inputs have not changed between runs, it is still the
responsibility of the user to ensure that state not captured by the system (external configuration, data
living in hive tables) has not changed to avoid an incorrect use of a previously memoized result.
In this way, any benefits from improved interactivity are offset by reductions to safety, from the
perspective of individual users.

With this in mind, our contribution in Chapter 3 is to show how interactivity and safety of machine
learning systems can be jointly optimized by leveraging workflow characteristics (in the form of
similarities inherent in adjacent workflow iterations). By freeing users of the burden of choosing
what workflow intermediates to cache and remembering when such intermediates can be safely
reused, we show how to create a highly optimized ML development feedback loop.

We survey additional tools for workflow management when we cover computational notebooks in
Section 2.4, which share many similarities in terms of safety and interactivity challenges associated

with machine learning workflows.

2.2 BROWSING AND BITMAP INDEXES

To facilitate browsing records in tabular data that satisty some set of desired criteria, a number of
different index structures have traditionally been employed. From a safety standpoint, any index
structure should ensure that records matching filter criteria are never excluded from the result
set; virtually all index structures make this guarantee. From an interactivity standpoint, the most
important aspect of an index structure is its size, as queries to such index structures are typically
much faster when the indexes fit in memory. Bitmap indexes are commonly employed for interactive
analytics in particular [54, 55], necessitating the development of a number of compression techniques,
as the straightforward, naive bitmap encoding is too cumbersome to be useful in practice [56].
We survey these approaches along two axes: techniques that leverage data characteristics, and
techniques that leverage workload characteristics.

Depending on data characteristics, different bitmap indexing schemes lead to different compression
tradeoffs. For example, integers that are dense within some range might be represented by a
straightforward bitmap structure (possibly paired with a starting point, if other than 0); integers
that are sparse in a range might be represented by a packed array that stores the values proper, and

a complete ranges with all contiguous integers might be represented by a pair of (start position,



end position). In fact, this was one of the insights of the Roaring bitmap format [57, 58], which
adopts a hybrid encoding scheme that tries to adapt to data exhibiting multiple different sets of
characteristics.

On the other hand, the query workload must also be taken into account when choosing bitmaps
for optimal performance. For example, differential encoding [59] or run-length encoding (RLE)
schemes [60, 61, 62] will typically perform well when querying sorted integers for set membership,
while the Roaring format was shown to outperform these techniques for set membership queries
involving unsorted, random integers [57, 58]. This disparity can be explained by noting that RLE
schemes “store” the set members in sorted order as well, and must be decoded starting from the
beginning when an item is queried — for queries to sorted integers, the same round of decoding
can be shared for queries to multiple integers, while costly backtracking is necessary for queries to
unsorted integers.

Bloom filters are a specialized kind of bitmap index that relax the correctness guarantees of other
bitmap index structures slightly: they guarantee that all the records satisfying the desired filtering
criterion will be returned, as well as some potential additional false positive records. As false
positives can always be filtered out in a subsequent post-processing step, Bloom filters can likewise
be used to facilitate result safety. Although traditional Bloom filters do not leverage workload
characteristics, recent work [63, 64] has proposed learned Bloom filters that model the difference
between the in-set data and queries for the out-of-set data, which can result in index sizes that
are much smaller in some cases. Our contribution in Chapter 4 is to understand more deeply the
interplay between the learned and traditional components of learned Bloom filters, and to provide a

recommended set of configurations for learning Bloom filters over multidimensional data.

2.3 INTERACTIVE ANALYTICS

Interactive analytics tasks, such as visualization, report generation, and more general query
processing, as well as the optimization thereof have enjoyed extensive treatment in prior work.
Approaches for reducing latencies associated with such tasks are numerous; we restrict our survey
to sampling-based techniques as they are the most related with Chapters 5 and 6 of this dissertation.
Sampling-based interactive analytics relies on an extremely simple idea: the smaller the size of the
data that are processed, the faster the processing can terminate. Such early stopping, however, can
introduce error and sacrifice our notion of result safety if care is not taken. We therefore survey
such techniques along two axes: those that facilitate strong guarantees regarding the correctness of
the results independent of sample size, and those that only give such guarantees asymptotically, in

the limit of infinite data.



Asymptotic Techniques. Central to sampling-based interactive analytics is the confidence interval
(CI), used for computing error bounds for some quantity of interest in the result set. Asymptotic
error bounding techniques such as bootstrap Cls [23, 65, 66] or central limit theorem (CLT)-based
CIs [67, 68] make assumptions about the distribution taken by the data given a “large enough”
sample size. These procedures typically give Cls that are much tighter (and therefore more useful for
drawing inferences about the query results), and have enjoyed numerous applications in database and
visual analytics systems [4, 69, 70, 71, 72, 73], including Aqua [74], BlinkDB [3, 75], DBO [76], and
online aggregation [2], and have furthermore seen a number of DBMS-specific extensions [23, 77].

In particular, Aqua, BlinkDB, and other systems [78, 79] leverage workload characteristics to
materialize offline samples or other index structures relevant to queries ahead-of-time. Although
these workload-aware samples help speed up processing for downstream analytics tasks, they can be
less useful for ad hoc exploration, where the workload can be unpredictable.

Furthermore, all of the aforementioned asymptotic techniques yield results that only have

guaranteed error bounds w.h.p. in the limit as the size of the sample grows to infinity; i.e., they
provide no real guarantees for any given finite instance, potentially leading to failures downstream.
For example, consider a query that filters results post-aggregation via a HAVING clause. An AQP
system could use Cls to facilitate early stopping for this query by using them to infer on which side
of the HAVING threshold the various groups involved in the aggregation appear. If such a system
relies on asymptotic Cls, it lacks result safety as it is prone to two serious types of error, called
subset error and superset error [70], whereby certain tuples may be missing, and other tuples may
appear spuriously, respectively.
Sample Size-Independent Techniques. Recognizing the downsides of asymptotic approaches,
recent work [5, 6, 20, 24] has begun to adopt conservative error bounders, which leverage
concentration inequalities to compute Cls. These procedures return bounds that follow probably
approximately correct (PAC) [80] semantics: given § € [0, 1], the probability that the procedure
returns lower and upper bounds [g¢, g,] around the approximate aggregate ¢ that fail to enclose the
true aggregate g* should be at most § for any sample size (in contrast with asymptotic techniques,
for which the probability converges to § given a large enough sample). These techniques have
been applied to generate visualizations that preserve visual properties [6, 24], and for incremental
generation of time-series and heat-maps [5]. Similarly, Pangloss [81] computes approximate discrete
distributions via the Sample+Seek approach [20].

While these techniques ensure result safety by giving a guarantee on correctness that holds
independent of sample size, they can be overly conservative compared to asymptotic techniques,
taking many more samples than are necessary for the guarantee. The conservativeness of these
techniques can be explained by the fact that they must hold for worst-case data, and do not, in general,

alter their behavior for non worst-case data [82]. Some of the aforementioned techniques for visual

10



analytics are able to reduce the number of samples needed to safely terminate by using some limited
notions of data characteristics. For example, the techniques of Kim et al. [6] require fewer samples
when computing bar chart visualizations for which the heights of the bars vary greatly. We adopt
this same strategy in Chapter 5 when designing sampling-based algorithms for finding visualizations
that match a desired target, and we show in Chapter 6 how to further leverage characteristics of the
data corresponding to a single visual element (e.g., bar in a bar chart) to further reduce required

samples.

24 COMPUTATIONAL NOTEBOOKS

We now turn our attention to computational notebooks. In many cases, computational notebooks
are the preferred environment for conducting data science tasks such as exploration, visualization, and
machine learning. The popularity of notebooks can be attributed to their highly interactive nature as
well as the ease with which the cell-based execution model supports back references to and iteration on
previously submitted code, compared to simpler REPL interfaces. However, this additional flexibility
and interactivity is a double-edged sword: error-prone interactions with global notebook state are
well-documented in industry and academic communities [12, 13, 26, 83, 84, 85, 86, 87, 88, 89].

In fact, notebooks face many of the same safety challenges as iterative machine learning,
particularly associated with potential erroneous reuse of stale intermediates. Indeed, one does not
have to squint terribly hard to view a notebook as a type of “workflow”, wherein the cells constitute
workflow steps. It is thus perhaps unsurprising that prior work related to enabling safer notebook
interactions has attempted to make the dependency structure in the notebook explicit via provenance
capture, thereby augmenting notebooks with the benefits of existing tools for workflow management.

Provenance capture can be either coarse-grained, typically employed by scientific workflow
systems, e.g. [90, 91, 92, 93, 94], or fine-grained provenance as in database systems [95, 96, 97],
typically at the level of individual rows. For example, Burrito [98] tracks file and script-level
coarse-grained provenance, while noWorkflow [99, 100] additionally captures finer-grained control
flow dependencies, libraries, and environment variables in scripts as well as in computational
notebooks [101]. These systems target post-hoc analysis of fixed parameterized scripts to understand,
e.g., how changing some parameter affects the result of some experiment, but do not directly enable
safer notebook interactions.

To more directly enable safer notebook interactions, the idea of treating a notebook as a workflow
/ dataflow computation graph with interdependent cells has been studied previously [12, 13, 14, 102].
For example, Dataflow notebooks [12] make this graph explicit by allowing users to annotate cells

with their dependencies, and avoid stale usages of intermediates by forcing the re-execution of cells
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whose dependencies have changed. Nodebook [13] and the Datalore kernel [14] serialize variables
created by each cell and compare them with previously serialized values to determine whether
such values have changed and whether subsequent cells should be re-executed, thereby enforcing a
temporal ordering of cell executions. NBGATHER [84] takes a purely static approach to automatically
organize notebooks using program slicing techniques, and thereby reducing non-reproducibility
and errors due to messy notebooks. Vizier [102] attempts to combine cell versioning and data
provenance into a cohesive notebook system with an intuitive interface, while warning users of
caveats (i.e., possibly brittle assumptions that the analyst made about the data).

Despite the breadth of existing work related to safety aspects in computational notebooks,
relatively little attention has been given to the interactivity side. In many cases, additional safety
enabled by prior efforts comes at the cost of performance (e.g., in the case of solutions that serialize
intermediates, such as Nodebook or Datalore), or at the cost of flexibility (e.g., in the case of Dataflow
notebooks, which force users to assemble the dependency graph manually). Our contribution in
Chapter 7 is to provide a system that largely does not compromise on either aspect, by effectively
capturing fine-grained lineage automatically for a large class of typical notebook usage patterns,

used to prevent data scientists from executing cells that reference stale data.
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CHAPTER 3: SAFE REUSE IN MACHINE LEARNING WORKFLOWS

In this chapter, we present, HEL1x, a system for safe and interactive machine learning development.
HEeL1x is optimized for the iterative aspect of model development, and identifies intermediate reuse
opportunities by exploiting inter-iteration workflow similarities, a form of workload context. After

motivating its design, we introduce its components and evaluate it on several real ML workflows.

3.1 MOTIVATION

From emergent applications like precision medicine, voice-controlled devices, and driverless cars,
to well-established ones like product recommendations and credit card fraud detection, machine
learning continues to be the key driver of innovations that are transforming our everyday lives.
At the same time, developing machine learning applications is time-consuming and cumbersome,
thereby prompting a number of efforts to make machine learning more declarative and to speed up
the model training process [32].

However, the majority of the development time is in fact spent iterating on the machine learning
workflow by incrementally modifying steps within, including (i) preprocessing: altering data
cleaning or extraction, or engineering features; (ii) model training: tweaking hyperparameters, or
changing the objective or learning algorithm; and (iii) postprocessing: evaluating with new data, or
generating additional statistics or visualizations. These iterations are necessitated by the difficulties
in predicting the performance of a workflow a priori, due to both the variability of data and the
complexity and unpredictability of machine learning. Thus, developers must resort to iterative
modifications of the workflow via “trial-and-error” to improve performance. A recent survey
reports that less than 15% of development time is actually spent on model training [103], with the
bulk of the time spent iterating on the machine learning workflow.

One approach to address the expensive recomputation issue is for developers to explicitly
materialize all intermediates that do not change across iterations, but this requires writing code to
handle materialization and to reuse materialized results by identifying changes between iterations.
Even if this were a viable option, materialization of all intermediates is extremely wasteful, and
figuring out the optimal reuse of materialized results both difficult and error-prone. Due to the
cumbersome and unreliable nature of this approach, developers often opt to rerun the entire workflow
from scratch.

We present HELIX, a declarative, general-purpose machine learning system that optimizes across

iterations. By optimizing across iterations, HELix allows data scientists to avoid wasting time
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Figure 3.1: HeLix architecture and workflow lifecycle.

running the workflow from scratch every time they make a change and instead run their workflows

in time proportional to the complexity of the change made.

3.2 SYSTEM ARCHITECTURE

In this section, we provide a brief overview of machine learning workflows, describe the HEL1x
system architecture and present a sample workflow in HEL1x that will serve as a running example.

A machine learning (ML) workflow accomplishes a specific ML task, ranging from simple ones
like classification or clustering, to complex ones like entity resolution or image captioning. Within
HEeLix, we decompose ML workflows into three sub-tasks: data pre-processing (DPR), where raw
data is transformed into ML-compatible representations, learning/inference (L/I), where ML models
are trained and used to perform inference on new data, and postprocessing (PPR), where learned
models and inference results are processed to obtain summary metrics, create dashboards, and
power applications. We discuss specific operations in each of these tasks in Section 3.3. As we will
demonstrate, these three tasks are generic and sufficient for describing a wide variety of supervised,

semi-supervised, and unsupervised settings.

3.2.1 Components

The HEeLIx system consists of a domain specific language (DSL) in Scala as the programming

interface, a compiler for the DSL, and an execution engine, as shown in Figure 3.1(a). The three
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components work collectively to minimize the execution time for both the current iteration and

subsequent iterations:

1. Programming Interface (Section 3.3). HELix provides a single Scala interface named Workflow
for programming the entire workflow; the HELix DSL also enables embedding of imperative code in
declarative statements. Through just a handful of extensible operator types, the DSL supports a

wide range of use cases for both data pre-processing and machine learning.

2. Compilation (Sections 3.4, 3.5.1 and 3.5.2). A Workflow is internally represented as a directed
acyclic graph (DAG) of operator outputs. The DAG is compared to the one in previous iterations
to determine reusability (Section 3.4). The DAG Optimizer uses this information to produce an
optimal physical execution plan that minimizes the one-shot runtime of the workflow, by selectively

loading previous results via a Max-FLow-based algorithm (Sections 3.5.1 and 3.5.2).

3. Execution Engine (Section 3.5.3). The execution engine carries out the physical plan produced
during the compilation phase, while communicating with the materialization operator to materialize
intermediate results, to minimize runtime of future executions. The execution engine uses Spark [104]
for data processing and domain-specific libraries such as CoreNLP [45] and Deeplearning4j [105]
for custom needs. HEeL1x defers operator pipelining and scheduling for asynchronous execution to
Spark. Operators that can run concurrently are invoked in an arbitrary order, executed by Spark via
Fair Scheduling. While by default we use Spark in the batch processing mode, it can be configured
to perform stream processing using the same APIs as batch. We discuss optimizations for streaming

in Section 3.5.

3.2.2 The Workflow Lifecycle

Given the system components described in the previous section, Figure 3.1(b) illustrates how
they fit into the lifecycle of ML workflows. Starting with W}, an initial version of the workflow, the
lifecycle includes the following stages:

¢ DAG Compilation. The Workflow W; is compiled into a DAG Gy, of operator outputs.

e DAG Optimization. The DAG optimizer creates a physical plan GV‘?,f T to be executed by
pruning and ordering the nodes in Gy, and deciding whether any computation can be replaced
with loading previous results from disk.

e Materialization Optimization. During execution, the materialization optimizer determines
which nodes in G )P should be persisted to disk for future use.

e User Interaction. Upon execution completion, the user may modify the workflow from W; to
W;+1 based on the results. The updated workflow W; ., fed back to HeLix marks the beginning

of a new iteration, and the cycle repeats.
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1. object Census extends Workflow {

2. // Declare variable names (for consistent reference) omitted.

3. data refers_to new FileSource(train="dir/train.csv", test="dir/test.csv")
4

5

data is_read_into rows using CSVScanner(Array("age", "education”, ...))
ageExt refers_to FieldExtractor("age"™)
6~9. // Declare other field extractors like ageExt.
+ msExt refers_to FieldExtractor("marital_status"™)
10. target refers_to FieldExtractor("target")
11. ageBucket refers_to Bucketizer(ageExt, bins=10)
12. eduXocc refers_to InteractionFeature(Array(eduExt, occExt))
13.- rows has_extractors(eduExt, ageBucket, eduXocc, clExt, target)
+ rows has_extractors(eduExt, ageBucket, eduXocc, msExt, target)
14. income results_from rows with_labels target
_ 15, incPred refers_to new Learner(modelType="LR"", regParam=0.1)
J°16. predictions results_from incPred on income

DPR

~17. checkResults refers_to new Reducer( (preds: DataCollection) => { income income
” ‘ 18. // Scala UDF for checking prediction accuracy omitted. })
8 19. checkResults uses extractorName(rows, target) predictions ——8 predictions ——0
‘ 20. checked results_from checkResults on testData(predictions)
=21 )checked is_output() checked —8 checked —0O
22.
a) Census Workflow Program b) Optimized DAG for original workflow c) Optimized DAG for modified workflow

Figure 3.2: Example workflow for predicting income from census data.

Without loss of generality, we assume that a workflow W; is only executed once in each iteration.
We model a repeated execution of W; as a new iteration where W;; = W;. Distinguishing two
executions of the same workflow is important because they may have different run times—the second

execution can reuse results materialized in the first execution for a potential run time reduction.

3.2.3 Example Workflow

We demonstrate the usage of HELix with a simple example ML workflow for predicting income
using census data from Kohavi [106], shown in Figure 3.2(a); this workflow will serve as a
running example throughout the chapter. Details about the individual operators will be provided
in subsequent sections. We overlay the original workflow with an iterative update, with additions
annotated with + and deletions annotated with —, while the rest of the lines are retained as is. We
begin by describing the original workflow consisting of all the unannotated lines plus the line

annotated with — (deletions).

Original Workflow: DPR Steps. First, after some variable name declarations, the user defines in
line 3-4 a data collection rows read from a data source data consisting of two CSV files, one for
training and one for test data, and names the columns of the CSV files age, education, etc. In
lines 5-10, the user declares simple features that are values from specific named columns. Note
that the user is not required to specify the feature type, which is automatically inferred by HeLix
from data. In line 11 ageBucket is declared as a derived feature formed by discretizing age into ten
buckets (whose boundaries are computed by HeL1x), while line 12 declares an interaction feature,
commonly used to capture higher-order patterns, formed out of the concatenation of eduExt and

occExt.
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Once the features are declared, the next step, line 13, declares the features to be extracted from
and associated with each element of rows. Users do not need to worry about how these features are
attached and propagated; users are also free to perform manual feature selection here, studying the
impact of various feature combinations, by excluding some of the feature extractors. Finally, as last
step of data preprocessing, line 14 declares that an example collection named income is to be made
from rows using target as labels. Importantly, this step converts the features from human-readable

formats (e.g., color=red) into an indexed vector representation required for learning.

Original Workflow: L/I & PPR Steps. Line 15 declares an ML model named incPred with type
“Logistic Regression” and regularization parameter 0.1, while line 16 specifies that incPred is
to be learned on the training data in income and applied on all data in income to produce a new
example collection called predictions. Line 17-18 declare a Reducer named checkResults,
which outputs a scalar using a UDF for computing prediction accuracy. Line 19 explicitly specifies
checkResults’s dependency on target since the content of the UDF is opaque to the optimizer.
Line 20 declares that the output scalar named checked is only to be computed from the test data in

income. Lines 21 declares that checked must be part of the final output.

Original Workflow: Optimized DAG. The HeLix compiler first translates verbatim the program
in Figure 3.2(a) into a DAG, which contains all nodes including raceExt and all edges (including
the dashed edge) except the ones marked with dots in Figure 3.2(b). This DAG is then transformed
by the optimizer, which prunes away raceExt (grayed out) because it does not contribute to the
output, and adds the edges marked by dots to link relevant features to the model. DPR involves
nodes in purple, and L/I and PPR involve nodes in orange. Nodes with a drum to the right are

materialized to disk, either as mandatory output or for aiding in future iterations.

Updated Workflow: Optimized DAG. In the updated version of the workflow, a new feature named
msExt is added (below line 9), and c1Ext is removed (line 13); correspondingly, in the updated DAG,
a new node is added for msExt (green edges), while c1Ext gets pruned (pink edges). In addition,
HEeLix chooses to load materialized results for rows from the previous iteration allowing data to be
pruned, avoiding a costly parsing step. HELix also loads ageBucket instead of recomputing the
bucket boundaries requiring a full scan. HeLix materializes predictions in both iterations since
it has changed. Although predictions is not reused in the updated workflow, its materialization
has high expected payoff over iterations because PPR iterations (changes to checked in this case)
are very common in real machine learning development [107]. This example illustrates that

e Nodes selected for materialization lead to significant speedup in subsequent iterations.

e HEeLix reuses results safely, deprecating old results when changes are detected (e.g., predictions

is not reused because of the model change).

e HEeLix correctly prunes away extraneous operations via dataflow analysis.
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3.3  PROGRAMMING INTERFACE

To program ML workflows with high-level abstractions, HELix users program in a language called
HML, an embedded DSL in Scala. An embedded DSL exists as a library in the host language (Scala
in our case), leading to seamless integration. LINQ [108], a data query framework integrated in
NET languages, is another example of an embedded DSL. In HEL1x, users can freely incorporate
Scala code for user-defined functions (UDFs) directly into HML. JVM-based libraries can be
imported directly into HML to support application-specific needs. Development in other languages

can be supported with wrappers in the same style as PySpark [109].

3.3.1 Operations in ML Workflows

In this section, we argue that common operations in ML workflows can be decomposed into a
small set of basis functions I. We first introduce J and then enumerate its mapping onto operations
in Scikit-learn [43], one of the most comprehensive ML libraries, thereby demonstrating coverage.
In Section 3.3.2, we introduce HML, which implements the capabilities offered by J.

As mentioned in Section 3.2, an ML workflow consists of three components: data preprocessing
(DPR), learning/inference (L/I), and postprocessing (PPR). They are captured by the Transformer,
Estimator, and Predictor interfaces in Scikit-learn, respectively. Similar interfaces can be found in
many ML libraries, such as MLLib [42], TFX [47], and KeystoneML.

Data Representation. Conventionally, the input space to ML, X, is a d -dimensional vector space,
R?,d > 1, where each dimension corresponds to a feature. Each datapoint is represented by a
feature vector (FV), x € R4 For notational convenience, we denote a d-dimensional FV, x € R4,
as xY. While inputs in some applications can be easily loaded into FVs, e.g., images are 2D
matrices that can be flattened into a vector, many others require more complex transformations, e.g.,
vectorization of text requires tokenization and word indexing. We denote the input dataset of FVs to

an ML algorithm as D.
DPR. The goal of DPR is to transform raw input data into D. We use the term record, denoted

by r, to refer to a data object in formats incompatible with ML, such as text and JSON, requiring
preprocessing. Let & = {r} be a data source, e.g., a csv file, or a collection of text documents. DPR
includes transforming records from one or more data sources from one format to another or into FVs
R?’; as well as feature transformations (from R¢ to R¢"). DPR operations can thus be decomposed
into the following categories:

e Parsing r — (r1,1,,...): transforming a record into a set of records, e.g., parsing an article

into words via fokenization.
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Join (ry,ra,...) — r: combining multiple records into a single record, where r; can come from

different data sources.

Feature Extraction r +— x4

: extracting features from a record.

Feature Transformation T : x? — x?': deriving a new set of features from the input features.

Feature Concatenation (x%',x%,...) + x>i % concatenating features extracted in separate

operations to form an FV.
Note that sometimes these functions need to be learned from the input data. For example, discretizing
a continuous feature x; into four even-sized bins requires the distribution of x;, which is usually
estimated empirically by collecting all values of x; in D. We address this use case along with L/I

next.

L/I. Atahigh-level, L/Iis about learning a function f from the input D, where f : X — R?',d’ > 1.
This is more general than learning ML models, and also includes feature transformation functions
mentioned above. The two main operations in L/I are 1) learning, which produces functions using
data from D, and 2) inference, which uses the function obtained from learning to draw conclusions
about new data. Complex ML tasks can be broken down into simple learning steps captured by
these two operations, e.g., image captioning can be broken down into object identification via
classification, followed by sentence generation using a language model [110]. Thus, L/I can be
decomposed into:

e Learning D +— f: learning a function f from the dataset D.

e Inference (D, f) — Y: using the ML model f to infer feature values, i.e., labels, Y from the

input FVs in D.

Note that labels can be represented as FVs like other features, hence the usage of a single D in
learning to represent both the training data and labels to unify the abstraction for both supervised

and unsupervised learning and to enable easy model composition.

PPR. Finally, a wide variety of operations can take place in PPR, using the learned models and
inference results from L/I as input, including model evaluation, data visualization, and other
application-specific activities. The most commonly supported PPR operations in general purpose
ML libraries are model evaluation and model selection, which can be represented by a computation
whose output does not depend on the size of the data ‘D. We refer to a computation with output
sizes independent of input sizes as a reduce:
e Reduce (D,s’) — s: applying an operation on the input dataset D and s’, where s’ can
be any non-dataset object. For example, s’ can store a set of hyperparameters over which
reduce optimizes, learning various models and outputting s, which can represent a function

corresponding to the model with the best cross-validated hyperparameters.
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| Scikit-learn DPR, L/I

Composed Members of I

fit (X[, yD

learning (D +— f)

predict_proba(X)

inference (D, f) — Y)

predict (X)

inference, optionally followed by trans-
formation

fit_predict(X[, v1)

learning, then inference

transform(X)

transformation or inference, depending
on whether operation is learned via prior
call to fit

fit_transform(X)

learning, then inference

\ Scikit-learn PPR

Composed Members of

|

eval: score(Yirue, Ypred)

JoinYsrye and ¥, 4 into a single dataset
D, then reduce

eval: score(op, X, y)

inference, then join, then reduce

selection: fit(py,..., pn)

reduce, implemented in terms of learn-
ing, inference, and reduce (for scoring)

Table 3.1: Scikit-learn DPR, L/I, and PPR coverage in terms of .

Comparison with Scikit-learn

A dataset in Scikit-learn is represented as a matrix of FVs, denoted by X. This is conceptually
equivalent to D = {x?} introduced earlier, as the order of rows in X is not relevant. Operations in
Scikit-learn are categorized into dataset loading and transformations, learning, and model selection
and evaluation [111]. Operations like loading and transformations that do not tailor their behavior
to particular characteristics present in the dataset D map trivially onto the DPR basis functions € &

introduced at the start of Section 3.3.1, so we focus on comparing data-dependent DPR and L/I, and

model selection and evaluation.

Scikit-learn Operations for DPR and L/I. Scikit-learn objects for DPR and L/I implement one or

more of the following interfaces [112]:

¢ Estimator, used to indicate that an operation has data-dependent behavior via a fit (X[, y1)

method, where X contains FVs or raw records, and y contains labels if the operation represents a

supervised model.

e Predictor, used to indicate that the operation may be used for inference via a predict (X)
method, taking a matrix of FVs and producing predicted labels. Additionally, if the operation

implementing Predictor is a classifier for which inference may produce raw floats (interpreted as

probabilities), it may optionally implement predict_proba.

e Transformer, used to indicate that the operation may be used for feature transformations via a

transform(X) method, taking a matrix of FVs and producing a new matrix X,y .
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An operation implementing both Estimator and Predictor has a fit_predict method, and an
operation implementing both Estimator and Transformer has a fit_transform method, for when
inference or feature transformation, respectively, is applied immediately after fitting to the data. The
rationale for providing a separate Estimator interface is likely due to the fact that it is useful for
both feature transformation and inference to have data-dependent behavior determined via the result
of a call to fit. For example, a useful data-dependent feature transformation for a Naive Bayes
classifier maps word tokens to positions in a sparse vector and tracks word counts. The position
mapping will depend on the vocabulary represented in the raw training data. Other examples of
data-dependent transformations include feature scaling, descretization, imputation, dimensionality

reduction, and kernel transformations.

Coverage in terms of basis functions F. The first part of Table 3.1 summarizes the mapping from
Scikit-learn’s interfaces for DPR and L/I to (compositions of) basis functions from J. In particular,
note that there is nothing special about Scikit-learn’s use of separate interfaces for inference (via
Predictor) and data-dependent transformations (via Transformer); the separation exists mainly to

draw attention to the semantic separation between DPR and L/I.

Scikit-learn Operations for PPR. Scikit-learn interfaces for operations implementing model
selection and evaluation are not as standardized as those for DPR and L/I. For evaluation, the
typical strategy is to define a simple function that compares model outputs with labels, computing
metrics like accuracy or F; score. For model selection, the typical strategy is to define a class that
implements methods fit and score. The fit method takes a set of hyperparameters over which
to search, with different models scored according to the score method (with identical interface as
for evaluation in Scikit-learn). The actual model over which hyperparameter search is performed is

implemented by an Estimator that is passed into the model selection operation’s constructor.

Coverage in terms of basis functions F. As summarized in the second part of Table 3.1, Scikit-learn’s
operations for evaluation may be implemented via compositions of (optionally) inference, joining,
and reduce € F. Model selection may be implemented via a reduce that internally uses learning basis
functions to learn models for the set of hyperparameters specified by s’, followed by composition

with inference and another reduce € J for scoring, eventually returning the final selected model.

3.3.2 HML

HML is a declarative language for specifying an ML workflow DAG. The basic building blocks
of HML are HEL1x objects, which correspond to the nodes in the DAG. Each HELix object is either
a data collection (DC) or an operator. Statements in HML either declare new instances of objects

or relationships between declared objects. Users program the entire workflow in a single Workflow
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interface, as shown in Figure 3.2a). The complete grammar for HML in Backus-Naur Form as
well as the semantics of all of the expressions can be found in Appendix B. Here, we describe
high-level concepts including DCs and operators and discuss the strengths and limitations of HML

in Section 3.3.3.

Data Collections

A data collection (DC) is analogous to a relation in a RDBMS; each element in a DC is analogous
to a tuple. The content of a DC either derives from disk, e.g., data in Line 3 in Figure 3.2(a), or
from operations on other DCs, e.g., rows in Line 4 in Figure 3.2(a). An element in a DC can either
be a semantic unit, the data structure for DPR, or an example, the data structure for L/I.

A DC can only contain a single type of element. DCsyy and DCg denote a DC of semantic units
and a DC of examples, respectively. The type of elements in a DC is determined by the operator that
produced the DC and not explicitly specified by the user. We elaborate on the relationship between

operators and element types in Section 3.3.2, after introducing the operators.

Semantic units. Recall that many DPR operations require going through the entire dataset to
learn the exact transformation or extraction function. For a workflow with many such operations,
processing D to learn each operator separately can be highly inefficient. We introduce the notion of
semantic units (SU) to compartmentalize the logical and physical representations of features, so that
the learning of DPR functions can be delayed and batched.

Formally, each SU contains an input i, which can be a set of records or FVs, a pointer to a DPR
function f, which can be of type parsing, join, feature extraction, feature transformation, or feature
concatenation, and an output o, which can be a set of records or FVs and is the output of f oni. The
variables i and f together serve as the semantic, or logical, representation of the features, whereas o

is the lazily evaluated physical representation that can only be obtained after f is fully instantiated.

Examples. Examples gather all the FVs contained in the output of various SUs into a single FV for
learning. Formally, an example contains a set of SUs S, and an optional pointer to one of the SUs
whose output will be used as the label in supervised settings, and an output FV, which is formed by
concatenating the outputs of S. In the implementation, the order of SUs in the concatenation is

determined globally across D, and SUs whose outputs are not FVs are filtered out.

Sparse vs. Dense Features. The combination of SUs and examples affords HeLix a great deal
of flexibility in the physical representation of features. Users can explicitly program their DPR
functions to output dense vectors, in applications such as computer vision. For sparse categorical
features, they are kept in the raw key-value format until the final FV assembly, where they are

transformed into sparse or dense vectors depending on whether the ML algorithm supports sparse
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representations. Note that users do not have to commit to a single representation for the entire
application, since different SUs can contain different types of features. When assembling a mixture
of dense and spare FVs, HELix currently opts for a dense representation but can be extended to

support optimizations considering space and time tradeoffs.

Unified learning support. HML provides unified support for training and test data by treating
them as a single DC, as done in Line 4 in Figure 3.2(a). This design ensures that both training and
test data undergo the exact same data pre-processing steps, eliminating bugs caused by inconsistent
data pre-processing procedures handling training and test data separately. HeLix automatically
selects the appropriate data for training and evaluation. However, if desired, users can handle
training and test data differently by specifying separate DAGs for training and testing. Common

operators can be shared across the two DAGs without code duplication.

Operators

Operators in HEL1x are designed to cover the functions enumerated in Section 3.3.1, using the
data structures introduced above. A HELIX operator takes one or more DCs and outputs DCs, ML
models, or scalars. Each operator encapsulates a function f, written in Scala, to be applied to
individual elements in the input DCs. As noted above, f can be learned from the input data
or user defined. Like in Scikit-learn, HML provides off-the-shelf implementations for common
operations for ease of use. We describe the relationships between operator interfaces in HML and &

enumerated in Section 3.3.1 below.

Scanner. Scanner is the interface for parsing € J and acts like a flatMap, i.e., for each input
element, it adds zero or more elements to the output DC. Thus, it can also be used to perform
filtering. The input and output of Scanner are DCgys. CSVScanner in Line 4 of Figure 3.2(a) is an

example of a Scanner that parses lines in a CSV file into key-value pairs for columns.

Synthesizer. Synthesizer supports join € J, for elements both across multiple DCs and within
the same DC. Thus, it can also support aggregation operations such as sliding windows in time
series. Synthesizers also serve the important purpose of specifying the set of SUs that make up an
example (where output FVs from the SUs are automatically assembled into a single FV). In the
simple case where each SU in a DCgy corresponds to an example, a pass-through synthesizer is
implicitly declared by naming the output DCg, such as in Line 14 of Figure 3.2(a).

Learner. Learner is the interface for learning and inference € J, in a single operator. A learner
operator L contains a learned function f, which can be populated by learning from the input data
or loading from disk. f can be an ML model, but it can also be a feature transformation function

that needs to be learned from the input dataset. When f is empty, L learns a model using input data
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designated for model training; when f is populated, L performs inference on the input data using
f and outputs the inference results into a DCg. For example, the learner incPred in Line 15 of
Figure 3.2(a) is a learner trained on the “train” portion of the DCg income and outputs inference

results as the DCg predictions.

Extractor. Extractor is the interface for feature extraction and feature transformation € F. Extractor
contains the function f applied on the input of SUs, thus the input and output to an extractor are
DCgys. For functions that need to be learned from data, Extractor contains a pointer to the learner

operator for learning f .

Reducer. Reducer is the interface for reduce € J and thus the main operator interface for PPR.
The inputs to a reducer are DCg and an optional scalar and the output is a scalar, where scalars
refer to non-dataset objects. For example, checkResults in Figure 3.2(a) Line 17 is a reducer that

computes the prediction accuracy of the inference results in predictions.

3.3.3 Scope and Limitations

Coverage. In Section 3.3.1, we described how the set of basis operations I we propose covers all
major operations in Scikit-learn, one of the most comprehensive ML libraries. We then showed in
Section 3.3.2 that HML captures all functions in . While HML’s interfaces are general enough to
support all the common use cases, users can additionally manually plug into our interfaces external
implementations, such as from MLLib [42] and Weka [39], of missing operations. Note that we
provide utility functions that allow functions to work directly with raw records and FVs instead
of HML data structures to enable direct application of external libraries. For example, since all
MLLib models implement the train (equivalent to learning) and predict (equivalent to inference)
methods, they can easily be plugged into Learner in HELix. We demonstrate in Section 3.6 that
the current set of implemented operations is sufficient for supporting applications across different

domains.

Limitations. Since HeLix currently relies on its Scala DSL for workflow specification, popular
non-JVM libraries, such as TensorFlow [33] and Pytorch [113], cannot be imported easily without
significantly degrading performance compared to their native runtime environment. Developers
with workflows implemented in other languages will need to translate them into HML, which should
be straightforward due to the natural correspondence between HELix operators and those in standard
ML libraries, as established in Section 3.3.2. That said, our contributions in materialization and
reuse apply across all languages. In the future, we plan on abstracting the DAG representation in
HEeLix into a language-agnostic system that can sit below the language layer for all DAG based

systems, including TensorFlow, Scikit-learn, and Spark.
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The other downside of HML is that ML models are treated largely as black boxes. Thus, work on
optimizing learning, e.g. [114, 115], orthogonal to (and can therefore be combined with) our work,

which operates at a coarser granularity.

3.4 COMPILATION AND REPRESENTATION

In this section, we describe the Workflow DAG, the abstract model used internally by HeLix to
represent a Workflow program. The Workflow DAG model enables operator-level change tracking

between iterations and end-to-end optimizations.

3.4.1 The Workflow DAG

At compile time, HELIX s intermediate code generator constructs a Workflow DAG from HML
declarations, with nodes corresponding to operator outputs, (DCs, scalars, or ML. models), and

edges corresponding to input-output relationships between operators.

Definition 3.1. For a Workflow W containing HeLix operators F = { f;}, the Workflow DAG is
a directed acyclic graph Gy = (N, E), where node n; € N represents the output of f; € F and
(nj,nj) € E if the output of f; is an input to f;.

Figure 3.2(b) shows the Workflow DAG for the program in Figure 3.2(a). Nodes for operators
involved in DPR are colored purple whereas those involved in L/I and PPR are colored orange.
This transformation is straightforward, creating a node for each declared operator and adding
edges between nodes based on the linking expressions, e.g., A results_from B creates an edge
(B, A). Additionally, the intermediate code generator introduces edges not specified in the Workflow
between the extractor and the synthesizer nodes, such as the edges marked by dots (e) in Figure 3.2(b).
These edges connect extractors to downstream DCs in order to automatically aggregate all features
for learning. One concern is that this may lead to redundant computation of unused features; we

describe pruning mechanisms to address this issue in Section 3.5.4.

3.4.2 Tracking Changes

As described in Section 3.2.2, a user starts with an initial workflow W, and iterates on this
workflow. Let W; be the version of the workflow at iteration # > 0 with the corresponding DAG
Gy = (Nt, E;); W;41 denotes the workflow obtained in the next iteration. To describe the changes

between W, and W, ., we introduce the notion of equivalence.
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Definition 3.2. A node n! € N, is equivalent to n'*' € N,y1, denoted as nt = n'™', ifa) the

1

operators corresponding to nt and n§+ compute identical results on the same inputs and b)

n' =nT'V n' € parents(n}),n’*' € parents(ni*'). We say n{*' € N,y is original if it has
no equivalent node in Nj.

Equivalence is symmetric, i.e., n!’ = n! & n! = n!, and transitive, i.e., (n! = n!’ An! =
nﬁﬁ) = ni = nﬁ”. Newly added operators in W;; do not have equivalent nodes in W;; neither do
nodes in W; that are removed in W; . For a node that persists across iterations, we need both
the operator and the ancestor nodes to stay the same for equivalence. Using this definition of
equivalence, we determine if intermediate results on disk can be safely reused through the notion of

equivalent materialization:

Definition 3.3. A node n! € N; has an equivalent materialization if nﬁ/ is stored on disk, where
t' <tand nf./ = nl.

One challenge in determining equivalence is deciding whether two versions of an operator
compute the same results on the same input. For arbitrary functions, this is undecidable as proven by
Rice’s Theorem [116]. The programming language community has a large body of work on verifying
operational equivalence for specific classes of programs [117, 118, 119]. HeLix currently employs
a simple representational equivalence verification—an operator remains equivalent across iterations
if its declaration in the DSL is not modified and all of its ancestors are unchanged. Incorporating
more advanced techniques for verifying equivalence is future work.

To guarantee correctness, i.e., results obtained at iteration ¢ reflect the specification for W; and

are computed from the appropriate input, we impose the constraint:

t+1

Constraint 3.1. At iteration t + 1, if an operator n;™ " is original, it must be recomputed.

With Constraint 3.1, our current approach to tracking changes yields the following guarantee on

result correctness:

Theorem 3.1. HeLix returns the correct results if the changes between iterations are made only
within the programming interface, i.e., all other factors, such as library versions and files on disk,

stay invariant, i.e., unchanged, between executions at iteration t and t + 1.

Proof. First, note that the results for W, are correct since there is no reuse at iteration 0. Suppose

for contradiction that given the results at ¢ are correct, the results at iteration ¢ + 1 are incorrect, i.e.,

t+1

I n!i*! s.t. the results for n’ are reused when n*! is original. Under the invariant conditions in

Theorem 3.1, we can only have n§+1 # n} if the code for n; changed or the code changed for an

ancestor of n;. Since HEL1x detects all code changes, it identifies all original operators. Thus, for

t+1
i

the results to be incorrect in HELix, we must have reused nf for some original n;"". However, this

violates Constraint 3.1. Therefore, the results for W; are correct V ¢t > 0.
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3.5 OPTIMIZATION

In this section, we describe HELix’s workflow-level optimizations, motivated by the observation
that workflows often share a large amount of intermediate computation between iterations; thus,
if certain intermediate results are materialized at iteration 7, these can be used at iteration ¢ + 1.
We identify two distinct sub-problems: Op1-Exec-PLAN, which selects the operators to reuse given
previous materializations (Section 3.5.2), and Op-MAT-PLAN, which decides what to materialize to
accelerate future iterations (Section 3.5.3). We finally discuss pruning optimizations to eliminate

redundant computations (Section 3.5.4). We begin by introducing common notation and definitions.

3.5.1 Preliminaries

When introducing variables below, we drop the iteration number ¢ from W; and G}, when we are

considering a static workflow.

Operator Metrics. In a Workflow DAG Gy = (N, E), each node n; € N corresponding to the
output of the operator f; is associated with a compute time c¢;, the time it takes to compute 7; from
inputs in memory. Once computed, n; can be materialized on disk and loaded back in subsequent
iterations in time /;, referred to as its load time. If n; does not have an equivalent materialization as
defined in Definition 3.3, we set /; = oco. Root nodes in the Workflow DAG, which correspond to
data sources, have [; = ¢;.
Operator State. During the execution of workflow W, each node n; assumes one of the following
states:

e Load, or S, if n; is loaded from disk;

e Compute, or S., n; is computed from inputs;

e Prune, or Sy, if n; is skipped (neither loaded nor computed).
Let s(n;) € {S1,S¢, Sp} denote the state of each n; € N. To ensure that nodes in the Compute state
have their inputs available, i.e., not pruned, the states in a Workflow DAG Gy = (N, E) must

satisfy the following execution state constraint:

Constraint 3.2. Foranoden; € N, if s(n;) = S, then s(n;j) # S, for everyn; € parents(n;).

Workflow Run Time. A node n; in state S., S;, or S, has run time ¢;, /;, or 0, respectively. The

total run time of W w.r.t. s is thus

TW.s) =) Tis(u) = Seyei +Tis(n) = S} 3.
n;eN

where I {} is the indicator function.
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Clearly, setting all nodes to S, trivially minimizes Equation (3.1). However, recall that
Constraint 3.1 requires all original operators to be rerun. Thus, if an original operator n; is introduced,
we must have s(n;) = S., which by Constraint 3.2 requires that S(n;) # S, Vn; € parents(n;).
Deciding whether to load or compute the parents can have a cascading effect on the states of their

ancestors. We explore how to determine the states for each nodes to minimize Equation (3.1) next.

3.5.2 Optimal Execution Plan

The Optimal Execution Plan (OEP) problem is the core problem solved by HELix’s DAG optimizer,
which determines at compile time the optimal execution plan given results and statistics from

previous iterations.

Problem 3.1. (Opr-Exec-PraNn) Given a Workflow W with DAG Gy = (N, E), the compute time
and the load time c;,l; for each n; € N, and a set of previously materialized operators M, find a
state assignment s : N — {S¢, S1, Sp} that minimizes T (W, s) while satisfying Constraint 3.1 and
Constraint 3.2.

Let T*(W) be the minimum execution time achieved by the solution to OEP, i.e.,
T*(W) = min T(W,s) (3.2)
N

Since this optimization takes place prior to execution, we must resort to operator statistics from past
iterations. This does not compromise accuracy because if a node n; has an equivalent materialization
as defined in Definition 3.2, we would have run the exact same operator before and recorded
accurate c; and l;. A node n; without an equivalent materialization, such as a model with changed
hyperparameters, needs to be recomputed (Constraint 3.1).

Deciding to load certain nodes can have cascading effects since ancestors of a loaded node can
potentially be pruned, leading to large reductions in run time. On the other hand, Constraint 3.2
disallows the parents of computed nodes to be pruned. Thus, the decisions to load a node n; can
be affected by nodes outside of the set of ancestors to n;. For example, in the DAG on the left in
Figure 3.3, loading n5 allows n,_¢ to be potentially pruned. However, the decision to compute ng,
possibly arising from the fact that /g > cg, requires that 75 must not be pruned.

Despite such complex dependencies between the decisions for individual nodes, Problem 3.1
can be solved optimally in polynomial time through a linear time reduction to the project-selection

problem (PSP), which is an application of Max-Frow [120].

Problem 3.2. Pros-SeLection-ProBLEM (PSP) Let P be a set of projects. Each projecti € P has
a real-valued profit p; and a set of prerequisites Q C P. Select a subset A C P such that all
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Figure 3.3: Transforming a Workflow DAG to a set of projects and dependencies. Checkmarks (v') in the
RHS DAG indicate a feasible solution to PSP, which maps onto the node states (S,, S¢, S;) in the LHS DAG.

prerequisites of a projecti € A are also in A and the total profit of the selected projects, Y, 4 Di,

is maximized.

Reduction to the Project Selection Problem. We can reduce an instance of Problem 3.1 x to
an equivalent instance of PSP y such that the optimal solution to y maps to an optimal solution
of x. Let G = (N, E) be the Workflow DAG in x, and P be the set of projects in y. We can
visualize the prerequisite requirements in y as a DAG with the projects as the nodes and an edge
(j, 1) indicating that project i is a prerequisite of project j. The reduction, ¢, depicted in Figure 3.3
for an example instance of x, is shown in Algorithm 3.1. For each node n; € N, we create two
projects in PSP: a; with profit —/; and b; with profit /; — ¢;. We set a; as the prerequisite for b;.
For an edge (n;,n;) € E, we set the project a; corresponding to node n; as the prerequisite for
the project b; corresponding to node n;. Selecting both projects a; and b; corresponding to n; is
equivalent to computing n;, i.e., s(n;) = S., while selecting only a; is equivalent to loading n;, i.e.,
s(n;) = S;. Nodes with neither projects selected are pruned. An example solution mapping from
PSP to OEP is shown in Figure 3.3. Projects a4, as, ag, bg, a7, b7, ag are selected, which cause
nodes n4, 15, ng to be loaded, ng and n; to be computed, and n, n,, n3 to be pruned.

Overall, the optimization objective in PSP models the “savings” in OEP incurred by loading
nodes instead of computing them from inputs. We create an equivalence between cost minimization
in OEP and profit maximization in PSP by mapping the costs in OEP to negative profits in PSP. For
a node n;, picking only project a; (equivalent to loading n;) has a profit of —/;, whereas picking
both a; and b; (equivalent to computing 7;) has a profit of —I; 4+ (/; — ¢;) = —c;. The prerequisites
established in Line 7 that require a; to also be picked if b; is picked are to ensure correct cost to

profit mapping. The prerequisites established in Line 9 corresponds to Constraint 3.2. For a project
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Algorithm 3.1: OEP via Reduction to PSP
Input: Gy = (N, E), {l;},{ci}

1 P« o

2 forn; € N do

3 P <« P U{a;}; // Create a project aq;
4 profitla;] < —1; ; // Set profit of a; to —[;
5 P <~ PU{b}; // Create a project b;
6 profitlb;l < l; —c; ; // Set profit of b; to [; —¢;

// Add a; as prerequisite for b;.;
prerequisitelb;] < prerequisite[b;] U a;;
8 for (n;,n;) € {edges leaving from n;} C E do
// Add a; as prerequisite for b;.;
9 prerequisitelb;] <— prerequisitelb;] U a;;
10 end
11 end

// A is the set of projects selected by PSP;
12 A< PSP(P, profit[], prerequisitel]);

2

13 forn; € N do // Map PSP solution to node states
14 if a; € A and b; € A then

15 ‘ s[n;] < S¢;

16 end

17 elseif a; € A and b; ¢ A then

18 ‘ s[ni] < Si;

19 end

20 else

21 ‘ s[ni] < S,;

22 end

23 end

24 return s[] ; // State assignments for nodes in Gy .

b; to be picked, we must pick every a; corresponding to each parent n; of n;. If it is impossible
(l; = 00) or costly to load n;, we can offset the load cost by picking b; for computing ;. However,
computing n; also requires its parents to be loaded or computed, as modeled by the outgoing edges
from b;. The fact that a; projects have no outgoing edges corresponds to the fact loading a node

removes its dependency on all ancestor nodes.

Theorem 3.2. Given an instance of Opr-Exec-PLAN X, the reduction in Algorithm 3.1 produces a

feasible and optimal solution to x.

See Appendix A.1 for the proof.
Computational Complexity. For aWorkflow DAG Gy = (Nw, Ew) in OEP, the reduction above
results in O (| Ny |) projects and O (|Ew|) prerequisite edges in PSP. PSP has a straightforward
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linear reduction to Max-FLow [120]. We use the Edmonds-Karp algorithm [121] for Max-Frow,
which runs in time © (|NW| | Ew|?).

Impact of change detection precision and recall. The optimality of our algorithm for OEP
assumes that the changes between iteration # and # + 1 have been identified perfectly. In reality, this
maybe not be the case due to the intractability of change detection, as discussed in Section 3.4.2. An
undetected change is a false negative in this case, while falsely identifying an unchanged operator as
deprecated is a false positive. A detection mechanism with high precision lowers the chance of
unnecessary recomputation, whereas anything lower than perfect recall leads to incorrect results.
In our current approach, we opt for a detection mechanism that guarantee correctness under mild

assumptions, at the cost of some false positives suchasa + b # b + a.

3.5.3 Optimal Materialization Plan

The Op-MAT-PLAN (OMP) problem is tackled by HELix’s materialization optimizer: while
running workflow W; at iteration #, intermediate results are selectively materialized for the purpose
of accelerating execution in iterations > 7. We now formally introduce OMP and show that it is
NP-HARD even under strong assumptions. We propose an online heuristic for OMP that runs in
linear time and achieves good reuse rate in practice (as we will show in Section 3.6), in addition to

minimizing memory footprint by avoiding unnecessary caching of intermediate results.

Materialization cost. We let s; denote the storage cost for materializing n;, representing the size
of n; on disk. When loading n; back from disk to memory, we have the following relationship
between load time and storage cost: /; = s;/(disk read speed). For simplicity, we also assume
the time to write n; to disk is the same as the time for loading it from disk, i.e., /;. We can easily
generalize to the setting where load and write latencies are different.

To quantify the benefit of materializing intermediate results at iteration # on subsequent iterations,
we formulate the materialization run time Tyy (W;) to capture the tradeoff between the additional
time to materialize intermediate results and the run time reduction in iteration r 4+ 1. Although
materialized results can be reused in multiple future iterations, we only consider the (¢ 4+ 1)th
iteration since the total number of future iterations, 7, is unknown. Since modeling 7T is a complex

open problem, we defer the amortization model to future work.

Definition 3.4. Given a workflow Wy, operator metrics c;, l;, s; for every n; € Ny, and a subset of

nodes M C N;, the materialization run time is defined as

TuWo) = D I+ T*Wes1) (3.3)
nieEM
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where Zn,» ey i is the time to materialize all nodes selected for materialization, and T*(W;) is the

optimal workflow run time obtained using the algorithm in Section 3.5.2, with M materialized.

Equation (3.3) defines the optimization objective for OMP.

Problem 3.3. (Opr-Ma1-Pran) Given a Workflow W; with DAG G}, = (Ny, E;) at iteration t and
a storage budget S, find a subset of nodes M C N, to materialize at t in order to minimize Ty (W),

while satisfying the storage constraint Zn,» em Si = S.

Let M ™ be the optimal solution to OMP, i.e.,

argmin Z I + T*(W11) (3.4)
MEN; nieM

As discussed in [107], there are many possibilities for W; 1, and they vary by application domain.
User modeling and predictive analysis of W itself is a substantial research topic that we will
address in future work. This user model can be incorporated into OMP by using the predicted
changes to better estimate the likelihood of reuse for each operator. However, even under very
restrictive assumptions about W, 1, we can show that Op-MAT-PLAN is NP-HARD, via a simple

reduction from the KnapPsack problem.
Theorem 3.3. Opr-MaT1-PrAN is NP-hard.

See Appendix A.2 for the proof.

Streaming constraint. Even when W, is known, solving OpT-MAT-PLAN optimally requires
knowing the run time statistics for all operators, which can be fully obtained only at the end of
the workflow. Deferring materialization decisions until the end requires all intermediate results to
be cached or recomputed, which imposes undue pressure on memory and cripples performance.
Unfortunately, reusing statistics from past iterations as in Section 3.5.2 is not viable here because
of the cold-start problem—materialization decisions need to be made for new operators based on
realistic statistics. Thus, to avoid slowing down execution with high memory usage, we impose the

following constraint.

Definition 3.5. Given a Workflow DAG G, = (N, E), n; € N is out-of-scope at runtime if all

children of n; have been computed or reloaded from disk, thus removing all dependencies on n;.

Constraint 3.3. Once n; becomes out-of-scope, it is either materialized immediately or removed

from cache.

OMP Heuristics. We now describe the heuristic employed by HEL1x to approximate OMP while
satisfying Constraint 3.3.
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Algorithm 3.2: Streaming OMP
Data: G, = (N, E), {l;},{c;}, {s;}, storage budget S
1 M <« &
2 while Workflow is running do
3 O <« FindOutOfScope(N);
4 forn; € O do
5 if C(l’l,) > 21, and S -85 = 0 then
6
7
8
9

Materialize n;;
M <~ M U {n;};
S« S - S;

end

10 end
11 end

Definition 3.6. Given Workflow DAG G,, = (N, E), the cumulative run time for a node n; is
defined as

Cn)=tn)+ >t (3.5)

nj€ancestors(n;)

where t(n;) = I{s(n;) = Sc}ci +1{s(n;) = Si}1;.
Algorithm 3.2 shows the heuristics employed by HELIX s materialization optimizer to decide what
intermediate results to materialize. In essence, Algorithm 3.2 decides to materialize if twice the
load cost is less than the cumulative run time for a node. The intuition behind this algorithm is that
assuming loading a node allows all of its ancestors to be pruned, the materialization time in iteration
¢ and the load time in iteration # 4+ 1 combined should be less than the total pruned compute time,
for the materialization to be cost effective.

Note that the decision to materialize does not depend on which ancestor nodes have been previously
materialized. The advantage of this approach is that regardless of where in the workflow the changes
are made, the reusable portions leading up to the changes are likely to have an efficient execution
plan. That is to say, if it is cheaper to load a reusable node »; than to recompute, Algorithm 3.2
would have materialized n; previously, allowing us to make the right choice for n;. Otherwise,
Algorithm 3.2 would have materialized some ancestor n; of n; such that loading n; and computing
everything leading to n; is still cheaper than simply loading n;.

Due to the streaming Constraint 3.3, complex dependencies between descendants of ancestors
such as the one between ns and ng in Figure 3.3 previously described in Section 3.5.2, are ignored
by Algorithm 3.2—we cannot retroactively update our decision for n5 after ng has been run. We

show in Section 3.6 that this simple algorithm is effective in multiple application domains.
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Limitations of Streaming OMP. The streaming OMP heuristic given in Algorithm 3.2 can behave
poorly in pathological cases. For one simple example, consider a workflow given by a chain DAG
of m nodes, where node n; (starting from i = 1) is a prerequisite for node n; ;. If node n; has
[; =i and ¢; = 3, for all i, then Algorithm 3.2 will choose to materialize every node, which has
storage costs of O (mz) whereas a smarter approach would only materialize later nodes and perhaps
have storage cost O (m). If storage is exhausted because Algorithm 3.2 persists too much early on,
this could easily lead to poor execution times in later iterations. We did not observe this sort of
pathological behavior in our experiments.

Mini-Batches. In the stream processing (to be distinguished from the streaming constraint in
Constraint 3.3) where the input is divided into mini batches processed end-to-end independently,
Algorithm 3.2 can be adapted as follows: 1) make materialization decisions using the load and
compute time for the first mini batch processed end-to-end; 2) reuse the same decisions for all
subsequent mini batches for each operator. This approach avoids dataset fragmentation that
complicates reuse for different workflow versions. We plan on investigating other approaches for

adapting HeLix for stream processing in future work.

3.5.4 Workflow DAG Pruning

In addition to reusing intermediate result, HELix further reduces overall workflow execution time
by time by pruning extraneous operators from the Workflow DAG.

HeLix performs pruning by applying program slicing on the Workflow DAG. In a nutshell, HEL1x
traverses the DAG backwards from the output nodes and prunes away any nodes not visited in
this traversal. Users can explicitly guide this process in the programming interface through the
has_extractors and uses keywords, described in Table B.1 (see Appendix B). An example of
an Extractor pruned in this fashion is raceExt(grayed out) in Figure 3.2(b), as it is excluded from
the rows has_extractors statement. This allows users to conveniently perform manual feature
selection using domain knowledge.

HEevLix provides two additional mechanisms for pruning operators other than using the lack of
output dependency, described next.

Data-Driven Pruning. Furthermore, HELix inspects relevant data to automatically identify
operators to prune. The key challenge in data-driven pruning is data lineage tracking across the
entire workflow. For many existing systems, it is difficult to trace features in the learned model
back to the operators that produced them. To overcome this limitation, HELix performs additional
provenance bookkeeping to track the operators that led to each feature in the model when converting
DPR output to ML-compatible formats. An example of data-driven workflow optimization enabled

by this bookkeeping is pruning features by model weights. Operators resulting in features with zero
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\ | Census [122] | Genomics [123] | IE [10] | MNIST[8] |
Num. Data Source Single Multiple Multiple Single
Input to Ex. Mapping One-to-One One-to-Many One-to-Many One-to-One
Feature Granularity | Fine Grained N/A Fine Grained Coarse Grained
Learning Task Type | Classification Unsupervised Structured Pred. Classification
Application Domain | Social Sciences | Natural Sciences NLP Computer Vision
Supp. by HEL1x v v v v
Supp. by KeystoneML v v v'E
Supp. by DeepDive Vaa Vi

Table 3.2: Summary of workflow characteristics and support by the systems compared. Grayed out cells
indicate that the system in the row does not support the workflow in the column. v x* indicates that the
implementation is by the original developers of DeepDive/KeystoneML.

weights can be pruned without changing the prediction outcome, thus lowering the overall run time
without compromising model performance.

Data-driven pruning is a powerful technique that can be extended to unlock the possibilities for
many more impactful automatic workflow optimizations. Possible future work includes using this
technique to minimize online inference time in large scale, high query-per-second settings and to

adapt the workflow online in stream processing.

Cache Pruning. While Spark, the underlying data processing engine for HeL1X, provides automatic
data uncaching via a least-recently-used (LRU) scheme, HELIx improves upon the performance by
actively managing the set of data to evict from cache. From the DAG, HeLix can detect when a node
becomes out-of-scope. Once an operator has finished running, HeLix analyzes the DAG to uncache
newly out-of-scope nodes. Combined with the lazy evaluation order, the intermediate results for an
operator reside in cache only when it is immediately needed for a dependent operator.

One limitation of this eager eviction scheme is that any dependencies undetected by HELIx,
such as the ones created in a UDF, can lead to premature uncaching of DCs before they are truly
out-of-scope. The uses keyword in HML, described in Table B.1, provides a mechanism for users
to manually prevent this by explicitly declaring a UDF’s dependencies on other operators. In the

future, we plan on providing automatic UDF dependency detection via introspection.

3.6 EMPIRICAL EVALUATION

The goal of our evaluation is to test if HELix 1) supports ML workflows in a variety of application
domains; 2) accelerates iterative execution through intermediate result reuse, compared to other ML
systems that don’t optimize iteration; 3) is efficient, enabling optimal reuse without incurring a large

storage overhead.
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3.6.1 Systems and Baselines for Comparison

We compare the optimized version of HELix, HELIX OpT, against two state-of-the-art ML workflow
systems: KeystoneML [8], and DeepDive [9]. In addition, we compare HeLix Opt with two simpler
versions, HELix AM and HeLix NM. While we compare against DeepDive, and KeystoneML to
verify 1) and 2) above, HELix AM and HeLix NM are used to verify 3). We describe each of these
variants below:

KeystoneML. KeystoneML [8] is a system, written in Scala and built on top of Spark, for the
construction of large scale, end-to-end, ML pipelines. KeystoneML specializes in classification
tasks on structured input data. No intermediate results are materialized in KeystoneML, as it does
not optimize execution across iterations.

DeepDive. DeepDive [9, 10] is a system, written using Bash scripts and Scala for the main
engine, with a database backend, for the construction of end-to-end information extraction pipelines.
Additionally, DeepDive provides limited support for classification tasks. All intermediate results
are materialized in DeepDive.

HerLix Opt. A version of HeLix that uses Algorithm 3.1 for the optimal reuse strategy and
Algorithm 3.2 to decide what to materialize.

HerLix AM. A version of HeLix that uses the same reuse strategy as HeLix Opt and always
materializes all intermediate results.

HeLix NM. A version of HEL1x that uses the same reuse strategy as HELix Opt and never materializes

any intermediate results.

3.6.2 Workflows

We conduct our experiments using four real-world ML workflows spanning a range of application
domains. Section 3.6 summarizes the characteristics of the four workflows, described next. We are
interested in four properties when characterizing each workflow:

e Number of data sources: whether the input data comes from a single source (e.g., a CSV file) or
multiple sources (e.g., documents and a knowledge base), necessitating joins.

e Input to example mapping: the mapping from each input data unit (e.g., a line in a file) to each
learning example for ML. One-to-many mappings require more complex data pre-processing
than one-to-one mappings.

e Feature granularity: fine-grained features involve applying extraction logic on a specific piece of
the data (e.g., 2nd column) and are often application-specific, whereas coarse-grained features
are obtained by applying an operation, usually a standard DPR technique such as normalization,

on the entire dataset.
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e Learning task type: while classification and structured prediction tasks both fall under supervised
learning for having observed labels, structured prediction workflows involve more complex data
pre-processing and models; unsupervised learning tasks do not have known labels, so they often

require more qualitative and fine-grained analyses of outputs.

Census Workflow. This workflow corresponds to a classification task with simple features
from structured inputs from the DeepDive Github repository [122]. It uses the Census Income
dataset [124], with 14 attributes representing demographic information, with the goal to predict
whether a person’s annual income is >50K, using fine-grained features derived from input attributes.
The complexity of this workflow is representative of use cases in the social and natural sciences,
where covariate analysis is conducted on well-defined variables. HELIX code for the initial version of
this workflow is shown in Figure 3.2(a). This workflow evaluates a system’s efficiency in handling

simple ML tasks with fine-grained feature engineering.

Genomics Workflow. This workflow is involves two major steps: 1) split the input articles into
words and learn vector representations for entities of interest, identified by joining with a genomic
knowledge base, using word2vec [125]; 2) cluster the vector representation of genes using K-Means
to identify functional similarity. Each input record is an article, and it maps onto many gene names,
which are training examples. This workflow has minimal data pre-processing with no specific
features but involves multiple learning steps. Both learning steps are unsupervised, which leads to
more qualitative and exploratory evaluations of the model outputs than the standard metrics used for
supervised learning. We include a workflow with unsupervised learning and multiple learning steps

to verify that the system is able to accommodate variability in the learning task.

Information Extraction (IE) Workflow. This workflow involves identifying mentions of spouse
pairs from news articles, using a knowledge-base of known spouse pairs, from DeepDive [10].
The objective is to extract structured information from unstructured input text, using complex
fine-grained features such as part-of-speech tagging. Each input article contains > 0 spouse pairs,
hence creating a one-to-many relationship between input records and learning examples. This
workflow exemplifies use cases in information extraction, and tests a system’s ability to handle

joins and complex data pre-processing.

MNIST Workflow. The MNIST dataset [126] contains images of handwritten digits to be classified,
which is a well-studied task in the computer vision community, from the KeystoneML [8] evaluation.
The workflow involves nondeterministic (and hence not reusable) data pre-processing, with a
substantial fraction of the overall run time spent on L/I in a typical iteration. We include this
application to ensure that in the extreme case where there is little reuse across iterations, HELIx

does not incur a large overhead.
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Each workflow was implemented in HeLix, and if supported, in DeepDive and KeystoneML, with
v *in Section 3.6 indicating that we used an existing implementation by the developers of DeepDive
or KeystoneML, which can be found at:
e Census DeepDive: https://github.com/HazyResearch/deepdive/blob/master/examples/
census/app.ddlog
e [E DeepDive: https://github.com/HazyResearch/deepdive/blob/master/examples/
spouse/app.ddlog
e MNIST KeystoneML: https://github.com/amplab/keystone/blob/master/src/main/
scala/keystoneml /pipelines/images/mnist/MnistRandomFFT.scala
DeepDive has its own DSL, while KeystoneML’s programming interface is an embedded DSL
in Scala, similar to HML. We explain limitations that prevent DeepDive and KeystoneML from

supporting certain workflows (grey cells) in Section 3.6.5.

3.6.3 Running Experiments

Simulating iterative development. In our experiments, we modify the workflows to simulate
typical iterative development by a ML application developer or data scientist. Instead of arbitrarily
choosing operators to modify in each iteration, we use the iteration frequency in Figure 3 from
our literature study [107] to determine the type of modifications to make in each iteration, for the
specific domain of each workflow. We convert the iteration counts into fractions that represent the
likelihood of a certain type of change. At each iteration, we draw an iteration type from { DPR, L/I,
PPR} according to these likelihoods. Then, we randomly choose an operator of the drawn type
and modify its source code. For example, if an “L/I” iteration were drawn, we might change the
regularization parameter for the ML model. We run 10 iterations per workflow (except NLP, which
has only DPR iterations).

Note that in real world use, the modifications in each iteration are entirely up to the user. HELIx
is not designed to suggest modifications, and the modifications chosen in our experiments are for
evaluating only system run time and storage use. We use statistics aggregated over > 100 papers to
determine the iterative modifications in order to simulate behaviors of the average domain expert
more realistically than arbitrary choice.

Environment. All single-node experiments are run on a server with 125 GiB of RAM, 16 cores on
8 CPUs (Intel Xeon @ 2.40GHz), and 2TB HDD with 170MB/s as both the read and write speeds.
Distributed experiments are run on nodes each with 64GB of RAM, 16 cores on 8 CPUs (Intel
Xeon @ 2.40GHz), and 500GB of HDD with 180MB/s as both the read and write speeds. We set
the storage budget in HeLix to 10GB. That is, 10GB is the maximum accumulated disk storage for

HEeLix Opr at all times during the experiments. After running the initial version to obtain the run

38


https://github.com/HazyResearch/deepdive/blob/master/examples/census/app.ddlog
https://github.com/HazyResearch/deepdive/blob/master/examples/census/app.ddlog
https://github.com/HazyResearch/deepdive/blob/master/examples/spouse/app.ddlog
https://github.com/HazyResearch/deepdive/blob/master/examples/spouse/app.ddlog
https://github.com/amplab/keystone/blob/master/src/main/scala/keystoneml/pipelines/images/mnist/MnistRandomFFT.scala
https://github.com/amplab/keystone/blob/master/src/main/scala/keystoneml/pipelines/images/mnist/MnistRandomFFT.scala

time for iteration 0, a workflow is modified according to the type of change determined as above. In
all four systems the modified workflow is recompiled. In DeepDive, we rerun the workflow using the
command deepdive run. In HerLix and KeystoneML, we resubmit a job to Spark in local mode.
We use Postgres as the database backend for DeepDive. Although HeLix and KeystoneML support
distributed execution via Spark, DeepDive needs to run on a single server. Thus, we compare against

all systems on a single node and additionally compare against KeystoneML on clusters.

3.6.4 Metrics

We evaluate each system’s ability to support diverse ML tasks by qualitative characterization of
the workflows and use-cases supported by each system. Our primary metric for workflow execution
is cumulative run time over multiple iterations. The cumulative run time considers only the run time
of the workflows, not any human development time. We measure with wall-clock time because
it is the latency experienced by the user. When computing cumulative run times, we average the
per-iteration run times over five complete runs for stability. Note that the per-iteration time measures
both the time to execute the workflow and any time spent to materialize intermediate results. We
also measure memory usage to analyze the effect of batch processing, and measure storage size to
compare the run time reduction to storage ratio of time-efficient approaches. Storage is compared

only for variants of HEL1x since other systems do not support automatic reuse.

3.6.5 Evaluation vs. State-of-the-art Systems

Use Case Support

HeLix supports ML workflows in multiple distinct application domains, spanning tasks with varying

complexity in both supervised and unsupervised learning.

Recall that the four workflows used in our experiments are in social sciences, NLP, computer
vision, and natural sciences, respectively. Section 3.6 lists the characteristics of each workflow
and the three systems’ ability to support it. Both KeystoneML and DeepDive have limitations
that prevent them from supporting certain types of tasks. The pipeline programming model in
KeystoneML is effective for large scale classification and can be adapted to support unsupervised
learning. However, it makes fine-grained features cumbersome to program and is not conducive
to structured prediction tasks due to complex data pre-processing. On the other hand, DeepDive
is highly specialized for information extraction and focuses on supporting data pre-processing.

Unfortunately, its learning and evaluation components are not configurable by the user, limiting the
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Figure 3.4: Cumulative run time for the four workflows. The color under the curve indicates the type of
change in each iteration: purple for DPR, orange for L/I, and green for PPR.

type of ML tasks supported. DeepDive is therefore unable to support the MNIST and genomics
workflows, both of which required custom ML models. Additionally, we are only able to show

DeepDive performance for DPR iterations for the supported workflows in our experiments.

Cumulative Run Time

HeLix achieves up to 19x cumulative run time reduction in ten iterations over state-of-the-art ML

systems.

Figure 3.4 shows the cumulative run time for all four workflows. The x-axis shows the iteration
number, while the y-axis shows the cumulative run time in log scale at the i th iteration. Each point
represents the cumulative run time of the first i iterations. The color under the curve indicates the
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Figure 3.5: HELIxX per-iteration run time breakdown by workflow component.

workflow component modified in each iteration (purple = DPR, orange = L/I, green = PPR). For
example, the DPR component was modified in the first iteration of Census. Figure 3.5 shows the
breakdown by workflow components and materialization for the individual iteration run times in
HEeLix, with the same color scheme as in Figure 3.4 for the workflow components and gray for

materialization time.

Census. As shown in Figure 3.4(a), the census workflow has the largest cumulative run time gap
between HELix Opt and the competitor systems—HELIX Opr is 19x faster than KeystoneML as
measured by cumulative run time over 10 iterations. By materializing and reusing intermediate
results HELix Opr is able to substantially reduce cumulative run-time relative to other systems.
Figure 3.5(a) shows that 1) on PPR iterations HELix recomputes only the PPR; 2) the materialization

of L/I outputs, which allows the pruning of DPR and L/I in PPR iterations, takes considerably
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less time than the compute time for DPR and L/I; 3) HELix Opt reruns DPR in iteration 5 (L/I)
because HeELix Opt avoided materializing the large DPR output in a previous iteration. For the first
three iterations, which are DPR (the only type of iterations DeepDive supports), the 2x reduction
between HeLix Opt and DeepDive is due to the fact that DeepDive does data pre-processing with
Python and shell scripts, while HELix Opt uses Spark. While both KeystoneML and HeLix Opt use
Spark, KeystoneML takes longer on DPR and L/I iterations thanHeLix OpT due to a longer L/I time
incurred by its caching optimizer’s failing to cache the training data for learning. The dominant
number of PPR iterations for this workflow reflects the fact that users in the social sciences conduct

extensive fine-grained analysis of results, per our literature survey [107].

Genomics. In Figure 3.4(b), HELix OpT shows a 3x speedup over KeystoneML for the genomics
workflow. The materialize-nothing strategy in KeystoneML clearly leads to no run time reduction
in subsequent iterations. HeLix Opt, on the other hand, shows a per-iteration run time that is
proportional to the number of operators affected by the change in that iteration. Figure 3.5(b) shows
that 1) in PPR iterations HELix Opt has near-zero run time, enabled by a small materialization time
in the prior iteration; 2) one of the ML models takes considerably more time, and HeLix Oprt is able

to prune it in iteration 4 since it is not changed.

NLP. Figure 3.4(c) shows that the cumulative run time for both DeepDive and HELix Opt increases
linearly with iteration for the NLP workflow, but at a much higher rate for DeepDive than HEL1x
Oprrt. This is due to the lack of automatic reuse in DeepDive. The first operator in this workflow is
a time-consuming NLP parsing operator, whose results are reusable for all subsequent iterations.
While both DeepDive and HeLix Opt materialize this operator in the first iteration, DeepDive does
not automatically reuse the results. HELix Oprt, on the other hand, consistently prunes this NLP
operation in all subsequent iterations, as shown in Figure 3.5(c), leading to large run time reductions

in iterations 1-5 and thus a large cumulative run time reduction.

MNIST. Figure 3.4(d) shows the cumulative run times for the MNIST workflow. As mentioned
above, the MNIST workflow has nondeterministic data pre-processing, which means any changes to
the DPR and L/I components prevents safe reuse of any intermediate result. However, iterations
containing only PPR changes can reuse intermediates for DPR and L/I had they been materialized
previously. Furthermore, we found that the DPR run time is short but cumulative size of all DPR
intermediates is large. Thus, materializing all these DPR intermediates would incur a large run
time overhead. KeystoneML, which does not materialize any intermediate results, shows a linear
increase in cumulative run time due to no reuse. HeELix OpT, on the other hand, only shows slight
increase in runtime over KeystoneML for DPR and L/I iterations because it is only materializing the
L/I results on these iterations, not the nonreusable, large DPR intermediates. In Figure 3.5(d), we

see 1) DPR operations take negligible time, and HeLix Opt avoids wasteful materialization of their
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Figure 3.6: a) Census and Census 10x cumulative run time for HeLix and KeystoneML on a single node; b)
Census 10x cumulative run time for HELix and KeystoneML on different size clusters.

outputs; 2) the materialization time taken in the DPR and L/I iterations pays off for HELix Opt in

PPR iterations, which take negligible run time due to reuse.

Scalability vs. KeystoneML

Dataset Size. We test scalability of HELix and KeystoneML with respect to dataset size by running
the ten iterations in Figure 3.4(a) of the Census Workflow on two different sizes of the input.
Census 10x is obtained by replicating Census ten times in order to preserve the learning objective.
Figure 3.6(a) shows run time performance of HELix and KeystoneML on the two datasets on a single
node. Both yield 10x speedup over the smaller dataset, scaling linearly with input data size, but

HEeLix continues to dominate KeystoneML.

Cluster. We test scalability of HeLix and KeystoneML with respect to cluster size by running
the same ten iterations in Figure 3.4(a) on Census 10x described above. Using a uniform set of
machines, we create clusters with 2, 4, and 8 workers and run HeLix and KeystoneML on each of
these clusters to collect cumulative run time.

Figure 3.6(b) shows that 1) HeLix has lower cumulative run time than KeystoneML on the same
cluster size, consistent with the single node results; 2) KeystoneML achieves ~ 45% run time
reduction when the number of workers is doubled, scaling roughly linearly with the number of
workers; 3) From 2 to 4 workers, HeLix achieves up to 75% run time reduction 4) From 4 to
8 workers, HELIX sees a slight increase in run time. Recall from Section 3.3 that the semantic
unit data structure in HML allows multiple transformer operations (e.g., indexing, computing

discretization boundaries) to be learned using a single pass over the data via loop fusion. This
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Figure 3.7: Fraction of states in Sp, S;, S¢ as determined by Algorithm 3.1 for the Census and Genomics
workflows for HELix OpT and HELix AM.

reduces the communication overhead in the cluster setting, hence the super linear speedup in 3). On
the other hand, the communication overhead for PPR operations outweighs the benefits of distributed

computing, hence the slight increase in 4).

3.6.6 Evaluation vs. Simpler HELIX Versions

HeLix Opt achieves the lowest cumulative run time on all workflows compared to simpler versions
of HELix. HELIX AM often uses more than 30x the storage of HELix Opt when able to complete in
a reasonable time, while not being able to complete within 50x of the time taken by HeLix Opt

elsewhere. HELIx NM takes up to 4x the time taken by HELix Opr.

Next, we evaluate the effectiveness of Algorithm 3.2 at approximating the solution to the NP-hard
OpT-MAT-PLAN problem. We compare HeLix Opt that runs Algorithm 3.2 against: HeLix AM that
replaces Algorithm 3.2 with the policy to always materialize every operator, and HELix NM that
never materializes any operator. The two baseline heuristics present two performance extremes:
HeLix AM maximizes storage usage, time for materialization, and the likelihood of being able to

reuse unchanged results, whereas HELix NM minimizes all three quantities. HELix AM provides the
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Figure 3.8: Cumulative run time and storage use against materialization heuristics on the same four workflows
as in Figure 3.4.

most flexible choices for reuse. On the other hand, HeLix NM has no materialization time overhead
but also offers no reuse.
Figures 3.8(a), 3.8(b), 3.8(e) and 3.8(f) show the cumulative run time on the same four workflows

as in Figure 3.4 for the three variants.
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HeLix AM is absent from Figures 3.8(e) and 3.8(f) because it did not complete within 50 the
time it took for other variants. The fact that HELix AM failed to complete for the MNIST and NLP
workflows demonstrate that indiscriminately materializing all intermediates can cripple performance.
Figures 3.8(e) and 3.8(f) show that HELix Opt achieves substantial run time reduction over HEL1x
NM using very little materialization time overhead (where the red line is above the yellow line).

For the census and genomics workflows where the materialization time is not prohibitive,
Figures 3.8(a) and 3.8(b) show that in terms of cumulative run time, HELix Opt outperforms HeL1x
AM, which attains the best reuse as explained above. We also compare the storage usage by HELIx
AM and Herix NM for these two workflows. Figures 3.8(c) and 3.8(d) show the storage size
snapshot at the end of each iteration. The x-axis is the iteration numbers, and the y-axis is the
amount of storage (in KB) in log scale. The storage use for HELix NM is omitted from these plots
because it is always zero.

We find that HELix Opt outperforms HeLix AM while using less than half the storage used
by HeLix AM for the census workflow in Figure 3.8(c) and % the storage of HELix AM for the
genomics workflow in Figure 3.8(d). Storage is not monotonic because HELIX purges any previous
materialization of original operators prior to execution, and these operators may not be chosen for
materialization after execution, thus resulting in a decrease in storage.

Furthermore, to study the optimality of Algorithm 3.2, we compare the distribution of nodes in
the prune, reload, and compute states S, S;, S between HELix Opt and HELIx AM for workflows
with HELix AM completed in reasonable times. Since everything is materialized in HeLix AM, it
achieves maximum reuse in the next iteration. Figure 3.7 shows that HELix OpT enables the exact
same reuse as HELix AM, demonstrating its effectiveness on real workflows.

Overall, neither HELix AM nor HELix NM is the dominant strategy in all scenarios, and both can

be suboptimal in some cases.

3.6.7 Memory Usage by HELIX

We evaluate memory usage by HELIX to ensure that its materialization and reuse benefits do
not come at the expense of large memory overhead. We measure memory usage at one-second
intervals during HeLix workflow execution. Figure 3.9 shows the peak and average memory used by
HEeLix in each iteration for all four workflows. We allocate 30GB memory (25% of total available
memory) in the experiments. We observe that HELIx runs within the memory constraints on all
workflows. Furthermore, for iterations during which HeLix reuses intermediate results to achieve a
high reduction in run time compared to other systems, memory usage is also significantly reduced.
This indicates that HELix reuses small intermediates that enable the pruning of a large portion of the

subgraph to reduce run time, instead of overloading memory.
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Figure 3.9: Peak and average memory for HELIX.

3.7 SUMMARY

We presented HeLix, a declarative system aimed at accelerating iterative ML application
development. In addition to its user friendly, flexible, and succinct programming interface, HEL1x
tackles two major optimization problems, namely OpT-Exec-PLAN and OpT-MAT-PLAN, that together
enable cross-iteration optimizations resulting in significant run time reduction for future iterations.
We devised a PTIME algorithm to solve OpT-ExtEc-PLAN by using a reduction to Max-FLow. We
showed that OpT-MAT-PLAN is NP-HarD and proposed a light-weight, effective heuristic for this
purpose. We evaluated HELix against DeepDive and KeystoneML on workflows from social sciences,
NLP, computer vision, and natural sciences that vary greatly in characteristics to test the versatility
of our system. We found that HELIx supports a variety of diverse machine learning applications with
ease and and provides 40-60% cumulative run time reduction on complex learning tasks and nearly
an order of magnitude reduction on simpler ML tasks compared to both DeepDive and KeystoneML.
While HeLix is implemented in a specific way, the techniques and abstractions presented in this
chapter are general-purpose; other systems can enjoy the benefits of HELix’s optimization modules

through simple wrappers and connectors.
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HEeLix demonstrates how to leverage similarities in adjacent workflow iterations for safe and
interactive ML model development; in the next chapter, we explore techniques that have downstream

applications for safe and interactive browsing.
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CHAPTER 4: SAFE BROWSING WITH LEARNED BLOOM FILTERS

In this chapter, we describe techniques for learning compact Bloom filters of multidimensional
data. We begin by reviewing both traditional and learned Bloom filters, and then describe
several techniques for further compressing learned Bloom filters, especially considering filters over
multidimensional data. These compressed Bloom filters can be used for downstream browsing
tasks, e.g., to fetch blocks that contain records satisfying some desired criteria. They obey similar
semantics to traditional Bloom filters (guaranteeing absence of false negatives) while improving

interactivity of the downstream browsing task thanks to their potentially significant space savings.

4.1 OVERVIEW

Bloom filters are widely used as existence indices in many applications [127]. By allowing
some false positives, their space requirements depend only on the number of inserted keys (and are
independent of the sizes of the individual keys). Despite their advantages, Bloom filters are unable
to leverage differences between the set of in-index keys and the distribution of negative queries, and
recent work [128] has proposed learned Bloom filters to model latent separations between the two.
We expand on these ideas and show that learned filters are effective for indexing multidimensional
data (k-tuples) when there exists some co-occurrence structure between in-index k-tuples that are
different from out-of-index tuples. We explore a new kind of multidimensional Bloom index that
exploits this structure, and our approach can offer significant space savings over traditional Bloom
filters. We also give new methods to quantify the space savings that properly capture the asymmetry

intrinsic to Bloom filters (i.e., allowing false positives, but not false negatives).

Multidimensional Data. Bloom filters are commonly used to index data with multiple attributes.
Furthermore, any application using multiple Bloom filters to index different data into semantically
different sets can equivalently use a single, monolithic filter over 2-dimensional data: instead of
testing whether Bloom filter i contains item x, we check whether our large filter contains (i, x). For
a concrete example, the Windows implementation of the Git SCM uses Bloom filters to support
filtered searches over the Git commit graph [129]. Specifically, each commit is associated with
a Bloom filter into which all the file names for files added, deleted, or otherwise modified in the
commit are inserted. Such an application is semantically equivalent to using a single filter over
two dimensions — instead of querying the Bloom filter for commit ad7ad3b for file file. txt, one
would instead query a single monolithic filter for the 2-tuple (ad7ad3b, file.txt).

We observe that querying over subsets of attributes is often important in many applications; going

with our Git example, if we want to check whether any commit modified file name, we can do so by
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Figure 4.1: Illustration of traditional and learned Bloom filters.

querying for (?, name) where “?” represents a placeholder that can be matched by any value. In
this work, we thus allow wildcard queries, in which only a subset of tuple entries are specified. To
facilitate such queries, traditional Bloom filters must index tuples like (a, b, ?) as first-class items.

We posit (and demonstrate) that learned filters can be much more space-efficient when allowing
wildcard queries, since we observe in practice that co-occurrence structure is present even when
only considering subsets of attributes. Even before taking into account all of the extra keys resulting
from introduction of wildcards, the number of distinct combinations of attribute values tends can
grow exponentially as we increase the number of indexed dimensions. Learned filters have the

ability to combat this by leveraging the co-occurrence structure present in the in-index data.

4.2 LEARNING FILTERS

Background. The idea behind learned Bloom filters, as originally described in [128], is illustrated
in Figures 4.1(a) and 4.1(b). Bloom filter insertions are facilitated by setting / bits in a bit array,
whose positions correspond to the output of /# independent random hash functions. To determine
whether a key is considered in-index, all 4 hash function outputs must hash to set bits. In this
way, false positives are possible, but false negatives are not. Learned Bloom filters model Bloom
filter lookups as a classification problem. To train a learned Bloom filter, in-index items, X, are
used as positive training examples, and negative training examples are drawn from a negative

query distribution D7-. Because the model may have false negatives, the set of all false negatives
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are inserted into a post-filter (“fixup” filter) that is checked whenever the model gives a negative
prediction. Concretely, for a classifier f with prediction threshold z, all k € X for which f(k) <t
(the set of which is denoted as K ) are inserted into the spillover filter. This backup filter is
then checked whenever f gives an output below t in order to eliminate the possibility of false
negatives. For a classifier with false positive rate F, p(l) and a backup traditional Bloom filter with
false positive rate Fp(z), the overall false positive rate is of the learned Bloom filter is given by
Fp(l) + (1 - Fp(l))Fp(z). When Fp(l) is small, this is approximately ~ Fp(l) + Flgz). For a detailed
discussion of how classifier performance relates to learned Bloom filter size, please see [128]
or [63].

Modeling Multidimensional Data. Figure 4.1(c) depicts our model architecture for handling
multidimensional inputs. In this work, we consider k-tuples of strings. Each string attribute
value is first converted into an embedding vector (we defer specific discussion to the next section).
Furthermore, each “wildcard” placeholder is assigned a separate embedding vector per dimension.
To model any co-occurrence structure between the attribute values, these vectors are concatenated
and fed through a dense layer, whose output is then converted to a logit by a sigmoid head. We train
the DNN and the embeddings using Adam [130] on positive examples that represent the in-index

elements and negative examples synthesized from queries for out-of-index data.

4.3 CHALLENGES AND OPTIMIZATIONS

We identify three key challenges when learning Bloom filters over multidimensional data:
e Challenge 1: Tradeoff between model size and model performance.
e Challenge 2: Suboptimal performance at low false positive rates.
e Challenge 3: Noisy in-index data obscures overall co-occurrence patterns.
We introduce three key optimizations: (1) modeling high-cardinality attributes with RNNs, (2)
leveraging the sandwiching technique introduced in [64], and (3) robust learning via £-regularized
shift parameters in order to address each of these respective challenges. We now give a detailed

description of each optimization.

Optimization 1: Model high-cardinality attributes with RNNs. Using direct embedding lookups
for high-cardinality attributes creates many model parameters, and in the worst case results in
learned Bloom filters that greatly exceed traditional Bloom filters in size. To cope with this, we
convert attribute values for high-cardinality attributes (say, > 500 distinct values) into vectors using
character-level recurrent neural networks (RNNs) with gated recurrent units (GRUs) [131]. We
opt for direct embeddings for the low-cardinality attributes when converting their corresponding

attribute values to vectorized form, as the benefit in learned Bloom filter size due to the improvement
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in the quality of the model predictions outweighs the cost of extra space used due to the increase in

model parameters (compared to RNNSs).

Optimization 2: Choose better classifier cutoffs with sandwiching. To enforce a low target false
positive rate FPR, it can be necessary to choose a very large classifier cutoff . Although there
exist strategies for improving performance at low false positive rates, we opt to sidestep the issue
altogether by employing a strategy for learned Bloom filters called sandwiching [64]. In brief, this
strategy introduces an additional traditional Bloom filter in the learned Bloom filter architecture
depicted in Figure 4.1(b) as a prefilter, into which all in-index keys in X are inserted. Thus, a query
must be found in the prefilter to be considered positive; otherwise, it is immediately known to be
out-of-index. Although all of X is inserted into the prefilter, it need not occupy many bits as it can
be very porous, having a very high false positive rate compared to the target false positive rate FPR.

When leveraging sandwiching, we are free to choose the classifier cutoff t for the model portion
of the learned Bloom filter however we wish. A natural question, then, is how to choose this
threshold. The following theorem shows that the best cutoff for a sandwiched filter with nonempty

prefilter maximizes the KL divergence between the classifier’s true positive and false positive rates.

Theorem 4.1. Suppose one has surrounded two learned models with traditional Bloom filters to
create sandwiched Bloom filters (with same FPR), and further assume that each sandwiched filter
uses the optimal number of bits and leverages a nonempty prefilter to do so. Let X1, and X, be
Bernoulli random variables with B[ Xr,| = T, and E[XF,| = F,, where T, is the fraction of
in-index items correctly classified by the learned model, and F), is the learned model’s false positive
rate (expected proportion of out-of-index queries predicted as in-index). Then the sandwiched filter
with the higher value of KL(X7,||XF,) uses fewer bits for the traditional prefilter and postfilter

components.

Please see the appendix (§A.3) for the proof.

Optimization 3: Robust learning with ¢,-regularized shift parameters. Our final optimization
attempts to address noise present in the in-index data. To do so, we borrow an idea from robust
learning, whereby each positive training example k is associated with a shift parameter yi. The
vector of shift parameters } is £;-regularized to encourage sparsity. Although originally introduced
in the context of linear regression [132] and logistic regression [133], we found that the technique
works well in deep models too. In brief, the output of the sigmoid head g(zx) =
shifted as g(zx + yx) = m.
technique reduced the number of bits required for a learned Bloom filter by 15%.

1 is
1+exp(—zx)
In our experiments on a dataset of airline flights [134], this
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that achieves 1% FPR for a combination of indexed attributes, across all subsets of two or more indexed
attributes.

4.4 EXPERIMENTAL RESULTS

Production Recommender System Logs. We consider a dataset of 70000 subsampled impressions
from the logs of a major production recommendation system, where each impression consists
of 7 attributes. Although the number of rows (i.e. impressions) is relatively small, by allowing
wildcard-style queries, we observe 1.8 million distinct co-occurring attribute values, all of which
must be indexed. Since the false positive rate of learned Bloom filters is sensitive to the distribution
of incoming negative queries [63, 128], for each set of indexed attributes, we synthesized an
out-of-index query distribution. This distribution was generated by joining random pairs of non
co-occurring observed attribute values, uniformly across pairs of indexed attributes (queries with
unobserved attribute values will be eliminated during embedding lookups, with high probability),
although one could also use query logs if available. Figure 4.2 shows the result of indexing every
subset of attributes, using both a traditional filter and a learned filter. Without RNNs (not shown),
the learned model uses more bits than a traditional filter. Leveraging sandwiching reduces the
number of bits needed by about 10%. Overall, we achieve greater space savings with more indexed
attributes, achieving space reductions of 72% over traditional Bloom filters when indexing all 7

attributes.

Flights. We divided 7 million rows from year 2008 into contiguous pages (following the order in
which we obtained the data) of 10000 rows each, and index all pairs of (Airport, Page ID).
We join known airports with random page IDs for a query negative distribution, achieve space
reductions of 25% over traditional bloom filters. By incorporating £ -regularized shift parameters,

we increase the space reductions to 35%.

53



4.5 SUMMARY

Based on our experimental findings, learned Bloom filters show promising performance when
indexing multidimensional data while allowing flexible queries with wildcards. Each of our key
optimizations: separate modeling of high-cardinality attributes with RNNs, sandwiching with
optimal classifier cutoffs, and robust learning with shift parameters addresses a key issue when
learning Bloom filters over multidimensional data. The additional space savings can then improve
interactivity of downstream browsing tasks.

The next two chapters develop systems for interactive analytics. We first consider data-aware
techniques for visual exploration in Chapter 5, and then extend these techniques to more general

report generation in Chapter 6.
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CHAPTER 5: SAFE APPROXIMATION FOR VISUAL EXPLORATION

In this chapter, we describe FaAstTMATcH, a system that uses sampling-based AQP with guarantees
to find histograms that match a desired target, thereby helping enable safe and interactive visual
exploration. We begin by motivating and formulating the problem, then describe our core algorithmic
and architectural techniques, and finally use several real datasets to evaluate FaAsTMatcH along the

axes of safety and interactivity.

5.1 MOTIVATION

In exploratory data analysis, analysts often generate and peruse a large number of visualizations
to identify those that match desired criteria. This process of iterative “generate and test” occupies
a large part of visual data analysis [16, 17, 18], and is often cumbersome and time consuming,
especially on very large datasets that are increasingly the norm. This process ends up impeding

interaction, preventing exploration, and delaying the extraction of insights.

Example 1: Census Data Exploration. Alice is exploring a census dataset consisting of hundreds
of millions of tuples, with attributes such as gender, occupation, nationality, ethnicity, religion,
adjusted income, net assets, and so on. In particular, she is interested in understanding how applying
various filters impacts the relative distribution of tuples with different attribute values. She might
ask questions like Q7: Which countries have similar distributions of wealth to that of Greece? Q2:
In the United States, which professions have an ethnicity distribution similar to the profession of
doctor? Q3: Which (nationality, religion) pairs have a similar distribution of number of children to

Christian families in France?

Example 2: Taxi Data Exploration. Bob is exploring the distribution of taxi trip times originating
from various locations around Manhattan. Specifically, he plots a histogram showing the distribution
of taxi pickup times for trips originating from various locations. As he varies the location, he
examines how the histogram changes, and he notices that choosing the location of a popular nightclub
skews the distribution of pickup times heavily in the range of 3am to 5am. He wonders Q4: Where
are the other locations around Manhattan that have similar distributions of pickup times? Q5: Do

they all have nightclubs, or are there different reasons for the late-night pickups?

Example 3: Sales Data Exploration. Carol has the complete history of all sales at a large online
shopping website. Since users must enter birthdays in order to create accounts, she is able to plot
the age distribution of purchasers for any given product. To enhance the website’s recommendation
engine, she is considering recommending products with similar purchaser age distributions. To

test the merit of this idea, she first wishes to perform a series of queries of the form Q6: Which
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Figure 5.1: Example visual target and candidate histogram

products were purchased by users with ages most closely following the distribution for a certain
product—a particular brand of shoes, or a particular book, for example? Carol wishes to perform

this query for a few test products before integrating this feature into the recommendation pipeline.

These cases represent scenarios that often arise in exploratory data analysis—finding matches to a

specific distribution. The focus of this chapter is to develop techniques for rapidly exploring a large

class of histograms to find those that match a user-specified target.

Referring to Q1 in the first example,a typical workflow used by Alice may be the following: first,

pick a country. Generate the corresponding histogram. This could be done either using a language
like R, Python, or Javascript, with the visualization generated in ggplot [135] or D3 [136], or using
interactions in a visualization platform like Tableau [137]. Does the visualization look similar to
that of Greece? If not, pick another, generate it, and repeat. Else, record it, pick another, generate it,
and repeat. If only a select few countries have similar distributions, she may spend a huge amount

of time sifting through her data, or may simply give up early.

5.2  PROBLEM FORMULATION

In this section, we formalize the problem of identifying histograms whose distributions match a

reference.

5.2.1 Generation of Histograms

We start with a concrete example of the typical database query an analyst might use to generate a
histogram. Returning to our example from Section 5.1, suppose an analyst is interested in studying
how population proportions vary across income brackets for various countries around the world.

Suppose she wishes to find countries with populations distributed across different income brackets
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Symbol(s) Description
x-axis attribute, candidate attribute, respective value sets, and relation over these
attributes, used in histogram-generating queries (see Definition 5.1)
User-supplied parameters (number of matching histograms to retrieve, error
k,8,¢e,0 probability upper bound, approximation error upper bound, selectivity threshold
(below which candidates may optionally be ignored)
Visual target, candidate i’s estimated (unstarred) and true (starred) histogram
counts (normalized variants)
d(-,-) Distance function, used to quantify visual distance (see Definition 5.2)
Quantities specific to candidate i during HistSim run: number of samples taken,
ni, n; &, 0, Ti estimated samples needed (see Section 5.4), deviation bound (see Definition 5.4),
() confidence upper bound on ¢;-deviation or rareness, and distance estimate from

q (true distance from q), respectively
Quantities corresponding to samples taken in a specific round of HistSim stage 2:
9 .9 .9 number of samples taken for candidate i in round, per-group counts for candidate
A A i for samples taken in round, corresponding distance estimates using the samples
taken in round, respectively
Set of matching histograms (see Definition 5.3) and non-pruned histograms,
respectively, during a run of HistSim

Ni, N, m, Number of datapoints corresponding to candidate i, total number of datapoints,
f(G; N, Nj,m) samples taken during stage 1, hypergeometric pdf

X, Z,Vx,Vz,T

q.5i. 17, (Q. T Ff)

Table 5.1: Summary of notation used in Chapter 5.

most similarly to a specific country, such as Greece. Consider the following SQL query, where
$COUNTRY is a variable:

SELECT income_bracket, COUNT(x)
FROM census

WHERE country=$COUNTRY

GROUP BY income_bracket

Figure 5.2: SQL for computing income by country

This query returns a list of 7 (income bracket, count) pairs to the analyst for a specific country.
The analyst may then choose to visualize the results by plotting the counts versus different income
brackets in a histogram, i.e., a plot similar to the right side of Figure 5.1 (for Italy). Currently, the
analyst may examine hundreds of similar histograms, one for each country, comparing it to the one
for Greece, to manually identify ones that are similar.

In contrast, the goal of FAstMATcH is to perform this search automatically and efficiently.
Conceptually, FaAstMATcH will iterate over all possible values of country, generate the corresponding
histograms, and evaluate the similarity of its distribution (based on some notion of similarity

described subsequently) to the corresponding visualization for Greece. In actuality, FAstMATcH
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will perform this search all at once, quickly pruning countries that are either clearly close or far

from the target.

Candidate Visualizations. Formally, we consider visualizations as being generated as a result of

histogram-generating queries:

Definition 5.1. A histogram-generating query is a SQL query of the following type: The table T

SELECT X, COUNT() FROM T
WHERE Z=z_i GROUP BY X

Figure 5.3: Template for histogram-generating query

and attributes X and Z form the query’s template.

For each concrete value z; of attribute Z specified in the query, the results of the query—i.e.,
the grouped counts—can be represented in the form of a vector (ry, 75, ...,r,), where n = |Vx|,
the cardinality of the value set of attribute X. This n-tuple can then be used to plot a histogram
visualization—in this chapter, when we refer to a histogram or a visualization, we will be typically
referring to such an n-tuple. For a given grouping attribute X and a candidate attribute Z, we refer
to the set of all visualizations generated by letting Z vary over its value set as the set of candidate
visualizations. We refer to each distinct value in the grouping attribute X ’s value set as a group. In
our example, X corresponds to income_bracket and Z corresponds to country.

For ease of exposition, we focus on candidate visualizations generated from queries according to
Definition 5.1, having single categorical attributes for X and Z. Our methods are more general
and extend naturally to handle (i) predicates: additional predicates on other attributes, (i) multiple
and complex X s: additional grouping (i.e., X) attributes, groups derived from binning real-values
(as opposed to categorical X)), along with groups derived from binning multiple categorical X
attribute values together (e.g., quarters instead of individual months), and (iii) multiple and complex
Zs: additional candidate (i.e., Z) attributes, as well as candidate attribute values derived from
binning real values (as opposed to categorical Z). The flexibility in specifying histogram-generating
queries—exponential in the number of attributes—makes it impossible for us to precompute the

results of all such queries.

Visualization Terminology. Our methods are agnostic to the particular method used to present
visualizations. That is, analysts may choose to present the results generated from queries of the
form in Definition 5.1 via line plots, heat maps, choropleths, and other visualization types, as any of
these may be specified by an ordered tuple of real values and are thus permitted under our notion of
a “candidate visualization”. We focus on bar charts of frequency counts and histograms—these
naturally capture aggregations over the categorical or binned quantitative grouping attribute X

respectively. Although a bar graph plot of frequency counts over a categorical grouping attribute is
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not technically a histogram, which implies that the grouping attribute is continuous, we loosely use

the term ‘“histogram” to refer to both cases in a unified way.

Visual Target Specification. Given our specification of candidate visualizations, a visual target is
an n-tuple, denoted by q with entries Q1, Q», ..., Q,, that we need to match the candidates with.
Returning to our flight delays example, q would refer to the visualization corresponding to Greece,
with O being the count of individuals in the first income bracket, Q, the count of individuals in

the second income bracket, and so on.

Samples. To estimate these candidate visualizations, we need to take samples. In particular, for
a given candidate i for some attribute Z, a sample corresponds to a single tuple ¢ with attribute
value Z = z;. The attribute value X = x; of ¢ increments the jth entry of the estimate r; for the

candidate histogram.

Candidate Similarity. Given a set of candidate visualizations with estimated vector representations
{r;} such that the i th candidate is generated by selecting on Z = z;, our problem hinges on finding
the candidate whose distribution is most “similar” to the visual target q specified by the analyst.
For quantifying visual similarity, we do not care about the absolute counts rq, 5, ..., ryy|, and
instead prefer to determine whether r; and q are close in a distributional sense. Using hats to denote
normalized variants of r; and q, write

- r; . q
;= - = 5.1
r Ir, q (5.1)

With this notational convenience, we make our notion of similarity explicit by defining candidate
distance as follows:
Definition 5.2. For candidate r; and visual predicate q, the distance d(r;, q) between r; and q is
defined as follows:
T q
- — 5.2

That is, after normalizing the candidate and target vectors so that their respective components

d(ri,q) = |[r; —ql[y = ||

sum to 1 (and therefore correspond to distributions), we take the £, distance between the two vectors.
When the target q is understood from context, we denote the distance between candidate r; and q by
T = d(ri,q).

Choice of Metric Post-Normalization. A similar metric, using ¢, distance between normalized
vectors (as opposed to £1), has been studied in prior work [20, 138] and even validated in a user study
in [138]. However, as observed in [139], the £, distance between distributions has the drawback that
it could be small even for distributions with disjoint support. The ¢; distance metric over discrete
probability distributions has a direct correspondence with the traditional statistical distance metric

known as fotal variation distance [140] and does not suffer from this drawback.

59



KL-divergence is another possibility as a distance metric, but it has the drawback that it
will be infinite for any candidate that places 0 mass in a place where the target places nonzero

mass, making it difficult to compare these (note that this follows directly from the definition:
KL(pllg) = —3_; pilog ).

5.2.2 Guarantees and Problem Statement

Since FastMaTcH takes samples to estimate the candidate histogram visualizations, and therefore
may return incorrect results, we need to enforce probabilistic guarantees on the correctness of the
returned results.

First, we introduce some notation: we use r; to denote the estimate of the candidate visualization,
while r} (with normalized version r) is the frue candidate visualization on the entire dataset. Our
formulation also relies on constants ¢, §, and o, which we assume either built into the system or
provided by the analyst. We further use N and N; to denote the total number of datapoints and

number of datapoints corresponding to candidate i, respectively.

Guarantee 5.1. (SeparaTION) Any approximate histogram r; with selectivity % > o that is in the
true top-k closest (w.r.t. Definition 5.2) but not part of the output will be less than ¢ closer to
the target than the furthest histogram that is part of the output. That is, if the algorithm outputs

histograms x;, ,¥j,,...,Yj, then, for all i, max;<;<k {d(r}'-‘l, q)} —d(r},q) <e, or % <o.

Note that we use “selectivity” as a number and not as a property, matching typical usage in
database systems literature [141, 142]. As such, candidates with lower selectivity appear less

frequently in the data than candidates with higher selectivity.

Guarantee 5.2. (Reconstruction) Each approximate histogram r; output as one of the top-k

satisfies d(r;, r}]) < e.

The first guarantee says that any ordering mistakes are relatively innocuous: for any two histograms
r; and r;, if the algorithm outputs r; but not r;, when it should have been the other way around,
then either )d (rf,q) —d(r}, q)‘ <&, or % < 0. The intuition behind the minimum selectivity
parameter, o, is that certain candidates may not appear frequently enough within the data to get a
reliable reconstruction of the true underlying distribution responsible for generating the original
data, and thus may not be suitable for downstream decision-making. For example, in our income
example, a country with a population of 100 may have a histogram similar to the visual target
but this would not be statistically significant. Overall, our guarantee states that we still return a
visualization that is quite close to ¢, and we can be confident that anything dramatically closer has

relatively few total datapoints available within the data (i.e., N; is small).
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Figure 5.4: Illustration of HistSim.

The second guarantee says that the histograms output are not too dissimilar from the corresponding
true distributions that would result from a complete scan of the data. As a result, they form an
adequate and accurate proxy from which insights may be derived. With these definitions in place,

we now formally state our core problem:

Problem 5.1. (Tor-K-Simirar). Given a visual target q, a histogram-generating query template, k,
&, 6, and o, display k candidate attribute values {z;} C Vz (and accompanying visualizations {r;})
as quickly as possible, such that the output satisfies Guarantees 5.1 and 5.2 with probability greater
than 1 — 6.

5.3 THE HISTSIM ALGORITHM

In this section, we discuss how to conceptually solve Problem 5.1. We outline an algorithm,
named HistSim, which allows us to determine confidence levels for whether our separation and
reconstruction guarantees hold. We rigorously prove in this section that when our algorithm
terminates, it gives correct results with probability greater than 1 — § regardless of the data given as
input. Many systems-level details and other heuristics used to make HistSim perform particularly

well in practice will be presented in Section 5.4. Table 5.1 summarizes notation.

5.3.1 Algorithm Outline

HistSim operates by sampling tuples. Each of these tuples contributes to one or more candi-

date histograms, using which HistSim constructs histograms {r;}. After taking enough samples
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Algorithm 5.1: The HistSim algorithm
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Input: Columns Z, X, visual target q, parameters k, €, 8, 0
Output: Estimates M of the top-k closest candidates to q, histograms {r; }

Initialization.
ni,nd < 0,r;,rd < 0for1 <i <|Vz|;

stage 1: §“PPer « &

Repeat m times: uniformly randomly sample some tuple without replacement;
Update {n;}, {r;}, {t;} based on the new samples;

A < {8y where §; = 3L, f(jiN,[oNT,m)for 1 <i <|Vz];

Perform a Holm-Bonferroni statistical test with P-values in A; that is:

., S . . S .
Ae{l.Sifmandforallj <l,8jfm},

stage 2: §¥PPeT «— %;
do

Supper <« %8upper;

ni+=nd, r+=r, 1 <d,q) forieA;

n?<—0, r?<—0 fori € A;

M <« {i € A: t; among k smallest};

s < S(maxijen T + minjea\m 77);

Repeat: take uniform random samples from any i € A4;
Update {n?}, {r?}, and {tia} based on the new samples;
& <—s—|—§—rl-3fori eM;

g; <—rj‘f’—(s—§)ifs—§ >0elseocofor j € A\ M;
A <« {6;} where §; > P(d(r?,r;“) > 8,~) fori € A;
while max(A) > §¥PPer;

stage 3: Sample until n; > 3 (|Vx|log2 + log 3), forall i € M;
Update {r; } based on the new samples;
return M, and {r; :i € M };

corresponding to each candidate, it will eventually be likely that d(r;, r}) is “small”, and that
|d(r;,q) — d(x],q)| is likewise “small”, for each i. More precisely, the set of candidates will likely

be in a state such that Guarantees 5.1 and 5.2 are both satisfied simultaneously.

Stages Overview. HistSim separates its sampling into three stages, each with an error probability of

at most %, giving an overall error probability of at most §:

Stage 1 [Prune Rare Candidates]: Sample datapoints uniformly at random without replacement,

so that each candidate is sampled a number of times roughly proportional to the number of
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datapoints corresponding to that candidate. Identify rare candidates that likely satisfy % <o,
and prune these ones.
o Stage 2 [Identify Top-k]: Take samples from the remaining candidates until the top-k have been
identified reliably.
e Stage 3 [Reconstruct Top-k]: Sample from the estimated top-k until they have been reconstructed
reliably.
This separation is important for performance: the pruning step (stage 1) often dramatically reduces
the number of candidates that need to be considered in stages 2 and 3.
The first two stages of HistSim factor into phases that are pure I/O and phases that involve one
or more statistical tests. The I/O phases sample tuples (lines 6 and 19 in Algorithm 5.1)—we
will describe how in Section 5.4; our algorithm’s correctness is independent of how this happens,

provided that the samples are uniform.

Stage 1: Pruning Rare Candidates (Section 5.3.3). During stage 1, the I/O phase (line 6) takes

m samples, for some m fixed ahead of time. This is followed by updating, for each candidate

i, the number of samples n; observed so far (line 7), and using the P-values {§;} of a test for
N;

underrepresentation to determine whether each candidate i is rare, i.e., has N <0 (lines 7 t0 9).

Stage 2: Identifying Top-k (Section 5.3.4). For stage 2, we focus on a smaller set of candidates;
namely, those that we did not find to be rare (denoted by A). Stage 2 is divided into rounds. Each
round attempts to use existing samples to estimate which candidates are top-k and which are non
top-k, and then draws new samples, testing how unlikely it is to observe the new samples in the
event that its guess of the top-k is wrong. If this event is unlikely enough, then it has recovered the
correct top-k, with high probability.

At the start of each round, HistSim accumulates any samples taken during the previous round
(lines 15 to 16). It then determines the current top-k candidates and a separation point s between
top-k and non top-k (lines 17 to 18), as this separation point determines a set of hypotheses to test.
Then, it begins an I/O phase and takes samples (line 19). The samples taken each round are used
to generate the number of samples taken per candidate, {n? }, the estimates {r?}, and the distance
estimates {‘L’ia} (line 20). These statistics are computed from fresh samples each round (i.e., they
do not reuse samples across rounds) so that they may be used in a statistical test (lines 20 to 23),
discussed in Section 5.3.4. After computing the P-values for each null hypothesis to test (line 23),
HistSim determines whether it can reject all the hypotheses with type 1 error (i.e., probability of
mistakenly rejecting a true null hypothesis) bounded by §*77¢” and break from the loop (line 24). If
not, it repeats with new samples and a smaller §“”7¢” (where the {§*PP¢"} are chosen so that the

probability of error across all rounds is at most %).
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Stage 3: Reconstructing Top-k (Section 5.3.5). Finally, stage 3 ensures that the identified top-k,
M , all satisfy d(r;,r]) < efori € M (so that Guarantee 5.2 holds), with high probability.

Figure 5.4 illustrates HistSim stage 2 running on a toy example in which we compute the top-2
closest histograms to a target. At round #, it estimates ry and r, as the top-2 closest, which it refines
by the time it reaches round n 4+ m. As the rounds increase, HistSim takes more samples to get better
estimates of the distances {t; } and thereby improve the chances of termination when it performs its

multiple hypothesis test in stage 2.

Choosing where to sample and how many samples to take. The estimates M and {z;} allow us
to determine which candidates are “important” to sample from in order to allow termination with
fewer samples; we return to this in Section 5.4. Our HistSim algorithm is agnostic to the sampling

approach.

Outline. We first discuss the Holm-Bonferroni method for testing multiple statistical hypotheses
simultaneously in Section 5.3.2, since stage 1 of HistSim uses it as a subroutine, and since the
simultaneous test in stage 2 is based on similar ideas. In Section 5.3.3, we discuss stage 1 of
HistSim, and prove that upon termination, all candidates i flagged for pruning satisfy % < o with
probability greater than %. Next, in Section 5.3.4, we discuss stage 2 of HistSim, and prove that upon
termination, we have the guarantee that any non-pruned candidate mistakenly classified as top-k is
no more than ¢ further from the target than the furthest true non-pruned top-k candidate (with high
probability). The proof of correctness for stage 2 is the most involved and is divided as follows:
e In Section 5.3.4, we give lemmas that allow us to relate the reconstruction of the candidate
histograms from estimates {rla } to the separation guarantee via multiple hypothesis testing;
e In Section 5.3.4, we describe a method to select appropriate hypotheses to use for testing in the
lemmas of Section 5.3.4;
e In Section 5.3.4, we prove a theorem that enables us to use the samples per candidate histogram
to determine the P-values associated with the hypotheses.

In Section 5.3.5, we discuss stage 3 and conclude with an overall proof of correctness.

5.3.2 Controlling Family-wise Error

In the first two stages of HistSim, the algorithm needs to perform multiple statistical tests
simultaneously [143]. In stage 1, HistSim tests null hypotheses of the form “candidate i is high-
selectivity” versus alternatives like “candidate i is not high-selectivity”. In this case, “rejecting the
null hypothesis at level §“”7¢7” roughly means that the probability that candidate i is high-selectivity
is at most §*PP¢", Likewise, during stage 2, HistSim tests null hypotheses of the form “candidate

i’s true distance from q, 7%, lies above (or below) some fixed value s.” If the algorithm correctly
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rejects every null hypothesis while controlling the family-wise error [144] at level §*P7¢", then it has
correctly determined which side of s every t;* lies, a fact that we use to get the separation guarantee.

Since stages 1 and 2 test multiple hypotheses at the same time, HistSim needs to control the
family-wise type 1 error (false positive) rate of these tests simultaneously. That is, if the family-wise
type 1 error is controlled at level §*PP¢", then the probability that one or more rejecting tests in the
family should not have rejected is less than §“P7¢" — during stage 1, this intuitively means that the
probability one or more high-selectivity candidates were deemed to be low-selectivity is at most
6¥PPeT "and during stage 2, this roughly means that the probability of selecting some candidate as
top-k when it is non top-k (or vice-versa) is at most §*PP¢",

The reader may be familiar with the Bonferroni correction, which enforces a family-wise error
rate of §"“PP¢" by requiring a significance level STII;—ZT for each test in a family with | V| tests in
total. We instead use the Holm-Bonferroni method [145], which is uniformly more powerful than
the Bonferroni correction, meaning that it needs fewer samples to make the same guarantee. Like
its simpler counterpart, it is correct regardless of whether the family of tests has any underlying
dependency structure. In brief, a level §“PP¢” test over a family of size |Vz| works by first sorting
the P-values {§;} of the individual tests in increasing order, and then finding the minimal index j

(starting from 1) where §; > grrr 7 (if this does not exist, then set j = |[Vz|). The tests with

WVzl—j+
smaller indices reject their respective null hypotheses at level §*77¢", and the remaining ones do not

reject.

5.3.3 Stage 1: Pruning Rare Candidates

One way to remove rare (i.e. low-selectivity) candidates from processing is to use an index to
look up how many tuples correspond to each candidate. While this will work well for some queries,
it unfortunately does not work in general, as candidates generated from queries of the form in
Definition 5.1 could have arbitrary predicates attached, which cannot all be indexed ahead-of-time.
Thus, we turn to sampling.

To prune rare candidates, we need some way to determine whether each candidate i satisfies
% < o with high probability. To do so, we make the simple observation that, after drawing m
tuples without replacement uniformly at random, the number of tuples corresponding to candidate i
follows a hypergeometric distribution [146]. The number of samples to take, m, is a parameter; we
observe in our experiments that m = 5 - 10° is an appropriate choice.' That is, if candidate i has N;
total corresponding tuples in a dataset of size N, then the number of tuples n; for candidate i in a

uniform sample without replacement of size m is distributed according to n; ~ HypGeo(N, N;, m).

!Our results are not sensitive to the choice of m, provided m is not too small (so that the algorithm fails to prune
anything) or too big (i.e., a nontrivial fraction of the data).
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As such, we can make use of a well-known test for underrepresentation [144] to accurately detect
Ni
N
(i.e., has N; > oN), and letting f(-; N, [oN], m) denote the hypergeometric pdf in this case, the

when candidate i has < o. The null hypothesis is that candidate i is not underrepresented

P-value for the test is given by
n;
> f(j:N.[oN].m) (5.3)
j=0
where n; is the number of observed tuples for candidate i in the sample of size m. Roughly speaking,
the P-value measures how surprised we are to observe n; or fewer tuples for candidate i when
% > o — the lower the P-value, the more surprised we are.

If we reject the null hypothesis for some candidate i when the P-value is at most §;, we are
claiming that candidate i satisfies % < 0, and the probability that we are wrong is then at most §;.
Of course, we need to test every candidate for rareness, not just a given candidate, which is why
HistSim stage 1 uses a Holm-Bonferroni procedure to control the family-wise error at any given
threshold. We note in passing that the joint probability of observing n; samples for candidate i
across all candidates is a multivariate hypergeometric distribution for which we could perform a
similar test without a Holm-Bonferroni procedure, but the CDF of a multivariate hypergeometric is
extremely expensive to compute, and we can afford to sacrifice some statistical power for the sake of
computational efficiency since we only need to ensure that the candidates pruned are actually rare,
without necessarily finding all the rare candidates — that is, we need high precision, not high recall.

We now prove a lemma regarding correctness of stage 1.

Lemma 5.1 (Stage 1 Correctness). After HistSim stage 1 completes, every candidate i removed

from A satisfies % < o, with probability greater than 1 — %

Proof. This follows immediately from the above discussion, in conjunction with the fact that the
P-values generated from each test for underrepresentation are fed into a Holm-Bonferroni procedure
that operates at level %, so that the probability of pruning one or more non-rare candidates is bounded

above by %.

5.3.4 Stage 2: Identifying Top-K Candidates

HistSim stage 2 attempts to find the top-k closest to the target out of those remaining after stage 1.

To facilitate discussion, we first introduce some definitions.

Definition 5.3. (MarcuinG CanpipaTES) A candidate is called matching if its distance estimate

7; = d(r;, q) is among the k smallest out of all candidates remaining after stage 1.
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We denote the (dynamically changing) set of candidates that are matching during a run of HistSim
as M ; we likewise denote the true set of matching candidates out of the remaining, non-pruned

candidates in A as M *. Next, we introduce the notion of ¢;-deviation.
Definition 5.4. (¢;-pEviaTiON) The empirical vector of counts r; for some candidate i has €;-

deviation if the corresponding normalized vector ¥; is within ¢; of the exact distribution x;. That is,
d(r;,xf) =||r; — 17|l <&

Note that Definition 5.4 overloads the symbol ¢ to be candidate-specific by appending a subscript.
In Section 5.3.4, we provide a way to quantify &; given samples.

If HistSim reaches a state where, for each matching candidate i € M, candidate i has ¢;-deviation,
and ¢; < e forall i € M, then it is easy to see that the Guarantee 5.2 holds for the matching
candidates. That is, in such a state, if HistSim output the histograms corresponding to the matching
candidates, they would look similar to the true histograms. In the following sections, we show that
g;-deviation can also be used to achieve Guarantee 5.1.

Notation for Round-Specific Quantities. In the following subsections, we use the superscript “A”
to indicate quantities corresponding to samples taken during a particular round of HistSim stage 2,
such as {r?} and {‘Eia}. In particular, these quantities are completely independent of samples taken

during previous rounds.

Deviation-Bounds Imply Separation

In order to reason about the separation guarantee, we prove a series of lemmas following the structure
of reasoning given below:
e We show that when a carefully chosen set of null hypotheses are all false, M contains valid
top-k closest candidates.
e Next, we show how to use ¢;-deviation to upper bound the probability of rejecting a single true
null hypothesis.
e Finally, we show how to reject all null hypotheses while controlling the probability of rejecting

any true ones.

Lemma 5.2 (False Nulls Imply Separation). Consider the set of null hypotheses {Héi)} defined as

follows, where s € R™:

* & .
T 2s+5,f0rl€M

Hy = (5.4)

When Héi) is false for every i € A, then M is a set of top-k candidates that is correct with respect

to Guarantee 5.1.
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Proof. When all the null hypotheses are false, then 7;* < s + 5 foralli € M, and TS > — 5 for
all j € A\ M. This means that

max 7, — min r;‘ <e¢ (5.5)
ieEM jeA\M

and thus M is correct with respect to the separation guarantee.

Intuitively, Lemma 5.2 states that when there is some reference point s such that all of the candidates

£

> then we have

in M have their 7;* smaller than s — %, and the rest have their t;* greater than s +
our separation guarantee.
Next, we show how to compute P-values for a single null hypothesis of the type given in Lemma 5.2.

Below, we use “Pg” to denote the probability of some event when hypothesis H is true.

Lemma 5.3 (Distance Deviation Testing). Let x € R™. To test the null hypothesis Héi) Tt > x

versus the alternative Hf) : T < x, we have that, for any &; > 0,
HY [x — ria > s,-] <P (d(r?, r’) > si> (5.6)
Likewise, for testing Héi) : 1 < x versus the alternative H ji) 11 > x, we have

PH(‘)” [ria —x > si] <P (d(r?, r’) > 8,-) (5.7)

Proof. We prove the first case; the second is symmetric. Suppose candidate i satisfies 7;* > x for

some x € RT. Then, if we take n? samples from which we construct the random quantities r? and
d

7/, we have that
Py [x —?> s,-] <P (ri* —) > Ei) (5.8)
=P (IIF —all - lla— 1 > &) (5.9)
<P (IIF -l > &) (5.10)
= P(d(r;“,r;'?) > &) (5.11)

Each step follows from the fact that increasing the quantity to the left of the “>" sign within the
probability expression can only increase the probability of the event inside. The first step follows

from the assumption that 7* > x, and the third step follows from the triangle inequality.

We use Lemma 5.3 in conjunction with Lemma 5.2 by using s £ £ for the reference x of

Lemma 5.3, for a particular choice of s (discussed in Section 5.3.4). For example, Lemma 5.3 shows
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that when we are testing the null hypothesis for i € M that ;" > s + 7 and we observe ‘L’l-a such that

d fra

0 <& = s+ £ — 1/, we can use (any upper bound of) P (d(rl Ty > e,-) as a P-value for this test.

That is, consider a tester with the following behavior, illustrated pictorially:

(@) . _x
Ho =X
| X i

& .
IfP (d(r?‘ r)) > s,-) < §%“PPeT then reject Hé’)

1771

Figure 5.5: Depiction of hypothesis testing procedure which rejects for empirical histograms 1"? on the wrong
side of and with distance rl.a sufficiently far from a particular x, informed by the split point s.

In the above figure, the tester assumes that 7;* is smaller than x, but it observes a value 'cia that
exceeds x by &;. When the true value 7;* < x for any reference x, then the observed statistic ria will
only be ¢; or larger than x (and vice-versa) when the reconstruction r? is also bad, in the sense that
P (d(r},r 7)) > &) < guprer,

1 1

*

l’r

%) > &) is very small. If the above tester rejects H’ when P (d(r
then Lemma 5.3 says that it is guaranteed to reject a true null hypothesis with probability at most

* rd) > 8i) in Section 5.3.4.

8PP’ We discuss how to compute an upper bound on P (d(r}, rt

Finally, notice that Lemma 5.3 provides a test which controls the type 1 error of an individual
Héi), but we only know that the separation guarantee holds for i € M when all the hypotheses
{Héi)} are false. Thus, the algorithm requires a way to control the type 1 error of a procedure that
decides whether to reject every H, él) simultaneously. In the next lemma, we give such a tester which

controls the error for any upper bound §*P7¢",

Lemma 5.4 (Simultaneous Rejection). Consider any set of null hypotheses {H(fi)}, and consider a

set of P-values {8;} associated with these hypotheses. The tester given by

reject every Héi), when max §; < §“PPer
i (5.12)

Decision = .
reject no H @) otherwise
rejects > 1 true null hypotheses with probability < §*PP¢’,

Proof. Consider the set of true null hypotheses and call it {Hét) } — suppose there are 7 > 1 in
total (if 77 = 0, we have nothing to prove), and index them using 7 from 1 to 7". Then

P (Elt : reject Hét)) =P (Vt : reject Hét)) (5.13)
T

= H P (reject Hét) { reject Hél"“’t_l)) (5.14)
=1
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Figure 5.6: Illustration of HistSim choosing the split point s when testing whether the separation and
reconstruction guarantees hold.

T

=4 l_[ P (reject Hét) reject Hél""’t_l)) (5.15)
t=2

<& -1 (5.16)

< §vpper (5.17)

The first step follows since null hypotheses are only rejected when they are all rejected. The second
to last step follows since probabilities are at most 1, and the last step follows since the tester only

rejects when all the P-values are at most §“#7¢”, including d;.

Discussion of Lemma 5.4. At first glance, the multiple hypothesis tester given in Lemma 5.4, which
compares all P-values to the same 6*P7¢", seems to be even more powerful than a Holm-Bonferroni
tester, which compares P-values to various fractions of §“77¢". In fact, although based on similar
ideas, they are not comparable: a Holm-Bonferroni tester may allow for rejection of a subset of the
null hypotheses, wheres the tester of Lemma 5.4 is “all or nothing”. In fact, the tester of Lemma 5.4

is essentially the union-intersection method formulated in terms of P-values; see [143] for details.

Selecting Each Round’s Tests

Each round of HistSim stage 2 constructs a family of tests to perform whose family-wise error
probability is at most §“P7¢". At round ¢ (starting from ¢ = 1), §“PP¢" is chosen to be 52/—,3, so that
the error probability across all rounds is at most ) .., 8/3 — & yia a union bound (see Lemma 5.5

27 3
for details).
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There is still one degree of freedom: namely, how to choose the split point s used for the null

hypotheses in Lemma 5.2. In line 18, it is chosen to be s <— 1 (max 7; + min ;). The intuition
2VieM jea\m !

for this choice is as follows. Although the quantities r? and ‘L’ia are generated from fresh samples
in each round of HistSim stage 2, the quantities r; and t; are generated from samples taken across
all rounds of HistSim stage 2. As such, as rounds progress (i.e., if the testing procedure fails to
simultaneously reject multiple times), the estimates r; and t; become closer to r] and t;*, the set
M becomes more likely to coincide with M *, and the null hypotheses {Héi)} chosen become less
likely to be true provided an s chosen somewhere in [max;ep 7;, minje 4\ p 7;], since values in this
interval are likely to correctly separate M * and A \ M* as more and more samples are taken. In the
interest of simplicity, we simply choose the midpoint halfway between the furthest candidate in M
and the closest candidate in A \ M. For example, at iteration n in Figure 5.6, s lies halfway between
candidates r, and r4. In practice, we observe that max; ey 7; and min;e4\a 7; are typically very
close to each other, so that the algorithm is not very sensitive to the choice of s, so long as it falls
between M and A\ M.

Figure 5.6 illustrates this choice of s and the { Héi)} on our toy example. As in Figure 5.4, the
boundary of M is represented by the dashed box. The split point s is located at the rightmost
boundary of the dashed box.The {¢;} (i.e., the amounts by which the {‘L']a} deviate from s & 7)
determine the P-values associated with the { Héi)} which ultimately determine whether HistSim

stage 2 can terminate, as we discuss more in the next section.

Deviation-Bounds Given Samples

The previous section provides us a way to check whether the rankings induced by the empirical
distances {t;} are correct with high probability. This was facilitated via a test which measures our
“surprise” for measuring {‘L’l-a} if the current estimate M is not correct with respect to Guarantee 5.1,
3

* e

which in turn used a test for how likely some candidate’s d(r, r;

) is greater than some threshold &;
after taking n; samples. We now provide a theorem that allows us to infer, given the samples taken
for a given candidate, how to relate &; with the probability §; with which the candidate can fail to
respect its deviation-bound ¢;. The bound seems to be known to the theoretical computer science
community as a “folklore fact” [147]; we give a prooffor the sake of completeness. Our proof relies
on repeated application of the method of bounded differences [148] in order to exploit some special
structure in the £, distance metric. The bound developed is information-theoretically optimal; that
is, it takes asymptotically the fewest samples required to guarantee that an empirical distribution

estimated from the samples will be no further than ¢; from the true distribution.
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Theorem 5.1. Suppose we have taken n; samples with replacement for some candidate i ’s histogram,

resulting in the empirical estimate r;. Then r; has &;-deviation with probability greater than 1 — §;

fore; = \/% (|VX| log2 + log %) That is, with probability > 1 — §;, we have: ||r; — 7|1 < &;.

In fact, this theorem also holds if we sample without replacement; we return to this point in

Section 5.4. Please see the appendix (§A.4) for the proof.

Optimality of the bound in Theorem 5.1. If we solve for n; in Theorem 5.1, we see that we must

have n; = DX |1og448r22 log(1/81) That is, 2 (“:—’2") samples are necessary guarantee that the empirical

discrete distribution r; is no further than ¢; from the true discrete distribution r;, with high probability.

This matches the information theoretical lower bound noted in prior work [139, 149, 150, 151].

Generating P-values from Theorem 5.1. We use the above bound to generate P-values for testing
the null hypotheses in Lemma 5.2. From the discussion in that lemma, a tester which rejects Héi)
for i € M when it observes s + £ — l-a > ¢;, for fixed ¢;, has a type 1 error bounded above by
§; = 2Mxlexp (—efni / 2). Since we want to bound the type 1 error rate by an amount §*?P¢",
this induces a particular ¢; against which we can compare s + 5 — ria, but because §; and ¢; are

monotonically related, we can take
5 = 21"l exp (—(s + g . r;")z/z) (5.18)

and compare with §“PP¢" directly, allowing us to use this §; as a P-value for use with the tester in

Lemma 5.4.

Stage 2 Correctness

We can now show correctness of HistSim stage 2.

Lemma 5.5 (Stage 2 Correctness). After HistSim stage 2 completes, each candidate i € M, satisfies
T — 1 < ¢forevery j € A\ M with probability greater than 1 — %.

Proof. First, show that if HistSim stage 2 terminates after iteration ¢, then the probability of an error
8/3
27
most % by union bounding over iterations.

is at most Next, show that the probability of an error after terminating at any iteration is at

If stage 2 terminates at iteration 7, then the probability of rejecting one or more null hypotheses is
at most 82# by Lemma 5.4 and by Theorem 5.1. Each Héi) fori € M says that 7 > s + £, and
each Héj ) for J € A\ M says that 7;* < s — £ —if all of these are false, then by Lemma 5.2 we have
that M and A \ M induce a separation of the candidates that is correct with respect to Guarantee 5.1,

so the only way an error could occur is if one or more nulls are true. We just established that the
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probability of rejecting one or more true nulls at iteration ¢ is at most 8/3  which means that the

2t >
probability of an incorrect separation between M and A \ M is also at most 82/—,3.

Finally, by union bounding over iterations, we have that

P (U;>mistake at iteration ¢) < Z [P (mistake at iteration ¢) (5.19)
1>1

< Z‘Z—f = §/3 (5.20)

t>1

Thus, when stage 2 terminates, M is correct (with respect to Guarantee 5.1) with probability greater
than 1 — %

5.3.5 Stage 3 and Overall Proof of Correctness

Stage 3 of HistSim, discussed in our overall proof of correctness, consists of taking samples from
each candidate in M to ensure they all have e-deviation with high probability (using Theorem 5.1).
This proof is given next, and proceeds in four steps:

e Step 1: HistSim stage 1 incorrectly prunes one or more candidates meeting the selectivity
threshold o with probability at most % (Lemma 5.1).

e Step 2: The probability that stage 2 incorrectly (with respect to Guarantee 5.1) separates M and
A\ M is at most %.

e Step 3: The probability that the set of candidates M violates Guarantee 5.2 after stage 3 runs is
at most 2.

e Step 4: The union bound over any of these bad events occurring gives an overall error probability

of at most §.

Theorem 5.2. The k histograms returned by Algorithm 5.1 satisfy Guarantees 5.1 and 5.2 with
probability greater than 1 — 6.

Proof. From Lemma 5.1, the probability that high-selectivity candidates were pruned during stage
1 is upper bounded by %. From Lemma 5.5, the probability that the algorithm chooses M such that
there exists some i € M and j € M*\ M with 7 — 7 > ¢ is at most %. Union bounding over these
events, the probability of either occurring is at most % Since Guarantee 5.1 cannot be violated
when neither of these events occur, the algorithm violates this guarantee also with probability at
most %. Finally, using Theorem 5.1, HistSim stage 3 line 26 takes a number of samples for each
candidate i € M such that the probability that a given candidate fails to be reconstructed with

error ¢ or less (that is, d(r;, r) > ¢) is at most 35_k Union bounding over all candidates in M, and
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noting that | M| = k, the probability that one or more candidates does not have ¢;-deviation is at
most %. Union bounding with the upper bound on the probability that Guarantee 5.1 is violated, the
probability that either Guarantee 5.1 or Guarantee 5.2 is violated is at most % + % = 4, and we are

done.

Computational Complexity. Stage 1 of Algorithm 5.1 shares computation between candidates
when computing P-values induced by the hypergeometric distribution, and thus makes at most
max;ey, n; calls to evaluate a hypergeometric pdf (we use Boost’s implementation [152]); this
can be done in O (max;ey, n;). To facilitate the sharing, stage 1 requires sorting the candidates in
increasing order of n;, which is O (|Vz] - log |Vz]). Next, each iteration of HistSim stage 2 requires
computing distance estimates 7; and tia for every i € A, which runs in time O (|4]| - [Vx|). Each
iteration of stage 2 further uses a sort of candidates in A by t; to determine M and s, which is
O (|A] -log|A|). HistSim stage 2 almost always terminates within 4 or 5 iterations in practice.
Overall, we observe that the computation required is inexpensive compared to the cost of I/O, even

for data stored in-memory.

5.4 THE FASTMATCH SYSTEM

This section describes FastMaTcH, which implements the HistSim algorithm. We start by
presenting the high-level components of FAstMatcH. We then describe the challenges we faced
while implementing FaAstMaTtcH and describe how the components interact to alleviate those
challenges, while still satisfying Guarantees 5.1 and 5.2. While design choices presented in this
section are heuristics with practicality in mind, the algorithm implemented is still theoretically
rigorous, with results satisfying our probabilistic guarantees. In the following, each time we describe

a heuristic, we will clearly point it out as such.
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5.4.1 FastMarcH Components

FastMaTcH has three key components: the I/O Manager, the Sampling Engine, and the Statistics
engine. We describe each of them in turn; Figure 5.7 provides an architecture diagram—we will

revisit the interactions within the diagram at the end of the section.

I/0 Manager. In FAstMaTcH, requests for I/O are serviced at the granularity of blocks. The 1/O
manager simply services requests for blocks in a synchronous fashion. Given the location of some

block, it synchronously processes the block at that location.

Sampling Engine. The sampling engine is responsible for deciding which blocks to sample. It uses
bitmap index structures (described below) in order to determine the types of samples located at a
given block. Given the current state of the system, it prioritizes certain candidates over others for
sampling.

Statistics Engine. The statistics engine implements most of the logic in the HistSim algorithm. The
only substantial difference between the actual code and the pseudocode presented in Algorithm 5.1
is that the statistics engine does not actually perform any sampling, instead leaving this responsibility

to the sampling engine. The reason for separating these components will be made clear later on.

Bitmap Index Structures. FastTMATcH runs on top of a bitmap-based sampling system used
for sampling on-demand, as in prior work [5, 6, 11, 24]. These papers have demonstrated that
bitmap indexes [153] are effective in supporting sampling for incremental or early termination of
visualization generation. Within FAsTMATcH, bitmap indexes help the sampling engine determine
whether a given block contains samples for a given candidate. For each attribute A, and each
attribute value A,, we store a bitmap, where a ‘0’ at position p indicates that the corresponding block
at position p contains no tuples with attribute value A,, and a ‘1’ indicates that block p contains
one or more tuples with attribute value 4,. Candidate visualizations are generated by attribute
values(or a predicate of ANDs and ORs over attribute values; see Appendix C), so these bitmaps allow
the sampling engine to rapidly test whether a block contains tuples for a given candidate histogram.
Bitmaps are amenable to significant compression [61, 154], and since we are further only requiring
a single bit per block per attribute value, our storage requirements are orders-of-magnitude cheaper
than past work that requires a bit per tuple [5, 6, 24]. Notice also that our techniques also apply for

continuous candidate attributes; please see Appendix C for details.

5.4.2 Implementation Challenges

So far, we have designed HistSim without worrying about how sampling actually takes place,

with an implicit assumption that there is no overhead to taking samples randomly across various
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candidates. While implementing HistSim within FAstMaTcH, we faced several non-trivial challenges,

outlined below:

¢ Challenge 1: Random sampling at odds with performance characteristics of storage media.
The cost to fetch data is locality-dependent when dealing with real storage devices. Even if the
data is stored in-memory, tuples (i.e., samples) that are spatially closer to a given tuple may be
cheaper to fetch, since they may already be present in CPU cache.

e Challenge 2: Deciding how many samples to take between rounds of HistSim. The HistSim
algorithm does not specify how many samples to taken in between rounds of stage 2; it is
agnostic to this choice, with correctness unaffected. If the algorithm takes many samples, it
may spend more time on I/O than is necessary to terminate with a guarantee. If the algorithm
does not take enough samples, the statistical test on line 24 will probably not reject across many
rounds, decaying 6*P7¢" and making it progressively more difficult to get enough samples to
meet stage 2’s termination criterion.

e Challenge 3: Non-uniform cost/benefit of different candidates. Tuples for some candidates
can be over-represented in the data and therefore take less time to sample compared to
underrepresented candidates. At the same time, the benefit of sampling tuples corresponding to
different candidate histograms is non-uniform: for example, those histograms which are “far”

from the target distribution are less useful (in terms of getting HistSim to terminate quickly) than
those for which HistSim chooses small values for ;.

e Challenge 4: Assessing benefit to candidates depends on data seen so far. The “best” choice
of which tuples to sample for getting HistSim to terminate quickly can be most accurately
estimated from all the data seen so far, including the most recent data. However, computing this
estimate after processing every tuple and blocking I/O until the “best” decision can be made is
prohibitively expensive.

We now describe our approaches to tackling these three challenges.

Challenge 1: Randomness via Data Layout

To maximize performance benefits from locality, we randomly permute the tuples of our dataset as
a preprocessing step, and to “sample” we may then simply perform a linear scan of the shuffled data
starting from any point. This matches the assumptions of stage 1 of HistSim, which requires samples
to be taken without replacement. Although the theory we developed in Section 5.3 for HistSim stage
2 was for sampling with-replacement, as noted in [155, 156], it still holds now that we are sampling
without replacement, as concentration results developed for the with-replacement regime may be
transferred automatically to the without-replacement regime. This approach of randomly permuting

upfront is not new, and is adopted by other approximate query processing systems [157, 158, 159].
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Challenge 2: Deciding Samples to Take Between Rounds

The HistSim algorithm leaves the number of samples to take during a given round of stage 2
lines 19 unspecified; its correctness is guaranteed regardless of how this choice is made. This choice
offers a tradeoff: take too many samples, and the system will spend a lot of time unnecessarily on
I/O; take too few, and the algorithm will never terminate, since the “difficulty” of the test increases
with each round, as we set §"PP¢" «— §"PPer /),

To combat this challenge, we employ a simple heuristic. To estimate the number of samples we
need to take for candidate i, we assume that t; = ‘L’i*, so that we need to learn r? to within e;- of
r; for a given round’s statistical test to successfully reject, where &; = s + 2 — 7; fori € M and
g, =1, —(s—35)fori € A\ M. (Recall that we use ¢;-deviation to upper bound the P-values.)
For this setting of {&}}, we thus choose to take samples for each candidate by solving for ; in the
bound of Theorem 5.1. This yields

n: =2 (|Vx|log2 — log §“7¢") / (8;)2 (5.21)

Each round of stage 2 of our FAstMAartcH implementation of HistSim thus continues to take samples
until n? > n; for every candidate 7. It then performs the multiple hypothesis test on lines 20 to 23.
If it rejects, the algorithm terminates and the system gives the output to the user; otherwise, it once

again estimates each n} using Equation (5.21) (plugging in {e’} from updated {t; }) and repeats.

Challenge 3: Block Choice Policies

Deciding which blocks to read during stage 1 of HistSim is simple since we are only trying to
detect low-selectivity candidates — in this case we just scan each block sequentially. Deciding
which blocks to read during stage 2 of HistSim is more difficult due to the non-uniform cost (i.e.,
time) and benefit of samples for each candidate histogram. If either cost or benefit were uniform
across candidates, matters would be simplified significantly: if cost were uniform, we could simply
read in the blocks with the most beneficial candidates; if benefit were uniform, we could simply
read in the lowest cost blocks (for example, those closest spatially to the current read position). To
address these concerns, we developed a simple policy which we found worked well in practice for
getting HistSim to terminate quickly.

AnyActive block selection policy. Recall that the end of each iteration of stage 2 of HistSim estimates
the number of samples {n;} necessary from each candidate so that the next iteration is more likely
to terminate. Note that if each candidate satisfied n; = n; at the time HistSim performed the test
for termination and before it computed the {n}}, then HistSim would be in a state where it can

safely terminate. Those candidates for whom n; < n} we dub active candidates, and we employ a
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very simple block selection policy, dubbed the AnyActive block selection policy, which is to only
read blocks which contain at least one tuple corresponding to some active candidate. The bitmap
indexes employed by FastMatcH allow it to rapidly test whether a block contains tuples for a given
candidate visualization, and thus to rapidly apply the AnyActive block selection policy. Overall, our
approach is as follows: we read blocks in sequence, and if blocks satisfy our AnyActive criterion,
then we read all of the tuples in that block, else, we skip that block. We discuss how to make this
approach performant below.

A naive variant of this policy is presented in Algorithm 5.2, for which we now describe

improvements.

Challenge 4: Asynchronous Block Selection

Algorithm 5.2: Naive AnyActive block processing

Input: unpruned candidate set A, block index i

Output: A value indicating whether to :myread or :skip block i

1 for each active mycand € A do
// cache inefficient index lookup

// evicts bits from previous candidate’s bitmap index

2 if mycand.myindex_lookup(i) then
3 return :myread;

4 end

5 end

6 return :skip;

Algorithm 5.3: AnyActive block selection with 1ookahead

Input: lookahead amount, start block, unpruned candidate set 4

Output: An array mark indicating whether to :read or :skip blocks

// Initialization
1 mark[i] < :skip for 0 <i < lookahead;
2 for each active cand € 4 do

3 for 0 < i < lookahead do
4 if mark[i] == :read then
5 ‘ continue;
6 else if cand.index_lookup(start + i) then
7 ‘ mark[i] < :read;
8 end
9 end
10 end

11 return mark
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Figure 5.8: While the I/O manager processes magenta blocks, the sampling engine selects blue blocks ahead
of time, using lookahead. Blocks with solid color = read, blocks with squiggles = skip.

From the previous discussion, the sampling engine employs an AnyActive block selection policy
when deciding which blocks to process. Ideally, the {n;} and {n;} (number of samples taken for
candidate i and estimated number of samples needed for candidate i, respectively) used to assign
active status to candidates should be computed from the freshest possible counts available to the
sampling engine. That is, in an ideal setting, each candidate’s active status would be updated
immediately after each block is read, and the potentially new active status should be used for making
decisions about immediately subsequent blocks. Unfortunately, this requirement is at odds with
real system characteristics. Employing it exactly implies leaving the I/O manager idle while the
sampling engine determines whether each block should be read or skipped. To prevent this issue,
we relax the requirement that the sampling thread employ AnyActive with the freshest {#n;} available
to it. Instead, given the current {n;} and fresh set of {n}}, it precomputes the active status for each
candidate and “looks ahead”, marking an entire batch of blocks for either reading or skipping, and
communicates this with the I/O manager. The batch size, or the 1ookahead amount, is a system
parameter, and offers a trade-off between freshness of active states used for AnyActive and degree
to which the I/O manager must idle while waiting for instructions on which block to read next.
We evaluate the impact of this parameter in our experimental section. The 1lookahead process is
depicted in Figure 5.8 for a value of 1ookahead = 8. While the I/O manager processes a previously
marked batch of magenta-colored lookahead blocks, the sampling engine’s 1ookahead thread

marks the next batch in blue. It waits to mark the next batch until the I/O manager “catches up”.

79



Employing lookahead allows us to prevent two bottlenecks. First, the sampling engine need not
wait for each candidate’s active status to update after a block is read before moving on to the next
block, effectively decoupling it from the I/O manager.

The second bottleneck prevented by lookahead is more subtle. To illustrate it, consider the
pseudocode in Algorithm 5.2, implementing the AnyActive block policy. The AnyActive block
policy algorithm works by considering each candidate in turn, and querying a bitmap index for that
candidate to determine whether the current block contains tuples corresponding to that candidate.
Querying a bitmap actually brings in surrounding bits into the cache of the CPU performing the
query, and evicts whatever was previously in the cache line. If blocks are processed individually,
then only a single bit in the bitmap is used each time a portion is brought into cache. This is
quite wasteful and turns out to hurt performance significantly as we will see in the experiments.
Instead, applying AnyActive selection to lookahead-size chunks instead of individual blocks is a
better approach. This simply adds an extra inner loop to the procedure shown in Algorithm 5.2
(depicted in Algorithm 5.3). This approach has much better cache performance, since it uses an
entire cache-line’s worth of bits while employing AnyActive.

We verify in our experiments that these optimizations allow FAsTMATCH to terminate more
quickly via AnyActive block selection with fresh-enough active states without significantly slowing

any single component of the system.

5.4.3 System Architecture

FastMarTcH is implemented within a few thousand lines of C++. It uses pthreads [160] for its
threading implementation. FASTMATCH uses a column-oriented storage engine, as is common for
analytics tasks. We can now complete our description of Figure 5.7. When the I/O manager receives
a request for a block at a particular block index from the sampling engine (via the “block index”
message), it eventually returns a buffer containing the data at this block to the sampling engine (via
the “buffer” message). Once the 1/0 phase of stage 1 or 2 of HistSim completes, the sampling engine
sends the current per-group counts for each candidate, {r;}, to the statistics engine. After running a
test for whether to move to stage 2 (performed in stage 1) or to terminate (performed in stage 2), the
statistics engine either posts a message of updated n’ (in stage 1) or {n}} (stage 2) that the sampling
engine uses to determine when to complete the I/O phase of each HistSim stage, as well as how to

perform block selection during stage 2.
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Dataset H Size | #Tuples #Attributes | Replications

FricuTs || 32 GiB | 606 million 7 5%
Taxi 36 GiB | 679 million 7 4x
Porice | 34 GiB | 448 million 10 72

Table 5.2: Descriptions of datasets used to evaluate FAsTMATCH.

5.5 EMPIRICAL STUDY

The goal of our experimental evaluation is to test the accuracy and runtime of FAsTMATcH against
other approximate and exact approaches on a diverse set of real datasets and queries. Furthermore,
we want to validate the design decisions that we made for FAstMaTcH in Section 5.4 and evaluate

their impact.

5.5.1 Datasets and Queries

We evaluate FastMATcH on publicly available real-world datasets summarized in Table 5.2 —
flight records [134], taxi trips [161], and police road stops [162]. The replication value indicates
how many times each dataset was replicated to create a larger dataset. In preprocessing these
datasets, we eliminated rows with “N/A” or erroneous values for any column appearing in one or

more of our queries.

FriGgHTs Dataset. Our FLiGHTs dataset, representing delays measured for flights at more than 350
U.S. airports from 1987 up to 2008, is available at [ 134]; we used 7 attributes (for origin / destination

airports, departure / arrival delays, day of week, day of month, and departure hour).

Taxrt Dataset. Our Taxi dataset summarizes all Yellow Cab trips in New York in 2013 [161].
The subset of data we used corresponds with the urls ending in “yellow_tripdata_2013” in the file
raw_data_urls.txt. We extracted some time-based discrete attributes, two attributes based on
passenger count, and one attribute based on area, for 7 columns total. In particular, the “Location”
attribute was generated by binning the pickup location into regions of 0.01 longitude by 0.01 latitude.
As with our FLigHTs data, we discarded rows with missing values, as well as rows with outlier
longitude or latitude values (which did not correspond to real locations). The taxi data stressed our
algorithm’s ability to deal with low-selectivity candidates, since more than 3000 candidates have

fewer than 10 total datapoints.

PoLice Dataset. Our PoLice dataset summarizes more than 8 million police road stops in

Washington state [162]. We extracted attributes for county, two gender attributes, two race attributes,
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(Query |  Z ([Vz) | X ([ | & | target |
F-¢g, Origin (347) DepartureHour (24) | 10 Chicago ORD
F-q» Origin (347) DepartureHour (24) | 10 Appleton ATW
F-q3 Origin (347) DayOfWeek (7) 5 1/[4,8,8,8,8, 8]
F-q4 Origin (347) Dest (351) 10 | closest r; to uniform
T-q1 Location (7641) HourOfDay (24) 10 | closest r; to uniform
T-g, Location (7641) MonthOfYear (12) 10 | closest r; to uniform
P-q, RoadID (210) | ContrabandFound (2) | 10 | closest r; to uniform
P-g» RoadID (210) OfficerRace (5) 10 | closest r; to uniform
P-g; Violation (2110) DriverGender (2) 5 | closest r; to uniform

Table 5.3: Summary of queries used to evaluate FAstMaTcH

road number, violation type, stop outcome, whether a search was conducted, and whether contraband

was found, for 10 attributes total.

Queries and Query Format. We evaluate several queries on each dataset, whose templates are
summarized in Table 5.3. We had four queries on FLigHTs, FLiGHTS-q1-q4, two on Taxi, Taxi-q1-q2,
and three on PoLick, PoLice-ql-q3. For simplicity, in all queries we test, the x-axis is generated
by grouping over a single attribute (denoted by “X” in Table 5.3), and the different candidates are
likewise generated by grouping over a single (different) attribute (signified by “Z”). For each query,
the visual target was chosen to correspond with the closest distribution (under £;) to uniform, out
of all histograms generated via the query’s template, except for ql, q2, and q3 of FrLiguts. Our
queries spanned a number of interesting dimensions: (i) frequently-appearing top-k candidates:
Frigurs-ql, PoLice-ql and q2, (ii) rarely-appearing top-k candidates: FrLigars-q2 and q3, (iii)
high-cardinality candidate attribute Z : Taxi-ql and q2 (|Vz| = 7641), PorLice-q3 (|Vz| = 2110),
and (iv): high-cardinality grouping attribute X : FLigats-g4 (|Vx| = 351). The taxi queries in
particular stressed our algorithm’s ability to deal with low-selectivity candidates, since more than

3000 locations have fewer than 10 total datapoints.

5.5.2 Experimental Setup

Approaches. We compare FASTMATCH against a number of less sophisticated approaches that
provide the same guarantee as FaAstMaTcH. All approaches are parametrized by a minimum
selectivity threshold o, and all approaches except Scan are additionally parametrized by ¢ and § and
satisfy Guarantees 5.1 and 5.2 with probability greater than 1 — §.

e SyncMatch(e, §, o). This approach uses FaAstMaTcH, but the AnyActive block selection policy

is applied without 1ookahead, synchronously and for each individual block. By comparing
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this method with FastMatch, we quantify how much benefit we may ascribe to the lookahead
technique.

e ScanMatch(e, §, o). This approach uses FastMATcH, but without the AnyActive block selection
policy. Instead, no blocks are pruned: it scans through each block in a sequential fashion until
the statistics engine reports that HistSim’s termination criterion holds. By comparing this with
SyncMatch, we quantify how much benefit we may ascribe to AnyActive block selection.

e Scan(o). This approach is a simple heap scan over the entire dataset and always returns correct
results, trivially satisfying Guarantees 5.1 and 5.2. It exactly prunes candidates with selectivity
below o. By comparing Scan with our above approximate approaches, we quantify how much

benefit we may ascribe to the use of approximation.

Environment. Experiments were run on single Intel Xeon E5-2630 node with 125 GiB of RAM
and with 8 physical cores (16 logical) each running at 2.40 GHz, although we use at most 2 logical
cores to run FastMatcH components. The Level 1, Level 2, and Level 3 CPU cache sizes are,
respectively: 512 KiB, 2048 KiB, and 20480 KiB. We ran Linux with kernel version 2.6.32. We
report results for data stored in-memory, since the cost of main memory has decreased to the point
that most interactive workloads can be performed entirely in-core. Each run of FAsTMATcH or any
other approximate approach was started from a random position in the shuffled data. We report both
wall clock times and accuracy as the average across 30 runs with identical parameters, with the
exception of Scan, whose wall clock times we report as the average over 5 runs. Where applicable,
we used default settings of m = 5 - 10°,8 = 0.01, ¢ = 0.04, 0 = 0.0008, and 1lookahead = 1024.
We set the block size for each column to 600 bytes, which we found to perform well; our results are

not too sensitive to this choice.

5.5.3 Metrics

We use several metrics to compare FASTMATCH against our baselines in order to test two
hypotheses: one, that FAstMATtcH does indeed provide accurate answers, and two, that the system
architecture developed in Section 5.4 does indeed allow for earlier termination while satisfying the
separation and reconstruction guarantees.

Wall-Clock Time. Our primary metric evaluates the end-to-end time of our approximate approaches
that are variants of FAsTMATcH, as well as a scan-based baseline.

Satisfaction of Guarantees 5.1 and 5.2. Our ¢ parameter (6 = 0.01), serves as an upper bound
on the probability that either of these guarantees are violated. If this bound were tight, we would
expect to see about one run in every hundred fail to satisfy our guarantees. We therefore count the

number of times our guarantees are violated relative to the number of queries performed.
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| Query |

|

Avg Speedup over Scan (raw time in (s)) ‘

|
| Scan(s)

|
|

| \ | ScanMatch | SyncMatch | FastMarch |
F-ql 12.26 27.74x (0.44) | 25.53x (0.48) | 37.52x (0.33)
F-q2 | 1229 | 3.17x (3.87) | 2.73x (451) | 10.11x (1.21)
F-q3 | 11.62 || 4.76x (2.44) | 3.14x (3.70) | 8.72x (1.33)
F-q4 13.97 5.93x (2.36) | 5.76x (2.43) | 8.15x (1.71)
T-ql 13.09 4.89x (2.68) | 0.32x (40.95) | 15.93x (0.82)
T-q2 13.09 6.48x (2.02) | 0.37x (35.60) | 17.38x (0.75)
P-ql 8.57 5.72x (1.50) 5.14x (1.67) | 13.34x (0.64)
Pq2 | 849 | 1431x (0.59) | 15.48x (0.55) | 36.11x (0.24)
P-q3 8.65 9.25x (0.93) 1.53x (5.66) | 33.26x (0.26)

Table 5.4: Summary of average query speedups and latencies

Total Relative Error in Visual Distance. In some situations, there may be several candidate
histograms that are quite close to the analyst-supplied target, and choosing any one of them to be
among the k returned to the analyst would be a good choice. We define the fotal relative error in visual

distance (denoted by A,) between the k candidates returned by FAstMATcH and the true & closest

Yiem d(riaQ)_ZjeM* d(l‘}k,(I)
Yjem= di,q)

Scan and only considers candidates meeting the selectivity threshold. Since FAsTMATcH and our

visualizations as: Agz(M, M*,q) = Note that here, M * is computed by
other approximate variants have no recall requirements with respect to identifying low-selectivity

candidates (they only have precision requirements), it is possible for A; < 0.

5.5.4 Empirical Results

Speedups and Error of FAstMaTcH versus others.

Summary. All FastMaTcH variants we tested show significant speedups over Scan for at least
one query, but only FastMaTcH shows consistently excellent performance, typically beating other
approaches and bringing latencies for all queries near interactive levels; with an overall speedup
ranging between 8x and 35x over Scan. Further, the output of FAsTMATCH and all approximate
variants satisfied Guarantees 5.1 and 5.2 across all runs for all queries.

Average run times of FastTMAaTtcH and other approaches, for all queries as well as speedups over
Scan, are summarized in Table 5.4. We used default settings for all runs. The reported speedups are
the ratio of the average wall time of Scan with the average wall time of each approach considered.
Scan was generally slower than approximate approaches because it had to examine all the data. Then,

we typically observed that ScanMatch and SyncMatch were pretty evenly matched, with ScanMatch

84



--%-- FASTMATCH --e-- SYNCMATCH --«-- SCANMATCH

flights-q1 flights-q2 flights-q3
15- % A e
: \ X 10
\ 101" AN
N\ \ N\
1.0 ‘& e
R 5 N
51 N ¢ Y
05F gl . N e
I s S e
i Voo, g i TN d SN
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.1
flights-q4 taxi-q1 (SYNCMATCH not shown) taxi-q2 (SYNCMATCH not shown)
8- A oA
—~~ N\
»n ok 751 N
g s0F N o IR
= 4r ’ A A
-+ o RN Y
_ b o A
:m 2 \‘$~:‘E:t_\. .y 25 76‘\\0 Hoa : é\‘xg A
= ::E'v_:=,,‘_ el B S R S
z |l M aues S S BN S T ey | L a2 S SN
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
police-q1 police-q2 police-q3
oFa R e
o 27.\\\
Y 15
4N
A L
\\\ 1t L) 10 LN
21 & Sy N RN
B, N sp oo
_— e G- TEIII A B
R e (P i SRS S st T S G B S D S
of f ?~%ff---‘*--f o i ?— %f‘ ‘__-__" ok To? ‘::-'*‘_’:_’_’f_'_'“f"""‘f”“‘t‘ .
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

¢ (at 6=0.01)

Figure 5.9: Effect of € on query latency

usually performing slightly better, except in some pathological cases where it performed very poorly
due to poor cache usage. FastMaTcH had better performance than either SyncMatch or ScanMatch,
thanks to lookahead paired with AnyActive block selection. Overall, we observed that each of
FastMAaTcH’s key innovations: the termination criterion, the block selection, and 1lookahead, all
led to substantial performance improvements, with an overall speedup of up to 35x over Scan.

Queries with high candidate cardinality (Taxi-q*, PoLice-q3), displayed particularly interesting
performance differences. For these, FastMatrcH shows greatly improved performance over
ScanMatch. It also scales much better to the large number of candidates than SyncMatch, which
performs extremely poorly due to poor cache utilization and takes around 3x longer than a simple
non-approximate Scan. In this case, the lookahead technique of FASTMATCH is necessary to reap
the benefits of AnyActive block selection.

Additionally, we found that the output of FastMarcu and all approximate variants satisfied
Guarantees 5.1 and 5.2 across all runs for all queries. This suggests that the parameter § may be a

loose upper bound for the actual failure probability of FAstTMATcH.

Effect of varying ¢.
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Summary. In almost all cases, increasing the tolerance parameter ¢ leads to reduced runtime and

accuracy, but on average, A; was never more than 5% larger than optimal for any query, even

Figures 5.9 and 5.10 depict the effect of varying ¢ on the wall clock time and on Ay, respectively,
using § = 0.01 and 1lookahead = 1024, averaged over 30 runs for each value of . Because of the
extremely poor performance of SyncMatch on the Taxi queries, we omit it from both figures.

In general, as we increased ¢, wall clock time decreased and A, increased. In some cases,

ScanMatch latencies matched that of Scan until we made ¢ large enough. This sometimes happened

when it needed more refined estimates of the (relatively infrequent) top-k candidates, which it

termination) tuples along the way.

Effect of varying lookahead.
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achieved by scanning most of the data, picking up lots of superfluous (in terms of achieving safe

Summary. When the number of candidates |Vz| is not large, performance is relatively stable as

lookahead varies. For large |Vz|, more 1lookahead helps performance, but is not crucial.

For most queries, we found that latency was relatively robust to changes in lookahead. Figure 5.11

depicts this effect. The queries with high candidate cardinalities (Taxi-q*, PoLice-q3) were the
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Figure 5.11: Effect of varying lookahead

exceptions. For these queries, larger Lookahead values led to increased utilization at all levels of
CPU cache. Past a certain point, however, the performance gains were minor. Overall, we found the

default value of 1024 to be acceptable in all circumstances.

Effect of varying 5. In general, we found that increasing § led to slight decreases in wall clock
time, leaving accuracy (in terms of A;) more or less constant. We believe this behavior is inherited
from our bound in Theorem 5.1, which is not sensitive to changes in §. Figure 5.12 shows the effect
of varying § on wall clock time. For the values of § we tried, we did not observe any meaningful

trends in A4 and have omitted the plot.

When approximation performs poorly. In order to achieve the competitive results presented in
this section, the initial pruning of low-selectivity candidates during stage 1 of HistSim ended up
being critical for good performance. With a selectivity threshold of o = 0, stages 2 and 3 of
HistSim are forced to consider many extremely rare candidates. For example, in the taxi queries,
nearly half of candidates have fewer than 10 corresponding datapoints. In this case, ScanMatch
performs the best (essentially performing a Scan with a slight amount of additional overhead), but
it (necessarily) fails to take enough samples to establish Guarantees 5.1 and 5.2. SyncMatch and
FastMaTcH likewise fail to establish guarantees, but additionally have the issue of being forced to
consider many rare candidates while employing AnyActive block selection, which can slow town

query processing by a factor of 100x or more.

Comparing results for £; and ¢, metrics. So far, we have not validated our choice of distance
metric (normalized £,); prior work has shown that normalized ¢, is suitable for assessing the
“visual” similarity of visualizations [138], so here, we compare our top-k with the top-k using the
normalized ¢, metric, for the FLicHTS queries. In brief, we found that the relative difference in
the total £, distance of the top-k using the two metrics never exceeded 4% for any query, and that
roughly 75% of the top-k candidates were common across the two metrics. Thus, £; can serve
as a suitable replacement for ¢,, while further benefiting from the advantages we described in

Section 5.2. Table 5.5 summarizes our full results.
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Figure 5.12: Effect of § on wall clock time
M*()NM*(L o 3 X
| Query H |(1)k—(2)| Relative distance difference
FLiGHTS-¢q; 0.9 0.01
FLIGHTS-¢> 0.7 0.04
FLIGHTS-q3 0.6 0.03
FLIGHTS-q4 0.8 0.01

Table 5.5: Comparison of top-closest histograms for £1 and £, metrics.

5.6 SUMMARY

We developed sampling-based strategies for rapidly identifying the top-k histograms that are

closest to a target. We designed a general algorithm, HistSim, that provides a principled framework

to facilitate this search, with theoretical guarantees. We showed how the systems-level optimizations

present in our FAsTMATcH architecture are crucial for achieving near-interactive latencies consistently,

leading to speedups ranging from 8x to 35x over baselines.

In the next chapter, we extend the FAstTMATcH architecture to support more general report

generation via techniques for approximating queries involving aggregates.
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CHAPTER 6: SAFE APPROXIMATION FOR REPORT GENERATION

In this chapter, we extend the FAsTMATcH architecture to develop FAsTFRAME, a more general
system that uses guaranteed error bounds to facilitate queries involving aggregates, with downstream
applications to report generation. We begin with motivation, then describe several issues that
existing error bounding techniques suffer from, before describing the data-aware mitigations that
FastFrRAME employs. After further elaborating on the system architecture from Chapter 5, we
perform an empirical study that evaluates FAsTFRAME along the axes of safety and interactivity,

again on several real datasets.

6.1 MOTIVATION

Primitives for aggregation like AVG, SUM, and COUNT are key to making sense of and drawing
insights from large volumes of data, powering applications in OLAP, exploratory data analysis, and
visual analytics. Accelerating their computation is therefore of great importance. Approximate
Query Processing (AQP) is commonly used to accelerate computation of these aggregates by
estimating them on a subset or sample of the full data. Reasoning about the error of the estimates as
introduced by approximation is crucial: consumers of approximate answers—ranging from human
decision makers to automated processes—rely on confidence intervals (Cls) or error bounds as
the foundation for understanding the quality of the approximate answer. Therefore, many AQP
techniques come with Cls to allow for more confident or informed decisions made using approximate
estimates.

Error bounding, or CI computation techniques take a confidence parameter § € [0, 1], with the
semantics that the returned intervals [gy, g,] fail to enclose the true aggregate g* at most § of the
time. One can tune § to be as small as needed at the cost of requiring more samples to achieve
the same interval width (g, — g¢). Likewise, for a given §, taking more samples typically causes
the error bounding procedure to return a narrower confidence interval. Since § is typically small,
we use the phrase “with high probability” (w.h.p.) as shorthand for “with probability greater than
(1 —48)”. CI computation techniques need to satisfy two goals: (i) compactness: by minimizing the
interval width g, — g¢, and (ii) correctness: by ensuring that g* € [g¢, g-] with high probability.
However, achieving both compactness and correctness simultaneously is difficult.

In general, conservative methods such as those based on Hoeffding’s inequality [155] or on the
Hoeftding-Serfling inequality [163] rely on a-priori knowledge of range bounds a and b between
which the data fall (typically inferred during data loading). Although they achieve the correctness

goal of error bounders, when used for AVG, the CI width for Hoeffding-based error bounders scales
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Figure 6.1: Few points may lie near the range bounds a and b, and with filters applied, the true range could
be significantly smaller than (b — a).

with the range size (b — a), creating at least two major issues in the context of a relational database,
illustrated in Figure 6.1. (i) First, the presence of a very few outliers can significantly widen the
range [a, b] (and therefore the CI width), even though most of the data may lie in a much smaller
range. In Figure 6.1, we see that even though the range of salaries is b —a when $pred = true,
most of the data is concentrated in the center of the range. (ii) Second, predicates and groupings
may be applied during data exploration, so that the filtered data lies in a smaller range than
[a, b]; in Figure 6.1, with $pred = p;, we see that the range of filtered salaries is much smaller
than even the $pred = true case. However, direct application of Hoeffding-based methods do not
account for the tighter range of the filtered data, instead treating the sampled tuples as if they were
taken from the original (unfiltered) data.

Thus, the focus of this chapter is to more deeply understand the issues that traditional conservative
error bounders suffer from, propose mitigations, and then extend our system architecture from
Chapter 5 to leverage these mitigations for interactive latencies while preserving strong correctness

guarantees.

6.2 DBMS ERROR BOUND INTEGRATION

In this section, we first describe applications of confidence intervals for facilitating query
processing in a database system (§6.2.1). Next, we survey methods for computing error bounds
with guarantees applicable to DBMS aggregates (§6.2.2) identify their shortcomings (§6.2.3) and

conclude with a formal problem statement (§6.2.4).
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Symbols / Terms Descriptions

D NS c.m Dataset, num. points in dataset (i.e. |D|), sample, num. points taken

o (for ¢) or desired (for m) in sample (i.e. |S|)
g . 8.80.8r True aggregate, estimate, error bounds
5 ~2 Range bounds, variance, empirical variance, error probability upper

a,b,0%,6% 4, ¢
bound, error
F,.F,L,U True / empirical CDF, lower and upper bounds on true CDF
Confidence lower (resp. upper) bounding routines parameterized on
a, b, N, and other sample state(see §6.2.2).
Sample-size-independent, pessimistic mass allocation, phantom
outlier sensitivity

Lbound, Rbound

SSI, PMA, PHOS

Table 6.1: Glossary of terms and notation used in Chapter 6

SELECT Origin, AVG(DepDelay) FROM flights
GROUP BY Origin HAVING AVG(DepDelay) < 0

Figure 6.2: Origin airports with negative average delay. In this query, the AVG aggregates are consumed
both by the user and by the system.

6.2.1 DBMS CI Applications

Consider the query in Figure 6.2. In this query, AVG aggregates are both displayed as output in
the query results, and are also used to filter the set of tuples in the output. This reflects two major
applications of confidence intervals in a DBMS setting: Cls that are explicitly used downstream,

i.e., by an analyst, or CIs that are implicitly used by automated processes.

Explicit Use of Downstream CIs. When approximating aggregates in a DBMS, CIs can be included
in the output displayed to users. For example, the AVG aggregates belonging to the groups output by
the query in Figure 6.2 are augmented with CIs and included in the output. Such ClIs help users

reason about uncertainty in approximate answers during analysis [2, 72].

Implicit Use of Downstream CIs. Confidence intervals have been applied towards various
downstream applications, for example, to enable early stopping. Example applications include
high-level accuracy contracts [4, 77] (i.e., guaranteeing query results are within € of the correct),
ranking query results [6], and bounding relative error [24]. In all cases, the user need not ever
observe the interval: the goal is to provide early stopping while ensuring correct results. We

consider these applications later in our experiments in Section 6.5.

Goal. In this chapter, we are primarily concerned with enabling CI compactness (to reduce query

latency) without sacrificing CI correctness (thereby ensuring safety), for both explicit and implicit
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applications of CIs. The major goal is therefore to develop CI techniques that are as tight as possible,
while always enclosing the quantity in question. Throughout this section and Section 6.3, we will
focus our discussion on Cls for AVG aggregates; we will cover SUM and COUNT aggregates in
Section 6.4.

6.2.2 Computing CIs in a DBMS

We now describe methods for computing error bounds with accuracy guarantees in a database
system, along with any assumptions required. Relevant notation is summarized in Table 6.1. We

begin by defining error bounders, bounds, and confidence intervals.

Definition 6.1 [(1 — §) error bounders and bounds]. A procedure P that returns error bounds
[g¢, gr] for some aggregate g* given a sample is a (1 — §) error bounder if, across all possible
samples, P (g* ¢ [g¢, &r]) < 0. [ge¢, -] is called the (1 — §) confidence interval for g*, and g; and

gr are collectively referred to as (1 — §) error or confidence bounds.

In contrast with asymptotic error bounders that only satisfy P (g* ¢ [g¢, g-]) & 6 for large-enough
sample sizes, the (1 — §) error bounders from Definition 6.1 always satisfy P (g* ¢ [g¢, g7]) < 6

for any sample size, so we call them sample-size-independent (SSI).

Assumptions Applicable to Data in a DBMS

In the case of AVG aggregates, all error bounding procedures require some prior knowledge about
the data over which they operate — otherwise, outliers can have arbitrarily strong effects on the
aggregate in question. Weaker assumptions are more general, but typically yield more conservative
bounds.

In this chapter, we make two assumptions about the data ‘D over which queries operate: first,
that every datapoint x € D lies in some interval [a, b]; second, that datapoints can be effectively
sampled without replacement from D, as in the previous chapter. We now discuss these assumptions

in the context of prior work and show that they can be implemented effectively within real systems.

Known Range Bounds. As in prior work [2], we assume that the database catalog maintains range
bounds a and b for the MIN and MAX of each continuous column, inferred, for example, during
data loading. (Note that we do not require [a, b] = [MIN, MAX], but only that [a, b] D [MIN, MAX].)
These assumptions are more applicable in the context of a database as compared with stronger
distributional assumptions (e.g., that the data are normal or that they obey a tighter sub-Gaussian
parameter than that implied by the range bounds [164]) and can be easily maintained in the case of

insertions. We refer to bounders that assume knowledge of a and b as range-based error bounders
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throughout this chapter. Furthermore, it is possible to leverage the range assumption even in the case
of aggregates involving arbitrary expressions over multiple columns by first solving an optimization

problem for derived range bounds a” and b’ that enclose the transformed data.

Sampling Without Replacement. Estimates for AVG aggregates generally converge faster for
samples taken without replacement than samples taken with replacement [156, 163]. In the context of
a DBMS, sampling with replacement has traditionally been considered easier than sampling without
replacement, since the system does not need to “remember’” the samples already taken [6, 165].
Sampling as traditionally implemented, however, also has poor locality properties, as nearly every
read operation results in a cache miss. Another approach taken in prior work [157, 158, 159] is to
materialize samples ahead-of-time by performing a single up-front shuffle of the entire relation, so
that sampling without replacement can be implemented via a scan of the data regardless of any
applied filters or other transformations. As we leverage the same architecture from Chapter 5, we

opt for this approach.

State for DBMS Error Bounds

OLAP queries must operate over many tuples, so it is desirable that aggregations and their error
bounders maintain small of memory footprints as possible as new tuples are examined, although we
will see in Section 6.2.2 that some bounders must maintain state which grows with the number of
tuples examined. To better understand implementation details for error bounders within the context
of a DBMS, we present error bounders in terms of the following interface:

@ init_state(): Initializes state needed for error bounds.
® update_state (S, v): Given the current state S and a newly-seen value v, compute state S’.
® Lbound(S,a, b, N, §): Return a confidence lower bound for a sample whose relevant statistics

are captured in state .S, assuming the sample came from a finite dataset D of N values in [a, b].

The probability of a sample that causes Lbound to return a value greater than AVG(D) is < 4.
® Rbound (S, a, b, N,§): Symmetric to Lbound for the confidence upper bound. Can typically be

implemented in terms of Lbound after a suitable transformation of S
The state S captures information such as the count of tuples examined and the current running
average, as well as anything else required by Lbound and Rbound. The state initialization and
update logic is analogous to state maintenance logic for aggregate functions as implemented in
existing commercial database systems [166, 167, 168, 169].

Note that both Lbound and Rbound depend on the range bounds a and b, as well as the data size

N (allowing for tighter bounds when sampling without replacement).
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Algorithm 6.1: Hoeffding-Serfling error bounder [163]

1 function init_state() ©
2 | return{m: 0, g: O

function update_state(S,v) @

m <« Sm+1;

g« Sg+w-8.98)/m;

return {m: m', g: g'};
function Lbound (S, a, b, N,§) [163] ©

S =]

S n A W

2

9 return S.g — ¢;

10 function Rbound(S,a,b, N,5) O

1 S.g<«(a+b)—S5.8;

12 return (a + b) — Lbound(S, a, b, N, §);

Error Bounds for Finite and Bounded Data

In this section, we review some techniques for computing confidence intervals that leverage
only the assumptions discussed previously: that samples are taken without-replacement from data
bounded in some a priori-known range [a, b]. Our goal is not to be exhaustive but representative,

drawing attention to previous applications in the DB literature (and lack thereof).

Hoeffding-Serfling-based Bounder. An error bounder based on the Hoeffding-Serfling inequal-
ity [163] computes CIs whose widths depend only on the range (b —a) and the number of samples m,
and that have size O ((b —a)/ \/n_a) (if we ignore the sampling fraction term). While asymptotically
optimal for worst-case data distributed with half of the points at a and the other half at b, it is
needlessly wide in practice, when few points occur near a or b. An implementation of this bounder
in terms of our interface from Section 6.2.2 is given in Algorithm 6.1. We give a statement of the

Hoeffding-Serfling inequality and derive the corresponding error bounder.

Lemma 6.1 (Hoeffding-Serfling Inequality [163]). Let D = xy,...,xn be a set of N values in
[a, b] with average value AVG(D) = . Let Xy, ..., Xy be a sequence of random variables drawn

from D without replacement. For every 1 <m < N and ¢ > 0,

k

X _

P max Zemt&e=) o me ) 6.1)
1<k<m N —k N —m
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Algorithm 6.2: Empirical Bernstein-Serfling err. bounder [156]

1 function init_state() ©
2 ‘ return{m: 0, g: 0, M,: O};

function update_state(S,v) @

m <« S.m+1;

g« Sg+w-S8.8)/m;

M, <~ S.M + v,

return {m: m', g: g, My: M;};
function Lbound (S, a, b, N,§) [156] ©

9 K <—T/3+3//2;

10 p<—H{S.m§N/2}-(1—S'"X,_1);

n | p<p+I{Sm>N/2}-(1-52)-(1+ <))
12 8<—\/S.Mz/S.m—S.gfz-\/%S/S)—i—/c-(b—a)-%;
13 return S.g — ¢;

14 function Rbound(S,a,b,N,5) O

15 S.g<«(a+b)—S5.8;

16 return (a + b) — Lbound(S, a, b, N, §);

N QA AW

=]

where

2me?
5 = exp (—(1 - mT_l)(b - a)z) (6.2)

By focusing on k = m and inverting the probability expression, we may compute a 1 — & lower

confidence bound as

LS X —a)\/ (4= og ) (6.3)

— 2m

(13 29

and likewise for a upper confidence bound (replacing with “4”), so that (1 — %) lower and upper
confidence bounds may be combined to yield a (1 — §) confidence interval (via a union bound).

Empirical Bernstein-Serfling-based Bounder. A concentration inequality for sampling without
replacement given in [156], the Bernstein-Serfling inequality assumes knowledge of both (b — a)
and VAR(D) = 02 = & Y, (x — AVG(D))?. We defer a statement of the full result. Here we

note that inverting the inequality gives error bounds as

%Zx, + O (0//m+ (b—a)/m) (6.4)
t=1
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if we again ignore the sampling fraction term. Comparing these error bounds to those of Hoeffding-
Serfling, which has widths of size O ((b —a)/ ﬁ) (again ignoring the sampling fraction), we see
that error bounds derived from the Bernstein-Serfling inequality can be significantly tighter when o
is small compared to (b — a).

Knowledge of VAR(D) typically cannot be assumed in a setting where AVG(D) is unknown.
Fortunately, there also exists an empirical variant of the Bernstein-Serfling inequality (also given
in [156], like the non-empirical variant). The analysis for the empirical Bernstein-Serfling inequality
proceeds by augmenting the analysis for the non-empirical variant with a concentration inequality
relating the estimator 62 = L 3% (X, — X)? to VAR(D). We again deferring the full statement.
This yields (1 — §) error bounds given by

%}:XﬁtoﬁvJ%+wb—aym) (6.5)

Note that these error bounds differ from the those of the non-empirical variant only in that o is
replaced by ¢ (modulo slightly worse constants hidden by the asymptotic notation). Although
o is a random quantity, it concentrates near o, so that an error bounder based on the empirical
Bernstein-Serfling bound returns bounds of asymptotically the same width as those returned by an
error bounder based on the non-empirical variant and with full access to o2, w.h.p. Algorithm 6.2
gives an implementation of an empirical Bernstein-Serfling-based error bounder in terms of our
interface from Section 6.2.2. Note that Algorithm 6.2 as presented shows computation of the sample
variance in terms of the second moment M, = ) _ v? for the sake of exposition; a real implementation

might use a more numerically stable one-pass algorithm for the variance [170, 171, 172].

Anderson/DKW-based Bounder. Anderson described a way to compute distribution-free /
nonparametric error bounds for the mean given error bounds for the cumulative distribution function
(CDF) in [174]. Denoting the true and empirical CDF for some distribution supported on [a, b] with
Fand F, respectively, Anderson showed how to use high-probability bounds « and f such that

F-a<F<F+§ (6.6)

to get high-probability bounds on the mean of F. To see how, recall the following identity:

Lemma 6.2. Consider a CDF F supported on [a,b]. Then the mean | of the distribution

corresponding to F satisfies

b
w=b-— / F(x)dx (6.7)
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Algorithm 6.3: Anderson/DKW error bounder [173, 174, 175]

1 function init_state() ©
2 | return {}

3 function update_state(S,v) @
4 | return S U {v}

5 function Lbound(S,a,b, N,§) ©

log (1/8) .
2|S| s

7 F <« empirical CDF based on S;

8 S’e{xeS:ﬁ(x)fl—e};

9 return ¢ -a + (1 —¢) - AVG(S’);

10 function Rbound(S,a,b, N,5) O

u | return (a + b) —Lbound((a 4+ b) — S,a.,b, N, §);

6 E <

Thus, given lower and upper bounds L and U on the CDF F that satisfy Vx € [a,b], L(x) <
F(x) < U(x), error bounds around the mean may be computed as

b b
|:b—/ U(x)dx , b—/ L(x)a’xi| (6.8)

since L < F X U implies —U <X —F <X —L.
Anderson used the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [173] to compute « and S.
Informally, DKW states that the empirical CDF F computed from i.i.d. samples taken from a

distribution with CDF F concentrates around F everywhere:

Lemma 6.3 (DKW Inequality [173, 175]). Let X1, ..., Xm iid F, and let F be the empirical CDF

corresponding to the sample {X;}. Then for every ¢ > 0,

P| sup |F(r)— F(1)| > ¢ | < 2exp(—2me?) (6.9)
tedom(F)
The DKW inequality provides a method to obtain the values of o and B, since it implies that

7 log2/é “F<F4 log2/§
2m 2m

(6.10)
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Error Bounder PMA | PHOS | Sampling | Memory
Hoeffding(-Serfling) | v v R* (NR) 0(1)
Berstein(-Serfling) v R* (NR) O (1)
Anderson/DKW v R, NR O (m)

Table 6.2: Summary of properties exhibited by various error bounders. R = sampling with replacement, NR
= without. A * indicates that the non-Serfling variant also holds for NR sampling.

with probability greater than 1 — §. At the time [174] was published, however, the constant in front
of the DKW inequality had not yet been proved by Massart [175], so it appears that Anderson
computed o and B using a lookup table.

Although Lemma 6.3 as stated applies for sampling with replacement from an infinite population,
please see Appendix A.5 for a proof that DKW still holds when Xy, ..., X, are drawn without
replacement from a finite population of size N, for any N > 0, stated as the following theorem:

Theorem 6.1. For any N > 0, the DKW inequality applies for sampling without replacement from
a finite dataset of size N.

The procedure just described for computing error bounds around the mean of a distribution giveni.i.d.
samples thus also works for computing error bounds around AVG(D) given without-replacement
samples from the finite dataset D. It is presented in terms of our interface from Section 6.2.2 in
Algorithm 6.3.

Applications in Prior DB Literature. To our knowledge, Hoeffding and Hoeffding-Serfling-
based bounders are the only SSI bounders that have seen extensive use in the DB literature for
computing error bounds for AVG [2, 6, 24, 176]. We are aware of one incorrect application of
the empirical Bernstein-Serfling inequality [177] (incorrect because the procedure given in [177]
continuously recomputes confidence (1 — §) intervals as more samples are taken, so that the overall
procedure is no longer guaranteed to fail with probability at most §). Overall it is somewhat
surprising that error bounders derived from the empirical Bernstein-Serfling inequality [156] have
not seen more widespread usage, as they are nearly as simple to compute as those derived from the

Hoeffding-Serfling inequality and typically yield error bounds that are much tighter.

6.2.3 Error Bounder Pathologies

We identify two problems that cause SSI error bounders to be too conservative. These pathologies,
which we refer to as pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS),
are based on simple intuitions about how error bounders should behave: namely, they should

return tighter bounds when observing samples with fewer extreme values, and error lower bounds
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(respectively error upper bounds) should only be looser due to potential large values (resp. small

values) if such values are actually observed.

Pessimistic Mass Allocation

PMA captures the intuition that error bounders should be sensitive to the observed sample values:

Definition 6.2 [PMA]. An error bounding procedure P exhibits pessimistic mass allocation (PMA)
if there exists a dataset D bounded in [a, b, a value a’ witha < a’ < b, and a set S C D with
values in [a,a’) such that, for S" = {max (x,a’) : x € S}, P returns a confidence interval of the
same width for both S and S’. P likewise exhibits PMA if there exists some b’ witha < b’ < b
and an S with values in (b', b] such that, for S = {min (x,b’) : x € S}, P returns a confidence
interval of the same width for both S and S’.

That is, for an error bounder P with PMA, we can replace the smallest (largest) elements in a
sample with something larger (resp. smaller) without shrinking the width of P’s returned confidence
interval. For example, for data known to lie in [0, 1], P might yield an interval of the same width
for both a sample split evenly between 0 and 1 as well as a sample split evenly between 0.25 and
0.75, even though the latter sample should clearly give rise to a tighter interval. Intuitively, P
is overly-pessimistic about how mass in the underlying distribution from which it is sampling is

allocated, despite contrary evidence observed in the sample.

Phantom Outlier Sensitivity

PHOS captures the intuition that unobserved extreme values should not affect both the lower and

the upper error bounds computed by some error bounder P:

Definition 6.3 [PHOS]. An error bounding procedure P exhibits phantom outlier sensitivity (PHOS)
if, for data falling in [a, b], P’s returned confidence lower bound gy depends on the value of b, and
similarly if the g, returned by P depends on a.

To understand PHOS intuitively, consider the case of computing a confidence lower bound. Given
asample S, the worse P “believes” S could be shifted (on average) toward larger values as compared
to D, the smaller of a confidence lower bound it should return. In what ways could S be shifted
toward higher values? One possibility is if small elements are underrepresented in S. The other
possibility, and the one we are interested in, is if large elements are overrepresented in .S. For this
reason, a confidence lower bound should only be affected by datapoints near the upper range bound
b if it actually observes them, and the appearance of b in the computation of a confidence lower

bound is a potential source of unnecessary conservativeness.
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Figure 6.3: Error bounds from the DKW inequality exhibit pessimistic mass allocation.

Examples of PMA and PHOS in Error Bounders

In this section, we give examples of PMA and PHOS in the context of previously-discussed error

bounders. Table 6.2 summarizes pathologies exhibited by various SSI error bounders.

Hoeffding-based. Hoeffding-based error bounders suffer from both PMA and PHOS. They have
PMA since their returned Cls have widths depending only on the range of the data, (b — a), and
the number of samples. As such, replacing values in the sample with larger or smaller values does
not affect the width of the returned error bounds. Such bounders also have PHOS since they have

symmetric error, with both ends of the confidence interval depending on both range bounds a and b.

Berstein-based. Bernstein-based error bounders do not suffer from PMA. To see this, notice that
increasing the smallest values in some sample will also reduce the sample variance, affecting the
width of the returned confidence interval, and likewise for decreasing the largest values in the
sample. These bounders do, however, suffer from PHOS. Like Hoeffding-based bounders, they
return confidence intervals with symmetric error, so that each end of the confidence interval is

affected by both ends of the data range a and b.
Anderson/DKW-based. Anderson/DKW-based error bounders are interesting in that they suffer

from PMA, but not PHOS. Consider the ¢ mass unaccounted for when computing a confidence lower
bound using an Anderson/DKW-based bounder. As shown in Figure 6.3, it all goes toward to lower
range bound, a, which is sufficient for PMA. On the other hand, where does it come from? It comes
from the e-fraction largest observed points. This does not depend at all on the value of the upper
range bound b, indicating that the confidence lower bound does not suffer from PHOS. Symmetric

statements hold for the confidence upper bound, of course.
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6.2.4 Problem Statement
We are now ready to give a formal problem statement.

Problem 6.1. Design an SSI error bounder that, given a without-replacement sample from any D
with elements from [a, b] C R, suffers from neither PMA nor PHOS when computing (1 — §) error
bounds for AVG(D), forany 0 < § < 1.
Our solution to Problem 6.1 is given in Section 6.3 and relies on a technique we call range
trimming in order to systematically eliminate PHOS from any range-based error bounder.
Although the solution as presented in Section 6.3 additionally assumes knowledge of the size of

D, Section 6.4 shows how our real-world implementation circumvents this limitation.

6.3 FIXING BOUNDER PATHOLOGIES

From our discussion in Section 6.2.3, we see that there do exist error bounders without one of
either PMA or PHOS, but not without both. We first argue that error bounders without PHOS must
be asymmetric; that is, they cannot compute bounds of the form g + &, where the same ¢ is both
added and subtracted to the sample average ¢ in order to compute bounds. Next, we describe how
to use a process we call range trimming to convert any symmetric, ranged-based error bounder to an

asymmetric one without PHOS.

6.3.1 Decoupling Lower and Upper Bounds

Excepting an error bounder based on DKW, all of the error bounders surveyed suffer from PHOS.
This is because all the other error bounders are based on concentration inequalities with symmetric
error — that is, they return confidence intervals [gy, g,] of the form [g — &, & + ¢]. At a high level,
it is precisely this symmetry that causes PHOS. Although a confidence lower bound should not have
any dependency on b, it is intuitively unavoidable that it has some dependency on a. Reiterating, an
estimate ¢ could be an overestimate because of (i) not enough observed values near a, or (ii) too
many observed values near b. A similar statement holds regarding confidence upper bounds, with
the roles of a and b reversed.

We hypothesize that it is impossible for any confidence lower bound (resp. upper bound) to
completely eliminate the dependency on a (resp. b), since it is always possible that the confidence
bounding procedure got “unlucky” and operated on a sample in which values near a (resp. b) were
underrepresented. Taking this hypothesis as given, this means that any symmetric confidence
bounding procedure that returns bounds of the form [g — &, & + ¢] will have & dependent on both a

and b — that is, any symmetric confidence bounding procedure will have PHOS. As such, the first
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Figure 6.4: Range trimming eliminates PHOS for range-based error bounders.

step to eliminating PHOS from range-based confidence bounders is to accept asymmetric error as a
hard requirement: that is, we must consider confidence bounding procedures that return bounds of

the form [g¢ — ¢, & + &,] for which & and ¢, are not necessarily equal.

6.3.2 Range Trimming

Our approach to deriving an error bounder with neither PMA nor PHOS is to start with a symmetric
bounder without PMA (such as that of Algorithm 6.2) and “asymmetrize” it so that Lbound becomes
independent of b, and Rbound becomes independent of a, thereby eliminating PHOS. The result,
given in Algorithm 6.4, wraps any existing range-based error bounder.

Besides the memory required to maintain state for the left and right error bounders, S¢ and S,
Algorithm 6.4 requires O (1) extra memory to maintain the MIN and MAX element seen so far (which
replace a and b when computing Rbound and Lbound, respectively).

When D contains unique elements, Algorithm 6.4 conceptually performs the following steps:

1. Sample S without replacement from D.

2. Use Lbound to compute a 1 — % lower confidence bound for AVG(D < ax 5), with S — {max S'}
as the sample, and with ¢ and max S in place of the normal range bounds a and b, respectively.

3. Use Rbound to compute a 1 — % upper confidence bound for AVG(D= i 5), with S — {min S} as

the sample, and with min S substituted for the range bound lower bound a.

Note that we use D, and D-  as shorthand for D N (—oo, x) and D N (x, 0o), respectively. The
primary difference between these high-level steps and the pseudocode presented in Algorithm 6.4 is
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Algorithm 6.4: The RangeTrim meta-algorithm
Input: Dataset D of N values in [a, b], error prob. §, sample size m
Output: Error bounds that fail to enclose AVG(D) with probability < §

Sy < init_state(Q);

S, < init_state();

a’ < sample_without_replacement (D);
b~ a’

fori =1tom—1do

v < sample_without_replacement (D);
S¢ < update_state(S;, min(v, b"));

S, < update_state(S,, max(v,a’));

a’ < min(a’, v);

10 b" < max(b’, v);

11 end

12 return [Lbound(S¢,a,b’, N — 1, %), Rbound(S,,a’,b, N — 1, %)];

o 0 NN S Ut AW N -

that Algorithm 6.4 maintains min .S and max S in an online, streaming fashion (so that the sample S
does not need to be stored in memory), and that the confidence interval returned by Algorithm 6.4 is
valid even when D contains duplicates (although the returned confidence bounds will bound the
AVG of sets that differ slightly from D .« s and D+ i, s). That said, we restrict our discussion and
analysis to the case where D contains unique elements, for simplicity.

Correctness of Algorithm 6.4 crucially depends on the fact that, conditioned on the value of
max S (and for any such value), the remaining elements in S (namely S — {max S}) constitute
a uniform without-replacement sample from D _ ., 5, with a symmetric statement for min S and
S —{min S'}. Ata high level, this means that a confidence lower bound computed over S — {max S}
is a valid confidence lower bound for AVG(D <ax s ), and since AVG(D <ax s) < AVG(D), it is also
a valid confidence lower bound for AVG(D), with symmetric statements holding for the confidence

upper bound, S — {min S}, and D~ ,;, 5. These core ideas are illustrated in Figure 6.4.

Tradeoffs. When either of the range bounds a or b are actually observed in a sample, Algorithm 6.4
will compute Cls that are looser than necessary. For example, suppose that, for [a, b] = [0, 1], a
sample with a single 0 is observed. When computing the upper confidence bound, Algorithm 6.4 sets
a’ = 0, which is the same as the original a; however, it also throws away this 0 point which would
have pulled the upper confidence bound lower. The upper confidence bound actually computed will
end up being larger than necessary, corresponding to an unnecessarily loose interval. Fortunately,
we have found that, in practice, losing this single sample does not significantly increase the number

of samples needed to achieve some desired CI width.
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6.3.3 Correctness of Algorithm 6.4

We now give a theorem on the correctness of Algorithm 6.4.

Theorem 6.2. Given SSI range-based bounders Lbound and Rbound for computing lower (resp.
upper) confidence bounds and a dataset D of N unique values known to all fall in the interval
[a,b] C R, Algorithm 6.4 returns a (1 — 8) confidence interval for AVG(D).

Please see the appendix (§A.6) for the proof.

6.4 SYSTEM CONSIDERATIONS

In this section, we address a number of implementation issues that become pertinent when
applying techniques of previous sections in a real system. Although the techniques presented in this
section are auxiliary to our primary contribution and can be used with any CI approach, they are
developed with SSI error bounders and strong probabilistic guarantees in mind. First, we describe
how to augment the techniques of Section 6.3, which apply for a fixed sample size taken without
replacement from a finite dataset of known size, with locality-aware scan-based without-replacement
sampling that need not know N, and we further describe how to use this layout to facilitate SUM and
COUNT aggregations (§6.4.1). Next, we describe an optional stopping routine that does not require
a sample size to be specified up-front (§6.4.2). Finally, we describe an active scanning architectural
optimization that prioritizes samples that facilitate early termination (§6.4.3), all without losing
guarantees proved in Section 6.3.

These system details are implemented within the context of FAsTFrRaAME, which is relational
column store for approximate report generation with guarantees that generalizes that FAsTMATcH
architecture from Chapter 5. FAsTFRAME uses the error bounders from Section 6.3 and pairs them
with a practical architecture for without-replacement sampling. As in Chapter 5, FAsTFRAME uses
block-based bitmaps over categorical attributes for efficient processing of queries with predicates or
groups. Furthermore, for continuous attributes, FASTFRAME stores the minimum and maximum

values in a catalog, to be used as the range bounds a and b for the desired range-based error bounder.

6.4.1 Scan-Based Sampling for DB Aggregates

We now describe how FasTFrRaME implements without-replacement sampling in a locality-aware
manner by scanning over pre-shuffled data, and furthermore how this approach can be used to
compute CIs for COUNT and SUM. As in Chapter 5, the up-front shuffling cost need only be paid
once in order to facilitate many queries, although care must be taken to set the error probability
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4 small enough when running multiple queries to avoid losing error bounder guarantees. This
approach is not new and has been used in prior work [157, 158, 159, 178]. We begin by introducing

scrambles and aggregate views:

Definition 6.4 [Scramble]. A scramble is an ordered copy of a relational table that has been

permuted randomly, allowing for scan-based without-replacement sampling.

Note that there exist external shuffling techniques that can handle data too large to fit in
memory [179].

Scanning a continuous column in a scramble is equivalent to sampling without replacement. In
fact, scanning any subset of data in a continuous column in a scramble (assuming the subset is
chosen without knowledge of the order of data) is also equivalent to sampling without replacement,
so that scanning a scramble can be used to sample without replacement for any aggregate appearing

in a query containing arbitrary filters or GROUP BY clauses. We call such subsets aggregate views:

Definition 6.5 [Aggregate View]. An aggregate view for some aggregate A appearing in a query
(possibly belonging to a group induced by a GROUP BY clause) is the set of values in a scramble

that contribute toward the computation of A.

Choosing § to Maintain Guarantees. Note that § must be divided by the number of aggregate
views in a query (or an upper bound) to preserve error guarantees (via a union bound). Furthermore,
to guarantee (via another union bound) that the probability of one or more queries in a workload
giving incorrect results is at most §, we must further divide by (an upper bound on) the number
of queries in the workload before supplying it as a parameter to an error bounder. For this reason,
we choose § = 107!5 when we discuss our empirical study in Section 6.5, since even for large
workloads comprised of, say, 107 queries, the probability of one or more mistakes will still be at
most 1078, Indeed, our techniques are specifically targeted toward the case wherein it is known
ahead of time that a large (but possibly unknown) number of exploratory queries will be issued,
so that the cost to materialize the scramble is justified. Note that, provided § is properly decayed,
guarantees hold when the same scramble is used across an entire query workload; i.e., it is not

necessary to reshuffle the scramble between queries.

Computing CIs for COUNT. Ensuring that data in a scramble are permuted randomly makes it
easy to compute bounds on the selectivities of aggregate views, and by extension on the COUNT
of tuples in each aggregate view, using existing techniques [180, 181]. To outline the basic idea,
consider that one can conceptually assign each row of a scramble a 1 if it belongs to the aggregate
view of interest, and a 0 otherwise. The AVG of this “derived” view (over the whole scramble) is
exactly the selectivity of the aggregate view, and we can use a Hoeffding-Serfling-based bounder

to compute a CI for the selectivity (using range bounds of ¢ = 0 and b = 1). Multiplying these
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bounds by the total number of rows in the scramble then yields a CI for the COUNT of rows that
participate in the aggregate view.

In more detail, for a scramble with R rows, N of which are in the sample view V for a query
0, the number of rows seen that belong to V', m,, after scanning r rows of the scramble is a
hypergeometric random variable [143] whose mean is the selectivity o, of V' multiplied by r, oy, - r.
One could use bounds specifically tailored to the hypergeometric distribution (or even perform an
exact computation) to compute an upper bound on o, that holds w.h.p., but in this work we use a

simple strategy that uses Hoeffding-Serfling to bound o, stated as follows.

Lemma 6.4. The probability that a scan of a scramble of size R that has processed r rows so

far sees fewer than (o, — ¢€) - r or more than (o, + ¢€) - r rows belonging to V is at most 8, for

e — \/ lo2@/8) (1 _ r=1)

Proof. Follows immediately from application of the Hoeffding-Serfling inequality [163].

Lemma 6.4 implies that, for a scan that has seen m, rows so far belonging to V', o, is within

’o\vj:s:@:t\/w-(l—u) 6.11)
r 2r R

w.h.p. This in turn implies that N, the number of tuples belonging to V, is within [N~, N*] =
[(Gy — &) R, (G, + €) - R], w.hp.

Combining Lemma 6.4 with error bounders to compute CIs for AVG with unknown COUNT.
For error bounders Lbound and Rbound of the form described in Section 6.3 that require the data

range bounds a and b as well as the data size N, a (1 — §) confidence interval is computed as
[Lbound(S,a,b, N,5/2), Rbound(S,a, b, N,§/2)] (6.12)

The following theorem describes how to use Lemma 6.4 to compute (1 — §) error bounds when

N is unknown.

Theorem 6.3. Consider a query Q operating over some size- R scramble with corresponding sample
view V. Suppose a scan the scramble that has processed k rows so far has seen m, rows belonging

to V (from which S is computed). Letting

+_[m log(1/(1—a)-8) (  r—1Y\)}
vee (e [GZ0D (12)) 613
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then the interval
[Lbound(S,a,b, N*, - §/2), Rbound(S,a,b,N*, o -8/2)] (6.14)

is a (1 — 8) confidence interval for the mean of V, for any o € (0, 1).

Proof. Conditioning over whether N < N or N > N, the probability that the aforementioned

interval [L, R] fails to contain the desired mean p is

P(ué¢[L,R]|N>N")-P(N>NT) (6.15)
+P(n ¢ [L.R]|N<N*)-P(N<NT) (6.16)
<P(N>NT)+P(u¢[L.RI|N <N (6.17)

By Lemma 6.4, the first probability is at most (1 — &) - 6, and Lbound and Rbound are such that the
probability of the second term is at most « - 6. The sum of these equals §, implying that the interval

is a valid (1 — ) confidence interval, completing the proof.

Throughout Section 6.5, we fix « = 0.99, giving most of the weight to the confidence interval

computation, corresponding to a looser upper bound for N.

Computing CIs for SUM. Now that we have established how to compute CIs for AVG and COUNT,
we briefly describe how to combine these two techniques to compute CIs for SUM.Given a (1 — %)
confidence interval for COUNT as [c¢, ¢,] and a (1 — %) confidence interval for SUM as [gy, g/],

union bounding gives [c¢ - g¢, ¢ - g-] as a (1 — §) confidence interval for SUM.

Scramble Use and Maintenance under Updates. There exist a few ways to leverage the scramble
for analytical queries even for hybrid workloads that additionally involve deletes, updates, and
insertions. First, deletes can be handled by simply writing a tombstone to any deleted tuples, and
(non-insertion) updates can be handled by simply modifying the updated tuple in-place. In this case,
processing the tuples sequentially while ignoring tombstones will remain equivalent to sampling
without replacement.

For insertions, there are two options: the first is to leave some holes in the scramble to allow
for insertions in random positions, at the cost of increasing space and query time. The second
option is to write all updates to a separate smaller “insertion table” that is scanned in full for every
query, and then combined with the results of the scramble in a manner which preserves guarantees.
This insertion table can then be periodically merged with the scramble and reshuffled. Overall,
with some minor extensions inspired from existing big data systems (such as Bigtable [182]) that
handle updates by keeping them separate and periodically merging them, scrambles can be readily

retrofitted to handle non-read-only workloads.
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Algorithm 6.5: The OptStop meta-algorithm
Input: Dataset D of N values in [a, b], error probability §
Output: Error bounds that fail to enclose AVG(D) with probability < §

1 S < init_state();

2 fork = 1tooodo

3 fori = 1to B do

4 v < sample_without_replacement (D);
5 S < update_state(S,v);

6 end

7 8 <« (6/7?) - (8/k?);

8 Li <Lbound(S,a, b, &y,

9 Ri <Rbound(S,a, b, %/);

10 | if should_stop([ max;<{L;}, minj<{R;}]) then
1 | break;

12 end

13 end

14 return | maxg{Ly}, ming{R}]

6.4.2 Optional Stopping

The techniques discussed in Section 6.3 describe how to compute high-probability bounds on
error given statistics computed from a particular sample of m datapoints. Fixing a sample size ahead
of time is oftentimes impractical, since it is usually unknown how many samples are needed to
ensure CIs that are “just tight enough” to facilitate downstream applications on the part of the user
or the system. For example, one approach (e.g. taken by VerdictDB [77]) is to first compute error
bounds around an approximate aggregate, and then run an exact query if these bounds are too loose.

Another approach, which we take in this chapter, is to continue taking samples until a bound on
the error is provably small enough. For this approach, care must be taken to avoid losing guarantees
offered by range-based error bounders, since the tighter of two (1 — §) confidence intervals for a
particular aggregate is itself not necessarily a (1 — §) confidence interval.

Various techniques have been developed for computing sequentially-valid confidence intervals
as new samples are taken [6, 82, 183, 184, 185, 186]. In addition to techniques for sequential
estimation [183] for sequences of i.i.d. random variables from a known family of distributions,
various concentration results applicable to AVG which make no distributional assumptions have
likewise been derived [6, 184]. Unfortunately, these existing results are derived from variants of
Hoeffding’s inequality, and therefore suffer from PMA. For the sake of simplicity, we use a much

simpler meta-algorithm that can be used in conjunction with any range-based error bounder, including
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those that leverage our RangeTrim technique, given in Algorithm 6.5. Although Algorithm 6.5
requires more samples than the aforementioned techniques when used in conjunction with Hoeffding-
or Hoeffding-Serfling-based error bounders, we consider the tradeoff worthwhile due to its generality

and simplicity and leave better sequential error bounders to future work.

Analysis of Algorithm 6.5. Algorithm 6.5 proceeds in “rounds”, with each iteration of the outer
loop on line 2 forming a round. During each round, B without-replacement samples are taken
and used to incrementally update the state of any range-based error bounder that implements our
interface from Section 6.2.2. At the end of each round, confidence intervals are recomputed, with the
input error probability §' decayed “enough” to ensure that the probability of error across all rounds
is at most §. If the stopping condition on line 10 is met, then the algorithm terminates; otherwise, it
proceeds to the next round, decaying &’ appropriately to control the overall error probability.

We now give a proof of correctness of Algorithm 6.5.

Theorem 6.4. With probability at least (1 —96), the { Ly} and { Ry } computed by Algorithm 6.5 satisfy
AVG(D) € [Lg, Ry foreveryk inthe outer loop. In particular, AVG(D) € [maxg>1 Li, ming>1 R]
with probability at least (1 — §).

Proof. Denote the 6" used at iteration k with §;. Union bounding over rounds, the probability of a

6 § 6 w2

k>1 k>1

mistake is at most

1

7z = %2, completing the proof.

using the identity ) ;- |

FastFrAME performs I/O at the level of blocks, so instead of computing bounds every B samples
as described in the pseudocode of Algorithm 6.5, we compute bounds after every B block read. In
our experiments (Section 6.5), we set B = 40000. We leave development of alternative approaches
to future work.

Stopping Conditions for Algorithm 6.5. Correctness of Algorithm 6.5 is independent of whether

the error bounder uses our RangeTrim technique, and it is furthermore independent of stopping

condition. We consider several stopping conditions used in our system implementation:

O Desired Samples Taken (¢ > m): If a fixed number of samples are requested, do not use
Algorithm 6.5; instead, terminate query processing once a desired number of tuples contribute to
the partial aggregate(s) in the query.

@ Sufficient Absolute Accuracy (g, — 2¢ < ¢): The interval width is sufficiently small.

© Sufficient Relative Accuracy (max{g;,—:g, %} < ¢): The interval width is sufficiently small

(relative to the possible correct values implied by the interval).
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O Threshold Side Determined (v ¢ [g¢, g-]): The interval does not contain some threshold value
v, indicating that the true AVG is w.h.p. either less than or greater than the threshold v.

® Top- or Bottom-K Separated: In a query with multiple groups, the error bounds of the groups
with either K smallest or largest aggregates do not intersect those of any of the remaining groups.

® Groups Ordered Correctly: In a query with multiple groups, the error bounds for each group
intersect none of the other groups’ error bounds, indicating that the correct ordering of group
aggregates has been determined [6].

Different stopping conditions apply to different queries. For example, stopping conditions ® and @

might be used for the query in Figure 6.2.

6.4.3 Active Scanning

For queries with GROUP BYs, different groups may require different numbers of samples to
achieve stopping conditions of the types considered in Section 6.4.2. For simple scans that simply
read blocks of the scramble in the order in which they appear, it is impossible to control the relative
number of tuples for each group, leading to potential inefficiencies. For example, consider one of
the queries in our experiments, F-q2, which selects airlines with average delay above some threshold.
This query uses stopping condition @ in order to determine when to terminate, since, when this
stopping condition has been achieved, it has been determined w.h.p. whether each airline has average
delay above or below the threshold. Those groups (airlines) for which the average delay is near
$thresh require more samples than those for which the average delay is far from $thresh in order
to achieve condition @. If these groups are sparse within the scramble, a scan will look at much
more data than necessary.

For this reason, we process queries that perform GROUP BYs with an adaptive sampling approach
using active scanning. Active scanning uses block-based bitmap indexes to efficiently check whether
a block contains tuples for any active group — such groups are marked for processing, and blocks
without tuples for any active group are skipped, since they are unlikely to help achieve early
termination. The notion of an active group depends on the stopping condition, but in brief, active

groups are groups that should be prioritized.

Active Groups for Stopping Conditions. We now describe how we determine active groups, or
groups that should be prioritized for sampling, for each of the stopping conditions discussed in
§6.4.2.

O (Desired Samples Taken): Under this condition, we consider a group active as long as fewer than
the desired m samples have been taken that contribute to that group’s aggregate.

® (Sufficient Absolute Accuracy): We consider a group active as long as its confidence bounds
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Dataset H Size ‘ Tuples ‘ Columns ‘ Replications

FrigaTs || 32 GB | 606 mil. 5 5%
Taxi 36 GB | 679 mil. 4 4x
PoLicE 12 GB | 292 mil. 3 72 %

Table 6.3: Dataset descriptions.

exceed ¢ in width; i.e., g, — &¢ > &.

® (Sufficient Relative Accuracy): Same as the previous, but a group is active if max{g;—:g, %} >
€.

® (Threshold Side Determined): A group is active as long as the threshold side has not been
determined; i.e., v € [g¢, /]

@ (Top- or Bottom-K Separated):Consider sorting the aggregates for all the groups in increasing
order. A group among the top-K is active if its lower confidence bound g, crosses the midpoint
between the aggregate value for the smallest of the top-K and the largest of the bottom N — K.
Likewise, a group among the bottom N — K is active if its upper confidence bound g, crosses this
midpoint. Analogous statements hold if we consider the separation between the bottom-K and the
top N — K as the stopping condition, but with the aggregates sorted in decreasing order.

® (Groups Ordered Correctly): A group is active if its interval g, g,] intersects the interval of any

other group.

Lookahead. We furthermore accelerate active scanning with a lookahead technique from Chapter 5,
which we now briefly review. Instead of checking each block one by one for whether it contains
tuples for any active group, recall that active scanning with lookahead checks, for each active group,
whether each block in a batch of 1024 blocks contains any tuples for that group. By iterating over
an entire batch of 1024 blocks for a given active group, bitmaps for the group tend to be in cache
more often, making the index lookup operation more efficient. Please refer to Section 5.4.2 for
more details. In our experiments in Section 6.5, we set the block size to 64 rows, so a batch of 1024

blocks contains a total of 65536 rows.
6.5 EMPIRICAL STUDY

In this section, we perform an extensive empirical evaluation of various error bounders and

sampling strategies on real data.
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| Query | Stop When | Parameters Varied |

Fal | @ max{sgt £y <o | SR )
F-q2 || (@)  S$thresh ¢ [g¢, g/] (Fig?ltr};re;g o)
F-q3 || (®) bottom-2 separated $r?1;1i1g_jreepg.t;r)ne
F-q4 || (@) 10 ¢ [ge. &1 N/A

F-q5 || (@) 0 ¢ [ge. &r] N/A

F-q6 || (©) top-5 separated N/A

F-q7 || (®) groups ordered N/A

F-q8 || (®) top-1 separated N/A

F-q9 || (©) top-1 separated N/A

T-ql || (©) top-1 separated N/A

T-q2 | (@) top-1 separated N/A

P-ql (®) top-1 separated N/A

P-q2 | (®) top-1 separated N/A

Table 6.4: Summary of stopping conditions and template parameters used for queries provided in Figures 6.5
and 6.6. Template variable arguments shown in blue.

6.5.1 Datasets and Queries

We evaluate various error bounding techniques on publicly available FLigHTs, Tax1, and PoLicE
datasets [134, 161, 162]. For FLiGHTS, we extract five attributes corresponding to the origin airport,
airline, departure delay, departure time, and day of week. To ensure sufficient scale of the data,
we perform 5 replications, giving a 32 GiB dataset of 606 million tuples in total. For Taxi, we
extract four attributes (for hour of day, passenger count, trip distance, and fare amount) and perform
4 replications. For PoLicE, we extract 3 attributes (for number of violations, officer race, and driver
age) and perform 72 replications. These datasets are summarized in Table 6.3. We eliminated rows

with “N/A” or erroneous values for any column appearing in one or more of our queries.

Queries and Query Templates. We evaluate our techniques on a diverse set of queries that
include various filters and GROUP BY clauses and exercise all the stopping conditions described
in Section 6.4.2 (except conditions @ and @, which gives similar behavior to condition ®). The
queries themselves are given in Figures 6.5 and 6.6, and the accompanying stopping conditions
are summarized in Table 6.4. Additionally, several queries are parametrized, in order to reveal
interesting data-dependent behavior by varying corresponding parameters. Any query parameters

varied are also summarized in Table 6.4, with parameters shown in blue.
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# F-ql: avg delay for $airport
SELECT AVG(DepDelay) FROM flights WHERE Origin = $airport

# F-q2: airlines with avg delay above $thresh
SELECT Airline FROM flights
GROUP BY Airline HAVING AVG(DepDelay) > $Sthresh

# F-q3: 2 airlines with min avg delay after $min_dep_time
SELECT Airline FROM flights WHERE DepTime > $min_dep_time
GROUP BY Airline ORDER BY AVG(DepDelay) ASC LINMIT 2

# F-q4: whether ORD has avg delay > 10
SELECT (CASE WHEN AVG(DepDelay) > 10 THEN 1 ELSE 0 END)
FROM flights WHERE Origin = 'ORD'

# F-q5: airports with negative avg departure delay
SELECT Origin FROM flights
GROUP BY Origin HAVING AVG(DepDelay) < O

# F-q6: 5 worst days for afternoon delays across airports
SELECT DayOfWeek, Origin FROM flights

WHERE DepTime > 1:50pm GROUP BY DayOfWeek, Origin
ORDER BY AVG(DepDelay) DESC LIMIT 5

# F-q7: avg delay by day of week for airline HP
SELECT DayOfWeek, AVG(DepDelay) FROM flights
WHERE Airline = 'HP' GROUP BY DayOfWeek

Figure 6.5: SQL for queries (part 1). Template parameters are shown in $blue.

6.5.2 Experimental Setup

The core of our experiments consists of two ablation studies, intended to evaluate the impact
of both our error bounder innovations and that of our architectural innovations. In particular, we
evaluate various error bounders with and without our RangeTrim technique developed in Section 6.3,
and for the best error bounder (Bernstein+RT), we furthermore evaluate the impact of leaving out
features of our active scanning sampling strategy described in Section 6.4.

We set § = 10712 as the default for all queries unless otherwise noted, as we expect users of

with-guarantees AQP to desire results that are correct in an effectively deterministic manner.

Approaches. We used the following strategies to bound error when running queries in Figures 6.5
and 6.6:
Error Bounders.

e Bernstein+RT. This uses the empirical Bernstein-Serfling error bounder described in Section 6.2.3,

coupled with our RangeTrim technique described in Section 6.3, which eliminates PHOS.
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# F-q8: origin airport with highest departure delay
SELECT Origin FROM flights GROUP BY Origin
ORDER BY AVG(DepDelay) DESC LIMIT |

# F-q9: airline with maximum avg delay
SELECT Airline FROM flights GROUP BY Airline
ORDER BY AVG(DepDelay) DESC LIMIT I

# T-q1: Hour with maximum avg distance for trips with 4 passengers
SELECT HourOfDay FROM taxi WHERE passenger_count=4
GROUP BY HourOfDay ORDER BY AVG(trip_distance) DESC LIMIT 1

# T-q2: Hour with maximum avg fare for trips with 3 passengers
SELECT HourOfDay FROM taxi WHERE passenger_count=3
GROUP BY HourOfDay ORDER BY AVG(fare_amount) DESC LIMIT 1

# P-q1: Officer ethnicity associated with maximum average driver violations per stop
SELECT OfficerRace FROM police
GROUP BY OfficerRace ORDER BY AVG(violations) DESC LIMIT I

# P-q2: Driver age associated with maximum average driver violations per stop
SELECT DriverAge FROM police
GROUP BY DriverAge ORDER BY AVG(violations) DESC LIMIT 1

Figure 6.6: SQL for queries (part 2). Template parameters are shown in $blue.

Bernstein. Same as the previous, but without RangeTrim. Bernstein and Bernstein+RT are
included to evaluate the impact of an error bounder without PMA.

Hoeffding+RT. This uses the Hoeffding-Serfling error bounder described in Section 6.2.3, coupled
with our RangeTrim technique described in Section 6.3, which eliminates PHOS from Hoeffding
(but does not fix PMA).

Hoeffding. Same as the previous, but without RangeTrim.

Exact. This strawman approach eschews approximation and runs queries exactly, to serve as a

simple baseline.

We furthermore used the following strategies for sampling when running queries in Figures 6.5

and 6.6:

Sampling Strategies.

ActivePeek. This uses the active scanning technique to prioritize groups that are preventing
satisfaction of various stopping conditions, along with cache-efficient queries to bitmaps with
lookahead (see Section 6.4.3 for details).

ActiveSync. This uses active scanning, but processes each block synchronously when deciding
whether to read it, incurring high overhead since queries to bitmaps typically result in cache

misses.
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e Scan. This strategy does not leverage bitmaps in order to decide whether to read a block for
active scanning (but may leverage bitmaps for evaluation of whether a block contains tuples that
satisfy a fixed predicate, such as the one appearing in F-q1). Without any predicate, this approach
simply processes all blocks in the scramble sequentially. Note that the Exact baseline described

previously always uses Scan, as only approximate approaches can prune groups.

Environment. Experiments were run on single Intel Xeon E5-2630 node with 125 GiB of RAM and
with 8 physical cores (16 logical) each running at 2.40 GHz, although we restrict our experiments to
a single thread, noting that our techniques can be easily parallelized. The Level 1, Level 2, and
Level 3 CPU cache sizes are, respectively: 512 KiB, 2048 KiB, and 20480 KiB. We ran Linux with
kernel version 2.6.32. We report results for data stored in-memory, since the cost of main memory
has decreased to the point that many interactive workloads can be performed entirely in-core. Each
approximate query was started from a random position in the shuffled data. We found wall clock

time to be stable for all approaches, and report times as the average of 3 runs for all methods.

6.5.3 Metrics

We gather several metrics in order to test two hypothesis: one, that our error bounding strategies
in conjunction with our sampling strategies lead to speedups over simpler baselines; and two, that

they do so without sacrificing correctness of query results.

Correctness of Query Results. The most important metric is the fraction of queries run that
returned correct results, which we discuss briefly here. Across all methods, all queries, and all
parameter settings, results either matched the ground truth determined from an Exact evaluation,
or were within error tolerance in the case of F-ql and F-q7. This is expected, given that we are
consider SSI error bounders with strong probabilistic guarantees, coupled with the fact that our
RangeTrim technique and system architecture do not compromise these guarantees. As such, we
expect fewer than § = 107> fraction of queries to yield incorrect results, which rounds down to 0.
For the remaining experiments, we focus on the following metrics:

Estimate Error. For a given requested error bound ¢ supplied to applicable queries, we measure
the actual error. The observed error should always fall within the requested error bound.
Wall-Clock Time. Our primary metric evaluates the end-to-end time required for various error
bounders and various sampling strategies (where the Exact baseline is included as a “sampling
strategy”), across all the queries considered.

Number of Blocks Fetched. We also measure the number of blocks fetched from main memory
into CPU cache when using various approaches. This is mainly due to the fact that error bounders

incur additional CPU overhead and therefore wall-clock time, with Bernstein and Bernstein+RT
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] Query

| |

Avg Speedup over Exact (raw time in (s))

|
|

’ \ Exact (s) \ Hoeffding \ Hoeffding+RT \ Bernstein \ Bernstein+RT ‘
F-q1[’ORD’,0.5] 20.7 58.0x (0.4) | 59.6x (0.3) | 2129x (0.01) | 2160x (0.01)
F-q2[$thresh=0] 42.2 233x (0.2) 316x (0.1) | 2405x (0.02) | 4683x (0.01)
F-q3[10:50pm] 25.3 1.1x (23.4) | 1.7x (15.1) 6.5x (3.9) 13.8x (1.8)
F-q4 20.7 12.8x (1.6) | 12.7x (1.6) 922x (0.02) | 925x (0.02)
F-g5 47.7 0.7x (68.8) | 1.1x (44.4) 2.2x (21.4) 4.2x (11.5)
F-q6 66.4 1.1x (62.4) | 1.1x (58.7) 11.2x (6.0) 16.7x (4.0)
F-q7 29.8 1.0x (30.0) | 1.0x (29.1) 2.6x (11.6) 2.9x (10.4)
F-g8 47.7 2.0x (23.3) | 1.0x (47.6) 9.1x (5.3) 9.5x (5.0)
F-q9 38.2 0.9x (41.0) | 1.0x (38.6) 123x (0.3) 130x (0.3)
T-ql 32.4 2.2x (14.6) 3.4x (9.5) 17.8x (1.8) 29.4x (1.1)
T-q2 39.6 1.6x (24.5) | 2.1x (19.0) 19.3x (2.0) 27.0x (1.5)
P-ql 20.9 17.8x (1.2) | 17.9x (1.2) 311x (0.07) | 314x (0.07)
P-q2 22.5 11.7x (1.9) | 11.3x (2.0) 18.9x (1.2) 20.8x (1.1)

Table 6.5: Summary of average query speedups and latencies for various error bounders.

incurring the highest overhead, so measuring blocks fetched for these approaches removes this

confounding variable by decoupling performance from CPU attributes.

6.5.4 Results

In this section, we present results of our empirical study.

Impact of Error Bounder Used

Summary. Using the Bernstein+RT error bounder resulted in typical speedups of at least 10x over
Exact (for 10 out of 13 queries) and Hoeffding (for 9 out of 13 queries), and additionally was almost

always on par or better than Bernstein (up to 2x faster).

We evaluate Hoeffding+RT and Bernstein+RT error bounders, along with Hoeffding and Bernstein
(to ablate our RangeTrim technique) and an Exact query processor (to ablate any benefits due to
approximation) against all the queries in Figures 6.5 and 6.6, with the resulting time measurements
summarized in Table 6.5.

First we note that all error bounders incur additional overhead — in the case of F-q5 where
techniques like Hoeffding and Hoeffding+RT needed to process all the data in order to terminate (due
to PMA), they actually ran more slowly than Exact. Using Bernstein, which does not suffer from
PMA, yielded significant benefits over Exact, Hoeffding, and Hoeffding+RT across all queries. In
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| | Avg Speedup over Scan (time in seconds) |

| | Scan | ActiveSync | ActivePeek |
F-q5 | 40.1 || 2.0x (19.6) 3.5x (11.4)
F-q6 | 4.2 1.1x (3.8) 1.1x (3.9)
F-q7 | 10.3 | 1.0x (10.1) 1.0x (10.4)
F-q8 | 40.4 | 3.2x (12.7) 8.2x (5.0)
T-ql | 1.2 1.2x (1.0) I.1x (1.1)
T-g2 | 1.6 1.2x (1.4) 1.1x (1.5)
[P-q2 [ 113 | 71x (1.6) |  104x (1.) |

Table 6.6: Summary of query speedups and latencies for various sampling strategies, restricted to GROUP
BY queries that take more than 500ms for Scan with Bernstein+RT.

cases where Hoeffding and Hoeffding+RT showed improvements over Exact, Bernstein amplified
these improvements (F-ql, F-q2).

Using RangeTrim in conjunction with both Hoeffding and Bernstein typically led to similar
performance, with a few queries exhibiting clearly superior performance (F-q5, F-q6, and F-q3).
These queries have the following in common: they all have sparse groups with low selectivity (either
because of the large number of groups in the case of F-q5 and F-q3, or because of the restrictive
filter in the case of F-q5), and they are all “easy” to approximate, in that none of the groups require
too many samples in order to achieve the relevant stopping condition. (F-q8 also has many groups,
but some of them require many samples due to a large number of airports with average delay near
the max.) This is an ideal condition for Bernstein+RT to show benefit: sparse groups will bottleneck
the query, but RangeTrim will achieve termination faster since these sparse groups tend to have
fewer outliers than do non-sparse groups. For such bottlenecking sparse groups, the range bounds
for the DepDelay column are overly-conservative and dominate the sampling complexity. In this
case, Bernstein, which has PHOS, will require twice as many samples for such groups — and since
these groups are the bottleneck, it will require roughly twice as much time, an intuition reflected in
Table 6.5.

Impact of Sampling Strategy Used

Summary. ActiveSync sampling was typically on par or better than Scan, and ActivePeek sampling
was typically on par or better than ActiveSync. ActiveSync significantly outperformed Scan on F-q5,
F-g8, and P-q1 (by more than 3x), and ActivePeek significantly outperformed ActiveSync on the

same set of queries.
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We evaluate the impact of various sampling strategies when used in conjunction with the Bernstein+RT
error bounder, the results of which are summarized in Table 6.6. In some cases (F-q5 and F-g8), the
performance of the Scan baseline when used in conjunction with Bernstein+RT was on par with that
of the Exact baseline, indicating that some form of block skipping can be crucial for queries with
GROUP BYs. When implementing active scanning block by bock as in ActiveSync, the improvement
was most significant for F-q5, F-q8, and P-q1, with ActivePeek showing even further improvements
for these queries. It is no coincidence that these are the same queries for which Scan performance
using approximation is similar to Exact performance. This indicates that there were a few sparse
groups preventing termination when Scan is used, which is the very case for which the greatest

benefit can be derived from (an efficient implementation of) block skipping.

Impact of Data and Query Characteristics

To better understand various data- and query-dependent aspects of our techniques, we now study the

effect of varying the parameters supplied to F-ql, F-q2, and F-q3.
Selectivity o of filter.

Summary. As the fraction of tuples passing F-ql’s filter increases, wall clock time and blocks
fetched both increase rapidly, then decrease, with RangeTrim giving the most benefit in the case of

predicates with intermediate selectivity.

Different Origin attribute values used for filtering F-q1 have different selectivities. By varying
the filter attribute value, we reveal interesting behavior impacted by the selectivity of the filter.
(We consider selectivity as a number and not a quality, so that larger proportions of tuples satisfy
predicates with higher selectivity.) For all four error bounding techniques considered, wall time and
blocks fetched are plotted versus query selectivity in Figure 6.7. Bernstein and Bernstein+RT are
plotted separately from Hoeffding and Hoeffding+RT for presentation.

For Hoeffding and Hoeffding+RT bounders, as selectivity increases, both wall-clock time and
number of blocks fetched first increase rapidly, then decrease, in a strongly correlated fashion. This
is likely because the sparsest filters require examining all the data before terminating, obviating
early stopping benefits. After a certain point, however, early termination kicks in, happening more
quickly as fewer tuples are filtered. The selectivity threshold for early termination appears to be
much lower for Bernstein and Bernstein+RT bounders, which explains why wall-clock time and
number of blocks fetched appear to be strictly decreasing with selectivity. The performance gap
between techniques with and without RangeTrim generally decreases with increasing selectivity —
perhaps because filters with higher selectivity tend to have range bounds that are not as conservative

when compared with the a priori range bounds known to hold for the entire column.
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Figure 6.7: Effect of query selectivity on wall time and blocks fetched, for selectivity determined by varying
the origin airport used to filter F-ql[e = .5].

¢ for stopping condition ©.

Summary. For different upper bounds on relative error, the actual relative error in the query result
is always within the requested error, for all error bounders applied to F-q1. The achieved relative
error drops to 0 more quickly for the more conservative bounders Hoeffding and Hoeffding+RT as

the requested error is decreased.

By varying the requested maximum relative error ¢ for query F-ql, we reveal its impact on the
relative error achieved for various error bounders, shown in Figure 6.8(a). The main takeaways
are that, for all error bounders, the achieved relative error generally decreases as the requested
error bound decreases, with Hoeffding-based bounders dropping more quickly, as they are more

conservative due to PMA.

HAVING threshold for stopping condition ®.
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Figure 6.8: (a): Effect of requested maximum relative error € on actual relative error achieved for F-q1. (b):
Data required for different HAVING thresholds used in F-q2. The group aggregates for also displayed for
comparison.

Summary. HAVING thresholds that are closer to group aggregates require more samples in order to
achieve stopping condition @, and Hoeffding-based error bounders in particular are more sensitive

than Bernstein-based error bounders for the same threshold.

By varying the HAVING threshold used to filter groups / airlines post-aggregate in F-q2 and
measuring its effect on the number of blocks fetched for a particular query, we reveal interesting
data-dependent behavior impacted by the true aggregates for each airline, depicted in Figure 6.8(b).
This figure also plots the group aggregates using a horizontal bar chart sharing the same x-axis as
the HAVING threshold, revealing that it is “harder” to determine which side of the HAVING threshold
a given group is if its aggregate is close to the threshold. Indeed, from Figure 6.8(b), we see that
the initial thresholds near O are very easy for all groups, allowing for very fast termination. The
first spike in number of blocks fetched occurs between 6 and 7, corresponding to the aggregate for
airline NW. At and after this point, we see spikes in blocks fetched for both Hoeffding-based and
Bernstein-based error bounders whenever the threshold approaches one or more airline aggregate
values, although we note that Bernstein-based error bounders appear to be more robust, requiring
the threshold to be much closer before they are adversely affected as compared to Hoeffding-based

bounders.

Minimum departure time for F-q3.

Summary. As the minimum departure time is increased, the spread of average delay between

airlines increases, making it easier to separate the two airlines with the minimum average delays
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Figure 6.9: Effect of minimum departure time on blocks fetched for F-q3.

and achieve stopping condition @ earlier. At the same time, termination becomes bottlenecked on
sparse airlines, increasing the gap between similar bounders with and without RangeTrim.

By varying the minimum departure time $min_dep_time in F-q3, we reveal its impact on the
number of blocks fetched for various error bounders, shown in Figure 6.9. This plot exhibits two
interesting data-dependent behaviors worth unpacking. First, as the $min_dep_time increases,
the variance in average delay between different airlines increases, perhaps because some airlines
tend to have flights that are delayed more for later flights as compared with other airlines. This
makes it easier to achieve stopping condition @, since the average delays become more spread
out with increasing minimum departure time, so we observe a decreasing trend in the number
of blocks fetched. At the same time, as $min_dep_time increases, the selectivity of the various
groups decreases. Since all the groups are sparser, the groups for which stopping condition @ is
bottlenecked are also sparser. Since we have an “easy” query (due to the higher variance between
groups) for which sparse groups are bottlenecking termination, we tend to see a bigger performance

gap between bounders with and without our RangeTrim technique.

Impact of ¢ on latency.

Summary. Figure 6.10 demonstrates that latency increases super-exponentially as ¢ decreases to 0,

across all error bounders for F-q1[$origin=ORD].

By varying the maximum relative error bound &, we reveal its impact on latency for various
bounders in F-ql[$origin=ORD]. As depicted in Figure 6.10, latency increases super-exponentially
with decreasing relative error threshold ¢ (note the log scale on the x-axis). From inspection of
formulas for Hoeffding and Bernstein-style bounds, we would expect exponential behavior; the
super-exponential behavior can be attributed to the conservative optional stopping procedure, which

sacrifices some statistical efficiency. This figure illustrates the importance of being able to leverage
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Figure 6.11: Effect of § on wall time for F-q1[$origin=ORD] and F-q1[$origin=MTJ], respectively.

other stopping conditions besides that of condition @ in the case of queries that do not actually need
to make use of the aggregate but merely use it for downstream decision making, since such queries

can sometimes tolerate very large relative errors.

Impact of § on latency.

Summary. Figure 6.11 illustrates that latency is robust to small §’s, with sublinear slowdowns for

exponentially decreasing &.

By varying §, we reveal its impact on latency for bounders Bernstein and Bernstein+RT on
F-q1[$origin=ORD] and F-ql[$origin=MTJ]. In the case of a high-selectivity predicate (i.e., that
for F-ql[$origin=ORD]), we see virtually no impact of § on latency; for this high-selectivity
predicate, the query is able to terminate after the first bounds computation for both Bernstein and

Bernstein+RT. For the sparser predicate in F-q1[$origin=MTJ], § does not impact the number of

122



--&-- Bernstein ~@  Bernstein+RT
Time vs Block Size, F-q2 Time vs Block Size, F-q5
— 15'_51 T T T T ] 100 j@\ T T T ]
LA/ ] é‘\\\ \\\
g 10 kA - \
SN % 20 'é"-é’\ 2 00-0- 49 oo
. ] %) P Ak as
= - @' : '@“ ; T:.'.@'::.'.3::.:@::.@::.@ é’*&.\ - g ' 2
L4 g-g
= 1ol ]
0 1 1 1 1 0 1 1 1 1
3 27' 11 15 ' ] ' 6 10 14 18
Block Size

Figure 6.12: Effect of block size on wall time for F-q2 and F-q5, respectively.

rounds of bounds computation needed for Bernstein, although a larger § does gradually decrease this
quantity for Bernstein+RT, albeit insignificantly considering the exponential increase in §. Overall,
this illustrates that the dependence of each error bounder on \/m translates to query latency
that is highly robust in §, motivating our choice of 1071 as the default §.

Impact of bock size on latency.

Summary. Figure 6.12 suggests a quasiconvex relationship between latency and block size.

By varying the block size, we reveal its impact on latency for F-q2 and F-q5. For both of these
queries, smaller block sizes are associated with higher latency due to poorer cache locality and
more frequent bounds recomputation. Higher block sizes, however, lose out on benefits from block
skipping. This is not an issue for F-q2, which has relatively few groups (and none of which are
sparse); for F-q5, however, it impacts latency adversely before leveling off. The level-off in both
cases can be attributed to saturating the bitmap indexes, since larger block sizes will be more likely

to contain tuples passing each group’s filter.

6.6 SUMMARY

We categorized existing conservative error bounders in terms of two pathologies, PMA and PHOS,
and developed a technique, RangeTrim, for eliminating PHOS from any range-based error bounder.
We showed the advantage of using the empirical Bernstein-Serfling bounder in the context of a real
system we are developing, FAsTFRAME, that accelerates approximate queries significantly over a
Hoeftding-Serfling-based error bounder, which suffers from PMA. We furthermore showed that

augmenting this error bounder with our RangeTrim technique leads to an additional 2x in the best
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case, without ever hurting performance in the worst case. By implementing our distribution-aware
techniques in the context of FAsTFrRaME, which is aware of practical considerations such as locality,
optional stopping, and block skipping in order to prioritize groups that require more samples in
order to facilitate early termination, we demonstrate significant speedups (on the order of 10x over
both exact processing and traditional techniques based on Hoeftding) without losing guarantees.
This suggests a viable path toward practical with-guarantees data analytics.

With this chapter, we conclude our study of safety and interactivity of specific data science tasks;
next, we consider techniques for improving safety of a common data science environment, the

computational notebook, without compromising on interactivity.

124



CHAPTER 7: APPROXIMATE LINEAGE FOR SAFE NOTEBOOK INTERACTIONS

In this chapter, we describe NBSAFETY, a custom Jupyter kernel that uses builds approximate
lineage of the state in a computational notebook session and uses this lineage to warn users of
potential errors before they occur. After motivating the problem, we describe NBSAFETY’s design
and how it uses trace-once semantics to keep the overhead of lineage maintenance low, while still
retaining enough lineage to be useful on notebooks as they are used in practice. We then describe
NBSAFETY’s program analysis component and how it is used to provide warnings, before conducting

an empirical study on a dataset of real notebook session traces.

7.1 MOTIVATION

Computational notebooks such as Jupyter [25] provide a flexible medium for developers, scientists,
and engineers to complete programming tasks interactively. Notebooks, like simpler predecessor
read-eval-print-loops (REPLs), do not terminate after executing, but wait for the user to give
additional instructions while keeping intermediate programming state in memory. Notebooks,
however, are distinguished from REPLs by three key features:

1. The atomic unit of execution in notebooks is the cell, composed of a sequence of one or more
programming statements, rather than a single programming statement;

2. Notebooks allow users to easily refer back to previous cells to make edits and potentially
re-execute; and

3. Notebooks typically allow code and documentation to be interspersed, following the literate
programming [187] paradigm.

As a result, the [Python Notebook project [188], and its successor, Project Jupyter [25], have both
grown rapidly in popularity. These projects decouple the server-side kernel (responsible for running
user code) from a browser-accessible client side (providing the user interface). Since Jupyter uses
familiar web technologies to implement the layer that facilitates communication between the Ul
and the kernel, it crucially allows users to run notebooks on any platform. Furthermore, Jupyter’s
decoupled architecture allows users to leverage powerful server computing resources from modest
client-side hardware, particularly useful for coping with the ever-increasing scale of modern dataset
sizes.

These key features, along with the natural ergonomics of interactive computing offered by the
notebook interface, have led to an explosion in Jupyter’s usage. With more than 4.7 million
notebooks on GitHub as of March 2019 [189] and with hosted solutions offered by a plethora

of data analytics companies, Jupyter has been called “data scientists’ computational notebook of
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def [custom_agg|(series): [11 [4]

agg_by_coll = {'A': 'min', 'B': [custom_aggl} m/

df_x_agg| = df_x.agg(agg_by_col) [31 [5]
= df_y.agg(agg_by_colD

Figure 7.1: Example sequence of notebook interactions leading to a stale symbol usage. Symbols with
timestamps < 3 (resp. > 3) are shown with blue (resp. red) borders.

choice” [87], and was recognized by the ACM Software System award in 2018 [190]. We focus
on Jupyter here due to its popularity, but our ideas are applicable to computational notebooks in
general.

Despite the tighter feedback enjoyed by users of computational notebooks, and, in particular,
by users of Jupyter, notebooks have a number of drawbacks when used for more interactive and
exploratory analysis. Compared to conventional programming environments, interactions such
as out-of-order cell execution, cell deletion, and cell editing and re-execution can all complicate
the relationship between the code visible on screen and the resident notebook state. Managing
interactions with this hidden notebook state is thus a burden shouldered by users, who must remember
what they have done in the past, since these past interactions cannot in general be reconstructed

from what is on the screen.

Illustration. Consider the sequence of notebook interactions depicted in Figure 7.1. Each
rectangular box indicates a cell, the notebook’s unit of execution. The user first defines a custom
aggregation function that, along with min, will be applied to two dataframes, df_x and df_y, and
executes it as cell [1]. Since both aggregations will be applied to both dataframes, the user next
gathers them into a function dictionary in the second cell (executed as cell [2]). After running
the third cell, which corresponds to applying the aggregates to df_x and df_y, the user realizes
an error in the logic of custom_agg and goes back to the first cell to fix the bug. They re-execute
this cell after making their update, indicated as [4]. However, they forget that the old version of
custom_agg still lingers in the agg_by_col dictionary and rerun the third cell (indicated as [5])
without rerunning the second cell. We deem this an unsafe execution, because the user intended
for the change to agg_by_col to be reflected in df_agg_x and df_agg_y, but it was not. Upon
inspecting the resulting dataframes df_x_agg and df_y_agg, the user may or may not realize the

error. In the best case, user may identify the error and rerun the second cell. In the worst case,
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Figure 7.2: nBsarerYy workflow with architectural components.

users may be deceived into thinking that their change had no effect, with the original error then
propagating throughout the notebook.

This example underscores the inherent difficulty in manually managing notebook state, inspiring
colorful criticisms such as a talk titled “I Don’t Like Notebooks” presented at JupyterCon 2018 [26].
In addition to the frustration that users experience when spending valuable time debugging state-
related errors, such bugs can lead to invalid research results and hinder reproducibility, inspiring
the claim that one must “restart and run all or it didn’t happen” [87] if presenting results via a

notebook medium. Thus, in this chapter we develop techniques to automatically identify and prevent

potentially unsafe cell executions, without sacrificing existing familiar notebook semantics.

7.2  ARCHITECTURE OVERVIEW

In this section, we give an overview of NBSAFETY’s components and how they integrate into the

notebook workflow.

Overview. NBSAFETY integrates into a notebook workflow according to Figure 7.2. As depicted,
all components of NBSAFETY are invoked upon each and every cell execution. When the user
submits a request to run a cell, the tracer (@, Section 7.3) instruments the executed cell, updating
lineage metadata associated with each variable as each line executes. Once the cell finishes
execution, the checker (@, Section 7.4) performs liveness analysis [191] (a standard technique for
finding non-redefined symbols in a program) and initialized variable analysis [192] (discussed in
Section 7.4.3) for every cell in the notebook. By combining the results of these analyses with the
lineage metadata computed by the tracer, the frontend (®, Section 7.5) is able to highlight cells that
are unsafe due to staleness issues of the form seen in Figure 7.1, as well as cells that resolve such

staleness issues.

O Tracer. The NBSAFETY tracer maintains dataflow dependencies for each symbol that appears
in the notebook in the form of lineage metadata. It leverages Python’s built-in tracing capabili-

ties [193],which allows it to run custom code upon four different kinds of events: (i) 1ine events,
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when a line starts to execute; (ii) call events, when a function is called, (iii) return events, when
a function returns, and (iv) exception events, when an exception occurs.

To illustrate its operation, consider that, the first time c3 in Figure 7.1 is executed, symbols
df_agg_x and df_agg_y are undefined. Before the first line runs, a 1ine event occurs, thereby
trapping into the tracer. The tracer has access to the line of code that triggered the 1ine event
and parses it as an Assign statement in Python’s grammar, followed by a quick static analysis to
determine that the symbols df_x and agg_by_col appear on the right hand side of the assignment
(i.e., these symbols appear in USE[R.H.S. of the Assign]). Thus, these two will be the dependencies
for symbol df_agg_x. Since c3 is the third cell executed, the tracer furthermore gives df_agg_x a

timestamp of 3. Similar statements hold for df_agg_y once the second line executes.

® Checker. The NBSAFETY static checker performs two kinds of program analysis: (i) liveness
analysis, and (ii) initialized variable analysis. The NBSAFETY liveness checker helps to detect safety
issues by determining which cells have live references to stale symbols. For example, in Figure 7.1,
agg_by_col, which is stale, is live in ¢c3—this information can be used to warn the user before they
execute c3. Furthermore, the initialized checker serves as a key component for efficiently computing
resolutions to staleness issues, as we later show in Sections 7.4 and 7.5.

® Frontend. The nBsAFETY frontend uses the results of the static checker to highlight cells of
interest. For example, in Figure 7.3, which depicts the original example from Figure 7.1 (but before

the user submits c5 for re-execution), ¢ is given a staleness warning highlight to warn the user that

re-execution could have incorrect behavior due to staleness issues. At the same time, ¢, is given

a cleanup suggestion highlight, because rerunning it would resolve the staleness in ¢3. The user

can then leverage the extra visual cues to make a more informed decision about which cell to next
execute, possibly preferring to execute cells that resolve staleness issues before cells with staleness

issues.

Design Philosophy. In contrast with systems that automatically resolve staleness, such as Dat-
alore [14] or Nodebook [13], NBSAFETY is designed to be as non-intrusive as possible, while
providing useful information. NBSAFETY thus only attempts to make a “passive observer” guarantee
to ensure that existing notebook semantics are preserved, via tracing and static analyses that monitor,
and do not alter, notebook behavior. We make this decision partially because program analysis in a
dynamic language like Python is notoriously difficult; as such, NBSAFETY’s analysis components are
unable to make any formal guarantees regarding soundness or completeness, instead opting for a
“best-effort” attempt to provide the user with useful information.

Although the guarantee NBSAFETY offers regarding preservation of semantics may seem weak at
first glance, we show later (§7.6.5) that both Datalore and Nodebook crash on reasonable programs

due to their intrusiveness. Furthermore, we also show how existing semantics lend themselves to
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example.ipynb o
B+ X OO » m C » Code v Python 3 (nbsafety) O

def custom_agg(series):
return reduce(lambda x, y: x + y, series)

U agg_by_col = {'A': 'min', 'B': custom_agg}

df_x.agg(agg_by_col)
df_y.agg(agg_by_col)

[31: df_x_agg
df_y_agg

Figure 7.3: nBsarery highlights unsafe cells with staleness warnings and cells that resolve staleness issues
with cleanup suggestions.

multiverse analyses [194], and point to specific examples of such analyses in our experiments. Finally,
NBSAFETY is not necessarily intended to be a substitute for systems like Dataflow notebooks [12]
that allow users to give names to cell outputs and explicitly reference them; the two techniques can
complement each other, as the issues faced by notebook users do not automatically disappear by
using Dataflow notebooks.

Overall, each of NBSAFETY’s three key components play crucial roles in helping users avoid and
resolve unsafe interactions due to staleness issues without compromising existing notebook program

semantics. We describe each component in the following sections.

7.3 LINEAGE TRACKING

In this section, we describe how NBSAFETY traces cell execution in order to maintain symbol
lineage metadata, and how such metadata aids in the detection and resolution of staleness issues.
We begin by introducing helpful terminology and formalizing our notion of staleness beyond the

intuition we gave in Figure 7.1 of Section 7.1.

7.3.1 Preliminaries

We begin defining our use of the term symbol.

Definition 7.1 [Symbol]. A symbol is any piece of data in notebook scope that can be referenced by
a (possibly qualified) name.

For example, if 1st is a list with 10 entries, then 1st, 1st[0], and 1st[8] are all symbols.

Similarly, if df is a dataframe with a column named “col”, then df and df. col are both symbols.
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Symbols can be thought of as a generalized notion of variables that allow us treat different nameable
objects in Python’s data model in a unified manner.
NBSAFETY augments each symbol with additional lineage metadata in the form of timestamps and

dependencies.

Definition 7.2 [Timestamp]. A symbol’s timestamp is the execution counter of the cell that most
recently modified that symbol. Likewise, a cell’s timestamp is the execution counter corresponding

to the most recent time that cell was executed.

For a symbol s or a cell ¢, we denote its timestamp as ts(s) or ts(c), respectively. For example,
letting ¢y, ¢, and ¢35 denote the three cells in Figure 7.1, we have that ts(custom_agg) = ts(c;) = 4,

since custom_agg is last updated in c¢;, which was executed at time 4.

Definition 7.3 [Dependencies]. The dependencies of symbol s are those symbols that contributed to

s’s computation via direct dataflow.

In Figure 7.1, agg_by_col depends on custom_agg, while
df_x_agg depends on df_x and custom_agg. We denote the dependencies of s with Par(s).
Similarly, if t € Par(s), then s € Chd(t).

A major contribution of NBSAFETY is to highlight cells with unsafe usages of stale symbols, which

we define recursively as follows:

Definition 7.4 [Stale symbols]. A symbol s is called stale if there exists some s’ € Par(s) such that
ts(s’) > ts(s), or s’ is itself stale; that is, s has a parent that is either itself stale or more up-to-date

than s.

In Figure 7.1, symbol agg_by_col is stale, because ts(agg_by_col) = 2, but ts(custom_agg)
= 4. Staleness gives us a rigorous conceptual framework upon which to study the intuitive notion
that, because custom_agg was updated, we should also update its child agg_by_col to prevent
counterintuitive behavior.

We now draw on these definitions as we describe how NBSAFETY maintains lineage metadata

while tracing cell execution.

7.3.2 Lineage Update Rules

NBSAFETY attempts to be non-intrusive when maintaining lineage with respect to the Python
objects that comprise the notebook’s state. To do so, we avoid modifying the Python objects created
by the user, instead creating “shadow” references to each symbol. NBsAaFETY then takes a hybrid
dynamic / static approach to updating each symbol’s lineage. After each statement has finished
executing, the tracer inspects the AST node for the executed statement and performs a lineage update

according to the rules shown in Table 7.1.
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AST Node Example Rule

AugAssign a+= e Par(a) = Par(a) U USE[e]
For for a in e: Par(a) = USE[e]
FunctionDef def f(a=e): Par(f) = USE[e]
ClassDef class c(e): Par(c) = USE|e]

Table 7.1: Subset of lineage rules used by the NBSAFETY tracer

Example. Suppose the statement
gen = map(lambda x: £(x), foo + [bar]) (7.1)

has just finished executing. Using rule 1 of Table 7.1, the tracer will then statically analyze the right

hand side in order to determine
USE[map (lambda x: £(x), foo + [bar])] (7.2)

which is the set of used symbols that appear in the RHS. In this case, the aforementioned set is
{f, foo, bar}— everything else is either a Python built-in (map, 1ambda), or an unbound symbol

(i.e. in the case of the lambda argument x). The tracer will thus set
Par(gen) = {f, foo, bar} (7.3)

and will also set ts(gen) to the current cell’s execution counter.

Handling Function Calls and Returns. Recall that, in Python, a function may “capture” symbols
defined in external scope by referencing them. In this case, the lineage update rule for a function
call needs to be aware of the symbols referenced by the function’s return statement. As such, the
NBSAFETY tracer saves these symbols when it encounters a return statement, and loads them upon
encountering a return event, so that they are available for use with lineage update rules, e.g., the
third entry of Table 7.1.

Rationale for Tracing. Given that the tracer is already performing some static analysis as each
Python statement executes, a natural question is: why should we trace cell execution at all, instead
of performing static analysis on an entire cell in order to make lineage updates? The answer is that,
when a cell executes, a relatively small number of control flow paths may be taken, and a purely

static approach must consider them all in order to be conservative. This may cause each Par(s) to
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be much larger than necessary, or to be unnecessarily overwritten if, e.g., s is assigned in some
unexecuted control flow path. This can happen due to, e.g., untaken branches, or if an exception is
thrown mid-cell. Indeed, we attempted to infer lineage updates statically in an earlier version of

NBSAFETY, but found this to be too coarse-grained in order to derive real benefits.

Staleness Propagation. We already saw that the tracer annotates each symbol’s shadow reference
with timestamp and lineage metadata. Additionally, it tracks whether each symbol is stale, as this
cannot be inferred solely from timestamp and lineage metadata. To see why, recall the definition
of staleness: a symbol s is stale if it has a more up-to-date parent (i.e., an s’ € Par(s) with
ts(s’) > ts(s)), or if it has a stale parent, precluding the ability to determine staleness locally. Thus,
when s is updated, we perform a depth first search starting from each child ¢ € Chd(s) in order to

propagate the “staleness” to all descendants.

Fine-Grained Lineage for Attributes and Subscripts. Recall that the NBSAFETY tracer attempts
to infer parent symbols statically when making lineage updates. While this is possible in many cases,
there are limits to a purely static approach. For example, the statement “s = a.b().c” is valid
Python code, but, in general, it is impossible to statically determine what a.b () returns. As such,
we must again rely on tracing to do so. Unfortunately, Python’s built-in tracing abilities operate
at the granularity of code lines, so that a return event does not tell us the point within a line to
which control returns. Thus, the tracer rewrites all Attribute nodes in the statement’s AST, so that

the earlier example will actually run as follows:
s = trace(trace(a, 'b').b(), 'c').c (7.4)

The trace function will first determine that the symbol name b is referenced within symbol a’s
namespace, setting the current RHS parent symbol to a.b. However, after the call event, the tracer
will update this to the ¢ symbol in the namespace of the return value of a.b(), so that the true
parent symbol is pinpointed.

Subscripts are handled analogously to attributes.

Handling External Libraries. NBsaFeTY assumes that imported libraries do not have access to
notebook state. Thus, when the tracer observes a call into library code, it simply halts tracing,

resuming once control returns to the notebook.

Bounding Lineage Overhead. Consider the following cell:
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x =0
for i in random.sample(range(10#**7), 10**5) + [42]:
X += 1st[i]

Figure 7.4: Example wherein exact lineage would not compress.

In order to maintain lineage metadata for symbol x to 100% correctness, we would need to somehow
indicate that Par(x) contains 1st[i] for all 10° random indices i (as well as for 1st[42]). It is
impossible to maintain acceptable performance in general under these circumstances. Potential
workarounds include conservative approximations, as well as lossy approximations. For example, as
a conservative approximation, we could instead specify that x depends on 1st, with the implication
that it also depends on everything in 1st’s namespace. However, this will cause x to be incorrectly
classified as stale whenever 1st is mutated, e.g., if a new entry is appended.

Thus, NBSAFETY makes a compromise and sacrifices some correctness by only instrumenting
each AST statement the first time it executes. In this case, after the cell executes, Par(x) will have a
single entry: 1st[0]. These trace-once semantics help to ensure that lineage metadata only grows
in proportion to the amount of text in the user’s notebook.

Note that this approach can lead to some false negatives when determining which symbols are
stale. In the example above, if the user makes a point update to, e.g., 1st[42], x should technically
be considered stale, but will fail to be updated as so since 1st[42] ¢ Par(x). We consider this
tradeoftf worthwhile, as we found that it covered most common notebook usage patterns in our

experiments, and furthermore found that performance suffered greatly without it.

Garbage Collection. Each symbol’s shadow metadata maintains a weak reference to the symbol.
When a Python object is deleted, e.g., because the user executed a del statement, or because it
was garbage collected by Python’s built-in garbage collector, a callback associated with the weak
reference executes. This callback tells the metadata to delete itself (including from any Par(-) or
Chd(-) sets), thereby ensuring that lineage metadata does not accumulate without bound over long
notebook sessions.

Handling Aliases. Since multiple symbols can reference the same object in Python, we need a
mechanism to propagate mutations to some object to all symbols that reference it. For example, if
both x and y refer to the same list, and then this list is appended to, both x and y should be have their
timestamps bumped. NBSAFETY accomplishes this by creating a registry that maps objects to all

symbols referencing them.
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7.4 LIVENESS AND INVERSE LIVENESS

Algorithm 7.1: Liveness checker

Input:  Cell ¢, CFG G that stores successors succ[s] for each stmt s € ¢
Output: LIVE(c)
1 foreach stmt s € ¢ do

2 LIVEyy: [s] < 2;

3 LIVE;,[s] < @;

4 USE[s] < {referenced symbols in s};

5 DEF[s] < {assigned symbols or defined functions in s};
6 end

7 LIVEin[Gexit] < @

8 repeat

9 foreach stmt s € c do

10 LIVE,,,[s] < LIVEgy[s];

u LIVE, [s] < LIVE;,[s];

12 LIVEous [s] < Uy esuces) LIVEin[s']s

3 LIVE;,[s] < USE[s] U (LIVEgu:[s] — DEF[s]);
14 end

—

5 until LIVE,[s] = LIVE,[s] for both x € {in,out},Vs € c;
6 return LIVE;, [Gentryl;

—

Algorithm 7.2: Initialized variable checker

Input:  Cell ¢, CFG G that stores predecessors pred[s] for each stmt s € ¢
Output: DEAD(c)

1 foreach stmt s € c do

2 DEAD;,[s] < @;

3 DEAD,y;[s] < U;

4 USE(s] <« {referenced symbols in s};

5 DEF[s] <« {assigned symbols or defined functions in s};
¢ end

7 DEADout[Gentry] < 2

8 repeat

9 foreach stmt s € c do

10 DEAD),, [s] < DEAD; ,[s]:

1 DEAD),,, [s] <= DEAD,y[s];

12 DEAD;x [s] < My eprecrs) PEADour[s'];

13 DEAD,y[s] < (DEF[s] — USE[s]) U DEAD; ,[s];
14 end

until DEAD.[s] = DEAD.,[s] for both * € {in,out}, Vs € c;
return DEAD, s [Gexitl];

-
wm

—
=)
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if num % 3 ==

foob ir = True .
s = foobar' *3=2 > 32
elif nur % 3 == 1: #3==

foo : True | foobar | | f?o | | bar |

s = foo' \. : /
print
elee
LIVE: num, foobar
INITIALIZED: s

[print (s, foobar)|

Figure 7.5: Example liveness and initialized variable analysis.

In this section, we describe the program analysis component of NBSAFETY’s backend. The checker
performs liveness analysis [191], and a lesser-known program analysis technique called initialized
variable analysis, or definite assignment analysis [192]. These techniques are crucial for efficiently
identifying which cells are unsafe to execute due to stale references, as well as which cells help
resolve staleness issues. We begin with background before discussing the connection between these

techniques and staleness detection and resolution.

7.4.1 Background

Liveness analysis [191] is a program analysis technique for determining whether the value of
a variable at some point is used later in the program. Although traditionally used by compilers
to, for example, determine how many registers need to be allocated at some point during program
execution, we use it to determine whether a cell has references to stale symbols. We also show
(§7.5) how initialized variable analysis analysis [192], a technique traditionally used by IDEs and
linters to detect potentially uninitialized variables, can be used to efficiently determine which cells

to to resolve staleness.

Example. In Figure 7.5, symbols num and foobar are live at the top of the cell, since the value for
each at the top of the cell can be used in some path of the control flow graph (CFG). In the case of
num, the (unmodified) value is used in the conditional. In the case of foobar, while one path of the
CFG modifies it, the other two paths leave it unchanged by the time it is used in the print statement;
hence, it is also live at the top of the cell. The symbol that is not live at cell start is foo, since it is
only ever assigned and never used, and s, since every path in the CFG assigns to s. We call symbols

such as s that are assigned in every path of the CFG dead once they reach the end of the cell.
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7.4.2 Cell Oriented Analysis

We now describe how we relate liveness, which is traditionally applied in the context of a single
program, to a notebook environment. In brief, we treat each cell as if it is an individual program

when performing various program analyses. We formalize these notions below.

Definition 7.5 [Live symbols]. Given a cell ¢ and some symbol s, we say that s is live in ¢ if there

exists some execution path in ¢ in which the value of s at the start of ¢’s execution is used later in c.

In other words, s is live in c if, treating ¢ as a standalone program, s is live in the traditional
sense at the start of ¢. We already saw in Figure 7.5 that the live symbols in the example cell are
num, fiz, and buz. For a given cell ¢, we use LIVE(c) to denote the live symbols in c.

We are also interested in dead symbols that are (re)defined in every branch by the time execution

reaches the end of a given cell c.

Definition 7.6 [Dead symbols]. Given a cell ¢ and some symbol s, we say that s is dead in c if, by
the time control reaches the end of c, every possible path of execution in ¢ overwrites s in a manner

independent of the current value of s.

Denoting such symbols as DEAD(c), we will see in Section 7.5 the role they play in assisting in

the resolution of staleness issues.

Staleness and Freshness of Live Symbols in Cells. Recall that symbols are augmented with
additional lineage and timestamp metadata computed by the tracer (§7.3). We can thus additionally
refer to the set STALE(c) C LIVE(c), the set of stale symbols that are live in c. When this set is
nonempty, we say that cell c itself is stale:

Definition 7.7 [Stale cells]. A cell ¢ is called stale if there exists some s € LIVE(c) such that s is

stale; i.e., ¢ has a live reference to some stale symbol.

A major contribution of NBSAFETY is to identify cells that are stale and preemptively warn the user
about them.

Note that a symbol can be stale regardless of whether it is live in some cell. Given a particular
cell ¢, we can also categorize symbols according to their lineage and timestamp metadata as they
relate to ¢. For example, when a non-stale symbol s that is live in ¢ is more “up-to-date” than c,

then we say that it is fresh with respect to c:

Definition 7.8 [Fresh symbols]. Given a cell ¢ and some symbol s, we say that s is fresh w.r.t. ¢ if
(i) s is not stale, and (ii) ts(s) > ts(c).
We can extend the notion of fresh symbols to cells just as we did for stale symbols and stale cells:

Definition 7.9 [Fresh cells]. A cell c is called fresh if it (i) it is not stale, and (ii) it contains a live

reference to one or more fresh symbols; that is, As € LIVE(c) such that s is fresh with respect to c.
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Example. Consider a notebook with three cells run in sequence, with code a=4, b=a, and c=a+b,
respectively, and suppose the first cell is updated to be a=5 and rerun. The third cell contains
references to a and b, and although a is fresh, b is stale, so the third cell is not fresh, but stale. On

the other hand, the second cell contains a live reference to a but no live references to b, and is thus
fresh.

As we see in our experiments (§7.6), fresh cells are oftentimes cells that users wish to re-execute;
another major contribution of NBSAFETY is therefore to automatically identify such cells. In fact,
in the above example, rerunning the second cell resolves the staleness issue present in the first
cell. That said, running any other cell that assigns to b would also resolve the staleness issue, so
staleness-resolving cells need not necessarily be fresh. Instead, fresh cells can be thought of as
resolving staleness in cell output, as opposed to resolving staleness in some symbol. We study such

staleness-resolving cells next.

Cells that Resolve Staleness. We have already seen how liveness checking can help users to
identify stale cells. Ideally, we should also identify cells whose execution would “freshen” the stale
variables that are live in some cell ¢, thereby allowing ¢ to be executed without potential errors due

to staleness. We thus define refresher cells as follows:

Definition 7.10 [Refresher cells]. A non-stale cell c, is called refresher if there exists some other
stale cell cg such that
STALE(cs) — STALE(¢, D ¢5) # @ (7.5)

where ¢, @ cg denotes the concatenation of cells ¢, and cg. That is, the result of merging ¢, and c;

together has fewer live stale symbol references than does cs alone.

Intuitively, if we were to submit a refresher cell for execution, we would reduce the number of stale
symbols live in some other cell (possibly to 0). Note that a refresher cell may or may not be fresh.

In addition to identifying stale and fresh cells, a final major contribution of NBSAFETY is the
efficient identification of refresher cells. We will see in Section 7.5 that scalable computation of

such cells requires initialized analysis to compute dead symbols, which we describe in detail next.

7.4.3 Initialized Variable Analysis

Recall that we use liveness analysis to find “live” symbols whose values at the start of each cell
contribute to the computation performed in the cell, and we use inverse liveness to find “dead”
symbols whose values at the end of the each will have definitely been overwritten by the time control
reaches the end of the cell. A working knowledge of traditional liveness analysis is a prerequisite for
for understanding our inverse liveness technique; we refer the reader to, e.g., Aho et al. [191] for any

review necessary.
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Dataflow Equations. Inverse liveness is a fixed-point method for solving the following set of

dataflow equations:

DEADoy[s] = (DEF[s] —USE[s]) U DEAD;y[s] (7.6)

DEAD;,[s] = ﬂ DEADo ¢ [s'] (7.7)

s’ epredecessors of §

That is, a symbol is dead in statement s (i) if it is defined as a function, (ii) if it appears on the
left hand side of an assignment (but not the right hand side), or (iii) if it is dead in all predecessor

statements in the control flow graph.

Intuition. Traditional liveness analysis initializes each statement at the minimum point of a lattice
(i.e., the empty set). Each statement’s set of used symbols (USE[s]) are then iteratively propagated in
the reverse direction of control until a fixed point is reached, thereby solving the following set of

dataflow equations:

LIVE;[s] = USE[s] U (LIVEyy; [s] — DEF[s]) (7.8)

LIVEqu:[s] = U LIVE; . [s'] (7.9)

s’ esuccessors of §

If the live variables propagated during liveness checking can be thought of as electrons, then the
dead variables propagated during inverse liveness can be thought of as “holes”, using a metaphor from
electronics. Nearly every decision made over the course of inverse liveness analysis is the “inverse”
of decisions made during liveness analysis. For example, in inverse liveness, each statement’s set
of dead symbols is initialized to everything (i.e., at lattice maximum), and inverse liveness uses
set intersection (N) as the lattice meet operator instead of set union (U) when propagating dead
variables between statements, since symbols can be dead at cell bottom only if they are overwritten

in every branch of control.

Comparing Liveness and Inverse Liveness. A pseudocode description of our inverse liveness
checker is given in Algorithm 7.2. We also give a description of a textbook liveness checker to the
left in Algorithm 7.1 for contrast. In particular, we note that the two algorithms are nearly identical
excepting a few key differences:

e On line 3, DEAD,,,; is initialized to every symbol, instead of &;

e On line 12 of Algorithm 7.2, we take the intersection of outgoing dead symbols in predecessor

nodes, instead of the union of incoming live symbols in successor nodes as in Algorithm 7.1;
e On line 13 of Algorithm 7.2, we compute outgoing dead symbols as the union of symbols killed

in the current node with incoming dead symbols, whereas Algorithm 7.1 computes incoming
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live symbols as the union of symbols used in the current node with non-killed outgoing live
symbols;

e The dataflows is from top to bottom in Algorithm 7.2, while it is from bottom to top in
Algorithm 7.1.

These differences underscore the role Algorithm 7.2 plays as an inversion of liveness analysis.

7.4.4 Resolving Live Symbols

In many cases, it is possible to determine the set of live symbols in a cell with high precision
purely via static analysis. In some cases, however, it is difficult to do so without awareness of

additional runtime data. To illustrate, consider the example below:

x=0 [1]
def £(y):

return X + y
1st = [£f, lambda t: t + 1]

print(1st[1](2)) [21

Figure 7.6: Example of a difficult case for precise liveness checking.

Whether or not symbol x should be considered live at the top of the second cell depends on
whether the call to 1st[1] (2) refers to the list entry containing the lambda, or the entry containing
function £. In this case, a static analyzer might be able to infer that 1st[1] does not reference f and
that x should therefore not be considered live at the top of cell 2 (since there is no call to function £,
in whose body x is live), but doing so in general is challenging due to Rice’s theorem. Instead of
doing so purely statically, NBSAFETY performs an extra resolution step, since it can actually examine
the runtime value of 1st[1] in memory. This allows NBSAFETY to be more precise about live
symbols than a conservative approach would be, which would be forced to consider x as live even

though f is not referenced by 1st[1].

7.5 CELL HIGHLIGHTS

In this section, we describe how to combine the lineage metadata from Section 7.3 with the output

of NBSAFETY’s static checker to highlight cells of interest.
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7.5.1 Highlight Abstraction

We begin by defining the notion of cell highlights in the abstract before discussing concrete
examples, how they are presented, and how they are computed.

Definition 7.11 [Cell highlights]. Given a notebook N abstractly defined as an ordered set of cells
{c;i}, a set of cell highlights H is a subset of N comprised of cells that are semantically related in

some way at a particular point in time.

More concretely, we will consider the following cell highlights:

o Hj, the set of stale cells in a notebook;

e Jy, the set of fresh cells in a notebook; and

e J,, the set of refresher cells in a notebook.
Note that these sets of cell highlights are all implicitly indexed by their containing notebook’s
execution counter. When not clear from context we write J{y), U—C}t), and 5—(9 (respectively) to
make the time dependency explicit. Along these lines, we are also interested in the following “delta”
cell highlights:

. AJ—CJ(f) = J-Cj(f) — U-C](f_l) (new fresh cells); and

° A}Cy) = }cﬁ” — J—Cy_l) (new refresher cells)
again omitting superscripts when clear from context.

Interface. We have already seen from the example in Figure 7.3 that stale cells are given staleness

warnings to the left of the cell, and refresher cells are given cleanup suggestions to the left of

the cell. The current version of NBSAFETY as of this writing (0.0.49) also augments fresh cells

with cleanup suggestions of the same color as that used for refresher cells. Overall, the fresh and

refresher highlights are intended to steer users toward cells that they may wish to re-execute, and the
stale highlights are intended to steer users away from cells that they may wish to avoid, intuitions
that we validate in our empirical study (§7.6). Experimenting with presentation techniques for the
various sets J, is an interesting avenue that we leave to future work.

Computation. Computing H and Hy is straightforward: for each cell ¢, we simply run a liveness
checker (Algorithm 7.1) to determine LIVE(c), and then perform a metadata lookup for each symbol
s € LIVE(c) to determine whether s is fresh w.r.t. ¢ or stale. The manner in which NBSAFETY

computes refresher cells deserves a more thorough treatment that we consider next.

7.5.2 Computing Refresher Cells Efficiently

Before we discuss how NBSAFETY uses the initialized variable checker from Section 7.4 to
efficiently compute refresher cells, consider how one might design an algorithm to compute refresher

cells directly from Definition 7.10. The straightforward way is to loop over all non-stale cells
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Algorithm 7.3: Computing refresher cells naively
Input: Notebook N, stale cells Hy € N
Output: Refresher cells 3,

1 H, <~ @;

2 foreach ¢; € H; do

3 STALE(cs) < live, stale symbols in cy;

4 foreach ¢, € N — H; do

5 STALE(c, @ c5) < live, stale symbols in ¢, & cy;
6 if STALE(c;) — STALE(c, @ ¢5) # & then

7 ‘ H, <~ H, U{cr};

8 end

9 end
10 end

11 return H,;

¢, € N — H; and compare whether STALE(c, & c¢;) is smaller than STALE(cy). In the case that H
and N — J{; are similar in size, this requires performing O (|N |2) liveness analyses, which would
create unacceptable latency in the case of large notebooks. This inefficient approach is depicted in
Algorithm 7.3.

By leveraging an initialized variable checker, it turns out that we can check whether STALE(cy)
and DEAD(c, ) have any overlap instead of performing liveness analysis over ¢, & c; and checking
whether STALE(c, & cs) shrinks. We state this formally as follows:

Theorem 7.1. Let N be a notebook, and let ¢y € Hy C N. For any other ¢, € N — H, the
following equality holds:

STALE(cg) — STALE(c, @ ¢5) = DEAD(c,) M STALE(cy) (7.10)

Proof. We show each side of the equality is a subset of the other side. First, suppose some stale
symbol x is live in ¢ but not in ¢, @ c¢;. Then, at the point where control transfers from c;, to c; in
the outermost scope, every path of execution will definitely have redefined x.! Otherwise, there
would exist a path in ¢, wherein x is not redefined, and because x is live at the top of c;, it would
also be live at the top of ¢, @ c;. As such, x € DEAD(c;,) by definition. Furthermore, x € STALE(cy)
by our initial assumption, so x € DEAD(c,) M STALE(cy).

Conversely, suppose some stale symbol x is live in ¢ but dead in ¢,. By definition, every path of

execution in ¢, redefines x. We would like to say that x is not live in ¢, @ c;, but deadness in ¢,

'Note that there is no way for control to transfer from ¢, to ¢y in the outermost scope except at the point where ¢,
and c; meet lexically (technically, ¢, could call a function defined in ¢, but if this were to occur, control would not be
at the outermost scope).
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Algorithm 7.4: Computing refresher cells efficiently
Input: Notebook N, stale cells Hy; € N,
stale and live symbols STALE(cy), Vg € H,
dead symbols DEAD(c;), Ve, € N — H
Output: Refresher cells H, € N
DEAD![s] < @, Vs € DEAD(c,), V¢, € N — H;
foreach ¢, € N — H; do
foreach s € DEAD(c,) do
| DEAD™![s] <— DEAD![s] U {¢, };
end
end
H, <~ @,
foreach ¢, € H, do
foreach s € STALE(cy) do
10 | H, < 3, UDEAD![s];
11 end
12 end
13 return H,;

o N AN N A W N =

does not preclude liveness in ¢, (if, e.g., x is used in some path of ¢, before it is redefined later).
Thus, it is only true that x is not live if ¢, @ c¢; if it is also not live in ¢,. In fact, x is not live in ¢,
because ¢, ¢ Hs; i.e., ¢, has no live stale symbols by assumption, and x is stale; thus x is both live
in ¢g and not live in ¢, & cy; i.e., X € STALE(cg) — STALE(c, @ ¢y), which is what we needed to show

to complete the proof.

Theorem 7.1 relies crucially on the fact that the CFG of the concatenation of two cells ¢, and ¢, into
¢ @ cs will have a “choke point” at the position where control transfers from ¢, into ¢y, so that any
symbols in DEAD(c,) cannot be “revived” in ¢, @ c;.
Computing 5, Efficiently. Contrasted with taking O (|N|?) pairs ¢; € H;, ¢, € N — H, and
checking liveness on each concatenation ¢, @ cg, Theorem 7.1 instead allows us compute the set
H, as

U |J {er €N -3 :seDeAD(c,)} (7.11)

cs €My seSTALE((cy)
Equation 7.11 can be computed efficiently according to Algorithm 7.4, which creates an inverted
index that maps dead symbols to their containing cells (DEAD™!) in order to efficiently compute the
inner set union. Furthermore, Algorithm 7.4 only requires O (| N |) liveness analyses and O (|N|)

initialized variable analyses as preprocessing, translating to significant latency reductions in our
benchmarks (§7.6.4).
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7.6 EMPIRICAL STUDY

We now evaluate NBSAFETY’s ability to highlight unsafe cells, as well as cells that resolve safety
issues (refresher cells). We do so by replaying 666 real notebook sessions and measuring how the
cells highlighted by NBSAFETY correlate with real user actions. After describing data collection
(§7.6.1) and our evaluation metrics (§7.6.2), we present our quantitative results (§7.6.3 and §7.6.4),
followed by a qualitative comparison with other systems informed by real examples from our data
(§7.6.5 and §7.6.6).

7.6.1 Notebook Session Replay Data

We now describe our data collection and session replay efforts.

Data Scraping. The .ipynb json format contains a static snapshot of the code present in a
computational notebook and lacks explicit interaction data, such as how the code present in a cell
evolves, which cells are re-executed, and the order in which cells were executed.” Fortunately,
Jupyter’s [Python kernel implements a history mechanism that includes information about individual
cell executions in each session, including the source code and execution counter for every cell
execution. We thus scraped history.sqlite files from 712 repositories files using GitHub’s
API [195], from which we successfully extracted 657 such files. In total, these history files contained
execution logs for ~ 51000 notebook sessions, out of which we were able to collect metrics for 666

after conducting the filter and repair steps described next.

Notebook Session Repair. Many of the notebook sessions were impossible to replay with perfect
replication of the session’s original behavior (due to, e.g., missing files). To cope, we adapted ideas
from Yan et al. [189] to repair sessions wherever possible. Specifically, we took the following
measures:

e Since NBSAFETY runs on Python 3, we used the 2to3 tool [196] whenever we encountered
Python 2 code.

o To deal with differing APIs used by different versions of the same library (e.g., scikit-learn),
we first gathered all the import statements for each library and tried to execute them under
different versions of the aforementioned library, using the version that minimized import errors
to finally replay the session.

e We normalized all path-like strings to point to the same directory, to prevent invalid accesses to

nonexistent directories.

’The cell counter in a . ipynb file only contains the latest executed cell version for each cell, and says nothing about
how executions of earlier iterations of the cell are ordered w.r.t. others.
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e We used the Kaggle API to search for and attempt to download any csv files referenced by each
session.
e We removed any lines or cells that attempted to run system commands through Jupyter’s line
(resp. cell) magic functionality.
e We executed the line magic %matplotlib inline before replaying a session to avoid rendering
matplotlib charts with Qt.
Session Filtering. Despite these efforts, we were unable to reconstruct some sessions to their
original fidelity due to various environment discrepancies. Furthermore, certain sessions had few
cell executions and appeared to be random tinkering. We therefore filtered out sessions fitting any
of the following criteria:
e Sessions with fewer than 50 cell executions;
e Sessions that attempted to run shell commands;
e Sessions that solicited user input via readline or other means;
e Sessions that attempted to connect to external services (e.g. AWS, Spark, Postgres, MySQL,
etc.);
e Sessions that attempted to read nonexistent files (or those that could not be found using the
Kaggle API).
After these steps, we were left with 2566 replayable sessions. However, we were unable to gather
meaningful metrics on more than half of the sessions we replayed because of exceptions thrown
upon many cell executions. We filtered these in post-processing by removing data for any session
with more than 50% of cell executions resulting in exceptions.
After the repair and filtration steps, we extracted metrics from a total of 666 sessions. Our scripts
are available on GitHub [197].
Environment. All experiments were conducted on a 2019 MacBook Pro with 32 GiB RAM and a
Core i9 processor running macOS 10.14.5, Python 3.7, and NBsaFeTy 0.0.49. We replayed notebook
sessions in a container instance to ensure our local files would not be compromised in the event of

intentionally or unintentionally malicious code present in the sessions we scraped.

7.6.2 Metrics

Besides conducting benchmark experiments to measure overhead associated with NBSAFETY
(§7.6.4), the primary goal of our empirical study is to evaluate our system and interface design
choices from the previous sections by testing two hypotheses. Our first hypothesis (i) is that cells
with staleness issues highlighted by NBSAFETY are likely to be avoided by real users, suggesting
that these cells are indeed unsafe to execute. Our second hypothesis (ii) is that fresh and refresher

cells highlighted by NBsaFETY are more likely to be selected for re-execution, indicating that these
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suggestions can help reduce cognitive overhead for users trying to choose which cells to re-execute.

To test these hypotheses, we introduce the notion of predictive power for cell highlights.

Definition 7.12 [Predictive Power]. Given a notebook N with a total of |N | cells, the id of the next
cell executed c, and a non-empty set of cell highlights J{ (chosen before c is known), the predictive
power of H is defined as P(H) = 1{c € H}-|N|/|H].

Averaged over many measurements, predictive power assesses how many more times more likely a

cell from some set of highlights J{ is to be picked for re-execution, compared to random cells.

Intuition. To understand predictive power, consider a set of highlights H chosen uniformly randomly

without replacement from the entire set of available cells. In this case,
E[l{c € H}| =P(c € H) = |H|/|N| (7.12)

so that the predictive power of H is (|]JH|/|N|) - (|N|/|FH|) = 1. This holds for any number of cells
in the set of highlights J, even when || = |N|. Increasing the size of HH{ increases the chance for
a nonzero predictive power, but it also decreases the “payout” when ¢ € J{. For a fixed notebook N,

the maximum possible predictive power for H occurs when H = {c}, in which case P(H) = |N|.

Rationale. Our goal in introducing predictive power is not to give a metric that we then attempt to
optimize; rather, we merely want to see how different sets of cell highlights correlate with real user
behavior. In some sense, any P(H) # 1 is interesting: P(H) < 1 indicates that users tend to avoid
I, and P(H) > 1 indicates that users tend to prefer J{. For the different sets of cell highlights
{H} introduced in Section 7.5, each P(H ) helps us to make this determination.

Gathering measurements. The session interaction data available in the scraped history files only
contains the submitted cell contents for each cell execution, and unfortunately lacks cell identifiers.
Therefore, we attempted to infer the cell identifier as follows: for each cell execution, if the cell
contents were >80% similar to a previously submitted cell (by Levenshtein similarity), we assigned
the identifier of that cell; otherwise, we assigned a new identifier. Whenever we inferred that an
existing cell was potentially edited and re-executed, we measured predictive power for various
highlights 3, when such highlights were non-empty. Across the various highlights, we computed
the average of such predictive powers for each sessions, and the averaged the average predictive
powers across all sessions, reporting the result as AVG(P(H,)) for each H, (§7.6.3).
Highlights of Interest. We gathered metrics for H;, Hy, AHy, H,, and AKH,, which we
described earlier in Section 7.5. Additionally, we also gathered metrics for the following “baseline
highlights”:

e H,, or the next cell highlight, which contains only the k + 1 cell (when applicable) if cell k£ was

the previous cell executed; and
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Figure 7.8: AVG(P(H4)) for sessions with/without safety issues.

o Hing, or the random cell highlight, which simply picks a random cell from the list of existing
cells.
We take measurements for J{,, because picking the next cell in a notebook is a common choice, and
it is interesting to see how its predictive power compares with cells highlighted by the NBSAFETY
frontend such as H ¢ and }(,. We also take measurements for },4 to validate via Monte Carlo

simulation the claim that random cells H,,4 should satisfy P(H,,q) = 1 in expectation.

7.6.3 Predictive Power Results

In this section, we present the results of our empirical evaluation. Overall, NBsaFery discovered
that 117 sessions out of the 666 encountered staleness issues at some point, underscoring the need
for a tool to prevent such errors. Furthermore, we found that the “positive” highlights like H s and
H, correlated strongly with user choices.

Predictive Power for Various Highlights. We now discuss average P(J,) for the various H, we

consider, summarized in Table 7.2.
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Quantity | 3, | Hua | I | Hy | H, | AHy | AT,
AVG(P(H,)) | 2.64 | 1.02 [ 0.30 | 2.83 | 3.90 | 9.17 | 6.20
AVG(|F,[) | 1.00 [ 1.00 | 2.71 | 3.73 [ 2.31 | 1.73 | 1.81

Table 7.2: Summary of measurements taken for various highlight sets.

Summary. Out of the highlights H, with P(H,) > 1, new fresh cells, AHy, had the highest
predictive power, while 3, had the lowest (excepting H,,q, which had P(H,,4) & 1 as expected).
s had the lowest predictive power coming in at P(H) ~ 0.30, suggesting that users do, in fact,

avoid stale cells.

We measured the average value of P(JH;) at roughly 0.30, which is the lowest mean predictive
power measured out of any highlights. One way to interpret this is that users were more then 3x
less likely to re-execute stale cells than they are to re-execute randomly selected highlights of the
same size as H; — strongly supporting the hypothesis that users tend to avoid stale cells.

On the other hand, all of the highlights 3(,, Hr, I, AH s, and AF, satisfied P(IH,) > 1
on average, with P(AJ(y) larger than the others at 9.17, suggesting that users are more than 9x
more likely to select newly fresh cells to re-execute than they are to re-execute randomly selected
highlights of the same size as AH¢. In fact, H,, was the lowest non-random set of highlights with
mean predictive power > 1, strongly supporting our design decision of specifically guiding users to
all the cells from }{ and H, (and therefore to A and AJ, as well) with our aforementioned
visual cues. Furthermore, we found that no |JH | was larger than 4 on average, suggesting that these
cues are useful, and not overwhelming.

Finally, given the larger predictive powers of AH ¢ and AJ(,, we plan to study interfaces that
present these highlights separately from H s and H, in future work.

Effect of Safety Issues on Predictive Power. Of the 666 sessions we replayed, we detected 1 or
more safety issues (due to the user executing a stale cell) in 117, while the majority (549) did not
have safety issues. A histogram depicting the distribution of “# safety issues” is given in Figure 7.7.
We reveal interesting behavior by computing AVG(P(H.)) when restricted to (a) sessions without

safety errors, and (b) sessions with 1 or more safety errors, depicted in Figure 7.8.

Summary. For sessions with safety errors, users were more likely to select the next cell (J{(,), and

less likely to select fresh or refresher cells (Hy and J(,, respectively).

Figure 7.8 plots AVG(P(H,)) for various highlight sets after faceting on sessions that did and did
not have safety errors. By definition, AVG(P(H,)) = 0 for sessions without safety errors (otherwise,
users would have attempted to execute one or more stale cells), but even for sessions with safety

errors, we still found P(H;) < 1 on average, though not enough to rule out random chance.
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refresher computation.

Interestingly, we found that AVG(P(J,)) was significantly higher for sessions with safety issues,
suggesting that users were more likely to execute the next cell without much thought.

Finally, we found that users were significantly less likely to choose cells from H¢, H,, or AJ,
for sessions with safety errors. In fact, users favored 3, over J{, or Hy in this case. Regardless of
whether sessions had safety issues, however, AH and AH, still had the highest mean predictive
powers out of any of the highlights, with AVG(P(AXHy)) relatively unaffected by safety issues.

7.6.4 Benchmark Results

Our benchmarks are designed to assess the additional overhead incurred by our tracer and checker
by measuring the end-to-end execution latency for the aforementioned 666 sessions, with and without
NBSAFETY. Furthermore, we assess the impact of our initialized analysis approach to computing

refresher cells (Algorithm 7.4) by comparing it with the naive quadratic baseline (Algorithm 7.3).
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Approach Jupyter | NBSAFETY | NBSAFETY (quadratic refresher)
Total Time (s) 3150 5840 9920
Median Slowdown Ix 1.44x 1.58x%

Table 7.3: Summary of latency measurements. Median slowdown measured on sessions that took > 5
seconds to execute in vanilla Jupyter.

Overall Execution Time. We summarize the time needed for various methods to replay the 666
sessions in our execution logs in Table 7.3, and furthermore faceted on the static analysis and
tracing / execution components in Figure 7.9. We measured latencies for both vanilla Jupyter and
NBSAFETY, as well as for an ablation that replaces the efficient refresher computation algorithm with

the quadratic variant (Algorithm 7.3).

Summary. The additional overhead introduced by NBSAFETY is within the same order-of-magnitude
as vanilla Jupyter, taking less than 2x longer to replay all 666 sessions, with typical slowdowns
less than 1.5x. Without initialized analysis for refresher computation, however, total reply time

increased to more than 3x the time taken by Jupyter.

Furthermore, we see from Figure 7.9 that refresher computation begins to dominate with the
quadratic variant, while it remains small for the linear variant based on initialized analysis.
Although NBSAFETY’s tracer introduces some additional overhead compared to the vanilla Jupyter
kernel, we note that this overhead is relatively minor (less than 1.5x), and that a less-optimized
tracing implementation would have performed far worse. For example, suppose 1st contains one
million elements, and we materialize the output of amap operation, e.g. 1st = list(1lst.map(£f)).
Using Python’s tracing mechanism directly, this would produce at least one million call and
return events, leading to overhead in excess of 10x. NBSAFETY is smart enough to disable tracing
if the same program statement is encountered twice during a given execution, so that this statement
executes just as in vanilla Jupyter, while still detecting that symbol 1st should be given f as a
dependency.
Impact of Number of Cells on Analysis Latency. To better illustrate the benefit of using initialized
analysis for efficient computation of refresher cells, we measured the latency of just NBSAFETY’S
analysis component, and for each session, we plotted this time versus the total number of cells

created in the session, in Figure 7.10.

Summary. While quadratic refresher computation is acceptable for sessions with relatively few

cells, we observe unacceptable per-cell latencies for larger notebooks with more than 50 or so cells.
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System Datalore | Nodebook | Dataflow | NBSAFETY
Auto infers symbol lineage v v X v
Composes with NBSAFETY X X v N/A
Auto resolves staleness v v * optionally
+always does so correctly v X r N/A*
Preserves Jupyter semantics X X i v
No crashing on valid Python X X v v
No other performance penalty X X v X (minor)

Table 7.4: Summary of key distinguishing properties of notebook systems that help prevent stale executions.
* Only for manually specified dependencies.

T Except for manually specified dependencies.

1 NBSAFETY can display the run-plan and allow manual corrections if needed.

The linear variant that leverages initialized analysis, however, scales gracefully even for the largest

notebooks in our execution logs.

The variance in Figure 7.10 for notebooks of the same size can be attributed to cells with different
amounts of code, as well as different numbers of cell executions (since the size of the notebook is a

lower bound for the aforementioned according to our replay strategy).

7.6.5 Comparison with Other Systems

We now give a qualitative comparison of NBSAFETY with other systems that attempt to resolve
staleness issues, viewed through the lens of the data we collected in our empirical study. After
surveying relevant literature and open source software repositories, we are aware of three such
systems: Dataflow notebooks [12], Nodebook [13], and the Datalore kernel from JetBrains [14].

The most salient distinctions for each approach are summarized in Table 7.4. We now provide a

summary for each system.

Dataflow Notebooks. While Dataflow notebooks have many desirable properties, they require the
user to specify dependencies manually in order to leverage any staleness-resolving functionality.
Dataflow notebooks can be used in conjunction with NBSAFETY if reactive cell execution via

manually-specified dependencies is desired.

Datalore and Nodebook. Both the Datalore kernel and Nodebook seem to take take a hybrid analysis
/ memoization approach toward automatic staleness resolution: each cell serializes the variables
that it assigns, and if a cell ¢ is rerun, a liveness checker determines what symbols need to be
deserialized (using versions computed by cells that appear in ¢ spatially) and used as “inputs” to

¢, possibly rerunning cells prior to c if they were edited or if they depend on an edited cell. For
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example, in Figure 7.2, the second cell would be automatically rerun if the user attempts to rerun
the third cell after rerunning the first.

These approaches allow notebooks to emulate script-like top-to-bottom behavior, but serialization
can come at significant cost for objects like large dataframes, and furthermore, not all objects are
serializable, thereby rendering these approaches viable only on a much smaller set of programs, as
we will see. Finally, because liveness gives a conservative overestimation of symbols used, these
approaches may perform more work than necessary to rerun prior edited cells, or to deserialize

possibly-needed symbols.

Ability to run valid Python. Perhaps the most serious shortcoming of memoization-based

approaches stems from their failure to execute valid Python code. Consider the following example:

y = (i + 2 for i in range(10)) [1]

print (list(y)) [31

Figure 7.11: The first cell contains a generator object, which does not serialize in Python.

If the user edits the first cell and then attempts to run the second cell twice using either Nodebook
or the Datalore kernel, they will observe an error when these approaches try (and fail) to load the

non-serializable object y from storage.

Ability to conduct multiverse analyses. To facilitate the below discussion, we define the “rerun all
cells” approach adopted by Nodebook, Datalore, and Dataflow notebooks (for manual dependencies)
to be a “forcible cascade” approach, the selective rerun approach adopted by NBSAFETY to be a
“supervised permissive cascade” approach, and that of Jupyter to be a “manual cascade” approach.

In exploratory programming and data analysis, users do not usually have a clear indication of
which approach might work well up-front [198]. So, they typically try various alternative approaches
to achieve their end-goal, while also recording snippets of what they had tried previously, for reuse,
and for returning to old alternatives [199]. The forcible cascade approach in this case has the
unintended effect of having all of their downstream alternatives being executed, when the user
wanted to execute precisely one.

These sorts of multiverse analyeses are hindered by the forcible cascade approaches. In fact,
we found several instances in our execution logs wherein users explicitly saved off variables to be
returned to later, and where forcible cascades would have overwritten these variables’ saved values.

We now give a typical example, depicted below:
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df = pd.read_csv('universel.csv') [1]

df = df.dropna(Q[['coll', 'col2', 'col3', ...1] r21

df = df.rename({...}) [3]

df = df.merge( [4]
df.grouby(...).sum().reset_index(),
on="col', how='left')

# more cells ... [...]

df_saved = df.copy(Q [n]

Figure 7.12: Example notebook session performing a multiverse analysis.

After reading the file universel. csv into a dataframe and performing some transformations,
the user would then save a copy of the transformed dataframe. The user would then repeat the
same transformations by changing cell 1 to read in universe2.csv and manually running the
cells below, but stopping before creating the copy. The user then would perform some comparison
between the transformed universel.csv data and the transformed universe2.csv data. Note

that a forcible cascade would have overwritten the variable df_saved, preventing this comparison.

7.6.6 Staleness Case Study

We now discuss a particularly egregious example of unsafe behavior in one of the 666 replayed
sessions that would have been caught by NBsAFeTY. In this session, the user was attempting to

visualize a Wiener process defined by the following function:
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def wiener(tmax, n): [1]
# Return one realization of a Wiener process
# with n steps and a max time of tmax.
times = np.linspace(®, tmax, n)
difference = np.diff(times)
process = np.random.normal (0, difference**.5)
process = np.cumsum(process)
return times, process

Figure 7.13: Staleness case study (step 1).

The user then initially called this function and saved the output in variables t and w:

t, W = wiener(1.0, 1000) [2]1

Figure 7.14: Staleness case study (step 2).

After inspecting a few values in the array w, the user then decided to rename it from lowercase w to

uppercase W:

t, W = wiener(1.0, 1000) [3]

Figure 7.15: Staleness case study (step 3).

Next, the user used the popular visualization library Altair [200] to plot the output of the wiener

function, using the following code (and producing output similar to the figure below the cell):
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data = pd.DataFrame({'time': t, ["W': w}) [4]
alt.Chart(data).mark_line().encode(

X = "time',
y = IW:QI
)
0.5 1
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.16: Staleness case study (step 4).

However, note that in cell 4, the dataframe created by the user, data, refers to the old lowercase
w, and not the new uppercase W most recently created. Thus, when the user reran cells 3 and 4 in
succession, the exact same figure as that from the original cell 4 was generated.

Confused, the user then reran cells 1, 3, and 4 in succession, each time generating a plot identical
to that from the original cell 4. This process repeated itself around 20 times, before the user finally

noticed the problem and changed cell 4 to the following:

data = pd.DataFrame({'time': t, ['W': W}) [4]
alt.Chart(data).mark_line().encode(

X = "time',

y = 'w:Q'
)

Figure 7.17: Staleness case study (last step).

This at last generated a different plot from the output of the original cell 4, but the entire process
resulted wasted effort that would have been saved had the user noticed the error earlier.
How nBsafFeTY Helps. To see how NBsAFeTY would have helped, let us examine the highlights that
NBSAFETY would have presented after the user reran 3 and 4, got confused, and then reran cell 1.

The state of the notebook would have then appeared similar to the following:
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def wiener(tmax, n): [71
# Return one realization of a Wiener process
# with n steps and a max time of tmax.
times = np.linspace(®, tmax, n)
difference = np.diff(times)
process = np.random.normal (0, difference**.5)
process = np.cumsum(process)
return (times, np.insert(process, 0, 0))

wiener (1.0, 1000) [5]

L
s R
+
=
Il
. J

data = pd.DataFrame({'time': t, 'W': w}) [6]
alt.Chart(data).mark_line().encode(

Xx = "time',

y = 'W:Q'
)

L J

Figure 7.18: Highlights displayed by NBsaFeTY for staleness case study after rerunning cells 3, 4, and 1
(Figures 7.13, 7.15 and 7.16, respectively) in order.

That is, cell 3 would be given a fresh cleanup suggestion highlight, because the wiener symbol

was recently updated when the user reran the first cell (now labeled as 7). Likewise, cell 6 is given a
stale highlight because lowercase w depends on the old version of wiener.

Next, when the user reruns the cell labeled as 5 in the above notebook, they would expect the
unsafe highlight over cell 6 to be replaced with a fresh highlight, because they refreshed the symbol
W. However, this does not occur, and the unsafe highlight remains. The user could have then query

NBSAFETY’S API to determine why, and would have been presented with the following:
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t, W = wiener(1.0, 1000) [71

\
J

data = pd.DataFrame({'time': t, '"W': w}) [6]
alt.Chart(data).mark_line().encode(

Xx = "time',

y = 'w:Q’
)

# WARNING: "w° (latest update in cell 2) may depend
# on old version of symbol(s) [ wiener™].

. J

Figure 7.19: Highlights displayed by NBsAFETY after rerunning cell 5 in Figure 7.18.

At this point, the user likely would have noticed that cell 6 does not refer to symbol W, which was
updated when the user ran cell 7, but on symbol w, which lingers in notebook state from when the

user originally ran cell 2.

7.7 SUMMARY

We presented NBSAFETY, a kernel and frontend for Jupyter that attempts to detect and correct
potentially unsafe interactions in notebooks, all while preserving the flexibility of familiar any-order
notebook semantics. We described the implementation of NBSAFETY’s tracer, checker, and frontend,
and how they integrate into existing notebook workflows to efficiently reduce error-proneness in
notebooks. We showed how cells that NBsareTy would have warned as unsafe were actively avoided,
and cells that would have been suggested for re-execution were prioritized by real users on a corpus

of 666 real notebook sessions.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

Data science is highly inferactive, with the analysis and development process in many ways
determined adaptively while browsing, plotting visualizations, generating reports, and modeling
data. To enable interactivity when working with large datasets, data scientists must typically resort
to shortcuts to help cope with the scale of the data. Prior work facilitating these shortcuts would
typically involve sacrificing safety for interactivity, or would otherwise completely fail to scale
to modern workloads due to safety constraints. In this dissertation, we showed how to leverage
distributional context to enable safe interaction at scale for a set of common data science tasks,
namely ML model development, browsing, visual exploration, report generation, and interactive

notebook development.

8.1 KEY TAKEAWAYS AND DESIGN PRINCIPLES

Our experience suggests two key takeaways and design principles when designing safe and

interactive systems for data science tasks and environments.

Design Principle 1: Embrace Imperfection. Working with data is an inherently messy, iterative,
and incremental process. Achieving perfect safety and interactivity simultaneously is, at the very
least, challenging, if not impossible in most cases. In this dissertation, we have seen how, by
judiciously accepting bounded reductions in one trait (i.e., safety or interactivity), we can greatly
improve upon the other trait. We now give some specific examples:

In Chapter 4 (on index structures for browsing), we saw how accepting false positives (by
leveraging Bloom index lookups) enabled design decisions that resulted in enormous space savings
when indexing multidimensional data.

In Chapters 5 and 6 (on visualization and report generation), we saw how accepting some amount
of (bounded) error enabled interactivity improvements in the form of order-of-magnitude speedups
due to early stopping.

In Chapter 7 (on computational notebooks), we saw how, by accepting some amount of lineage
overhead (bounded by the amount of code written by the data scientist), we were able to provide

useful suggestions for what cells to execute and what cells to avoid due to staleness issues.

Design Principle 2: Context is Key. By relaxing either safety or interactivity in a bounded way,
Design Principle 1 suggests that we can make disproportionate improvements to the other aspect.
However, our experience suggests that, in order to do so, we must understand properties of the data
or workload in question that enable these improvements. As before, we now draw upon specific
examples from each chapter:
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In Chapter 3 (on iterative ML development), we saw how we could leverage reuse across iterations
during the machine learning development lifecycle to vastly improve training and evaluation latencies,
and thereby interactivity. However, such reuse was only made possible thanks to similarities across
iterations — a key form of workload context.

In Chapter 4, our multidimensional learned Bloom index space savings required some amount
of workload-aware knowledge, in the form of a negative query distribution. It is only when this
negative query distribution is significantly different from the set of in-index elements that such
compression is possible.

In Chapters 5 and 6, we were able to develop approximation techniques for interactive analytics
that yielded significant speedups over existing with-guarantees techniques, but such speedups were
largely on account of data characteristics. In particular, we were able to achieve earlier stopping
without sacrificing correctness guarantees precisely because the data over which we were operating

were “better-behaved” compared to worst-case data (thanks to lower intra- or inter-group variance).

8.2 FUTURE WORK

Following the promising results demonstrated in this dissertation, we now outline a few possible

future directions.

1. Safe and Interactive Spreadsheets. Recent work [201, 202] has made great strides toward
improving spreadsheet interactivity; however, comparatively little attention has been given to the
safety aspect. The reference-based computation of spreadsheets can be brittle: consider a column
wherein each entry refers to the previous. If some entry is deleted (e.g., due to a cut and paste
interaction), it can render the results of all subsequent entries meaningless, and can be difficult to

catch. How can we make spreadsheet references more robust?

2. Safe and Interactive Data Labeling. Automated labeling techniques are increasingly important
for alleviating the significant manual burden associated with curating high-quality training data.
One approach allows data scientists to write “labeling functions” that are then de-noised in a
post-processing step [203]. In practice, the development and curation of labeling functions is itself
an iterative and interactive process, but unlike in the HELIX setting, it is typically the data that change
across iterations (due to changes in labeling functions) as opposed to model changes. Although
significant portions of the generated training labels may be identical, leveraging reuse in this case,
as in the HELIX setting, is error-prone. Can we develop a system that permits reuse of training labels

across iterations in a safe manner? If so, under what modeling scenarios?

158



3. Improving State Management in Computational Notebooks. In Chapter 7, we explored
how to guard against one type of common unsafe interaction in computational notebooks (namely,
stale executions), but notebooks admit many state management challenges that affect safety. The

following directions immediately present themselves:

i. Categorizing and mitigating other unsafe interactions. Notebooks admit many other ways to
make mistakes than just stale executions, such as typos in variable names that reference zombie
values not visible in the notebook, but still present in memory. Such mistakes lead to false insights
and hinder reproducibility, so understanding and mitigating against a broader spectrum of errors is

extremely valuable.

ii. Enforcing atomicity and idempotence of cell executions. Atomicity and idempotence have long
been known by the database community to be desirable properties of mutating interactions, and it is
thus natural to ask whether we can further improve safety of computational notebooks by enforcing
such semantics in the context of cell executions. Notebook cells bear a remarkable resemblance to
transactions, each of which update the notebook’s internal state upon execution.

While enforcing full atomicity (e.g., by using software transactional memory [204]) may result in
unacceptable performance, we may be able to use program analysis techniques to provide warnings
when a cell would throw an exception before finishing execution, e.g., due to a type error, or
undefined variable reference. And while it may be impossible to catch all such errors, we may be
able to provide undo / redo functionality in some limited cases to partially mitigate the issue, similar
to a transaction rollback.

Likewise, enforcing full idempotent semantics may be too heavyweight, but we may be able to
use tracing to warn when re-executing a cell would likely yield a different result, if, e.g., we detect

that the cell writes to the notebook state after reading a value that was last written by that same cell.
Our goal in outlining the directions above is to be representative, but not exhaustive. Overall,

the techniques described in this dissertation serve as a promising framework for enabling safe

interactivity while addressing scaling challenges in modern, interactive data science.
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APPENDIX A: PROOFS OF SELECTED THEOREMS

A.1 PROOF OF THEOREM 3.2

For clarity, we first formulate OpT-Exec-PLAN as an integer linear program before presenting the
proof itself.
Integer Linear Programming Formulation. Problem 3.1 can be formulated as an integer linear

program (ILP) as follows. First, for each node n; € G, introduce binary indicator variables X,, and
Xp, defined as follows:

Xa; = I{s(ni) # Sp} (A.1)
Xp, = I{s(ni) = S¢} (A.2)

That is, X,, = 1 if node n; is not pruned, and X;, = 1 if node n; is computed. Note that it is not
possible to have X,;, = 0 and X;, = 1. Also note that these variables uniquely determine node n;’s
state s(n;).

With the {X,, } and {X}, } thus defined, our ILP is as follows:

IN|
minimize ZXai li + Xp, (c;i — 1) (A.3a)
Xa,-’ Xbl i=1
subject to X —Xp, 20, 1=<i=<|N| (A.3b)
D Xa =Xy 20, 1=i=<IN| (A3¢)
nj€Pa(n;)

Xop, X, €40,13, 1 <i <|N]| (A3d)

Equation (A.3b) prevents the assignment X,, = 0 (n; is pruned) and X, = 1 (n; is computed),
since a pruned node cannot also be computed by definition. Equation (A.3c) is equivalent to
Constraint 3.2 —if X, = 1 (n; is computed), any parent n; of n; must not be pruned, i.e., X, = 1,
in order for the sum to be nonnegative. Equation (A.3d) requires the solution to be integers.

This formulation does not specify a constraint corresponding to Constraint 3.1. Instead, we
enforce Constraint 3.1 by setting the load and compute costs of nodes that need to be recomputed to
specific values, as inputs to Problem 3.1. Specifically, we set the load cost to oo and the compute
cost to —e for a small € > 0. With these values, the cost of a node in S;, S,, S¢ are 00,0, —€

respectively, which makes S, a clear choice for minimizing Equation (A.3a).
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Although ILPs are, in general, NP-Hard, the astute reader may notice that the constraint matrix
associated with the above optimization problem is totally unimodular (TU), which means that
an optimal solution for the LP-relaxation (which removes Equation (A.3d) in the problem above)
assigns integral values to {X,, } and {X}, }, indicating that it is both optimal and feasible for the
problem above as well [205]. In fact, it turns out that the above problem is the dual of a flow problem;
specifically, it is a minimum cut problem [206, 207]. This motivates the reduction introduced in
Section 3.5.2.

Main proof. The proof for Theorem 3.2 follows directly from the two lemmas proven below. Recall
that given an optimal solution A to PSP, we obtain the optimal state assignments for OEP using the
following mapping:
S, ifa; e Aandb; € A
s(ni) =18, ifa; e Aandb; ¢ A (A.4)
S, ifai g Aandb; € A

Lemma A.1. A feasible solution to PSP under ¢ also produces a feasible solution to OEP.

Proof. We first show that satisfying the prerequisite constraint in PSP leads to satisfying Con-
straint 3.2 in OpT-ExEc-PLAN. Suppose for contradiction that a feasible solution to PSP under ¢ does
not produce a feasible solution to OEP. This implies that for some node n; € N s. t. s(n;) = S, at
least one parent n; has s(n;) = S,. By the inverse of Equation (A.4), s(n;) = S, implies that b;
was selected, while s(n;) = S, implies that neither a; nor b; was selected. By construction, there
exists an edge a; — b;. The project selection entailed by the operator states leads to a violation of
the prerequisite constraint. Thus, a feasible solution to PSP must produce a feasible solution to OEP

under ¢.
Lemma A.2. An optimal solution to PSP is also an optimal solution to OEP under ¢.

Proof. Let Y,, be the indicator for whether project a; is selected, Y3, for the indicator for b;, and

p(x;) be the profit for project x;. The optimization objective for PSP can then be written as

|N|
max Y Ya, p(ai) + Yo, p(bi) (A.5)

Yai’Ybi i=1

Substituting our choice for p(a;) and P(b;), Equation (A.5) becomes
|V
max Y =Ygl + Yy, (i — ¢;) (A.6)

Yai sYbI' i=1
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Ci <= pi + 25; :

Figure A.1: OMP DAG for Knapsack reduction.

IN|
= max E(Ym — )i + Ya,ci (A7)

1=
The mapping established by Equation (A.4) is equivalent to setting X,, = Y,, and Xp, = Y,.
Thus the maximization problem in Equation (A.7) is equivalent to the minimization problem in

Equation (A.3a), and we obtain an optimal solution to OEP from the optimal solution to PSP.

A.2 PROOF OF THEOREM 3.3

We show that OMP is NP-hard under restrictive assumptions about the structure of W, relative
to W;, which implies the general version of OMP is also NP-hard.

In our proof we make the simplifying assumption that all nodes in the Workflow DAG are
reusable in the next iteration:

S RV t+1
n;=n;" Vn; € Ne,n;"" € Ni gy (A.8)

Under this assumption, we achieve maximum reusability of materialized intermediate results since
all operators that persist across iterations ¢ and ¢ + 1 are equivalent. We use this assumption to
sidestep the problem of predicting iterative modifications, which is a major open problem by itself.

Our proof for the NP-hardness of OMP subject to Equation (A.8) uses a reduction from the known
NP-hard Knapsack problem.

Problem A.1. (Knapsack) Given a knapsack capacity B and a set N of n items, with eachi € N
having a size s; and a profit p;, find S* =

argmax Di (A.9)
SCN ; l

such that ) g« 8i < B.

For an instance of Knapsack, we construct a simple Workflow DAG W as shown in Figure A.1.

For each item i in Knapsack, we construct an output node n; with [; = s; and ¢; = p; + 2s;.
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We add an input node no with [j = € < mins; that all output nodes depend on. Let ¥; € {0, 1}
indicate whether a node n; € M in the optimal solution to OMP in Equation (3.4) and X; € {0, 1}

indicate whether an item is picked in the Knapsack problem. We use B as the storage budget, i.e.,
Ziee{o,l} Yil; < B.

Theorem A.1. We obtain an optimal solution to the Knapsack problem for X; = Y; Vi €
{1,2,...,n}.

Proof. First, we observe that for each n;, T* (W) will pick min(/;, ¢;) given the flat structure of the
DAG. By construction, min(/;, ¢;) = [; in our reduction. Second, materializing n; helps in the first

iteration only when it is loaded in the second iteration. Thus, we can rewrite Equation (3.4) as

N N
argmin " Yil; + (Z Yili + (1 - Y,-)cl-) (A.10)

Ye{0,13N ;4 i=1

where Y = (Y1, Y5, ..., Yy). Substituting in our choices of /; and ¢; in terms of p; and s; in (A.10),
we obtain argminy¢gg 13~ ZlNz1 —Y; pi. Clearly, satisfying the storage constraint also satisfies the
budget constraint in Knapsack by construction. Thus, the optimal solution to OMP as constructed

gives the optimal solution to Knapsack.

A.3 PROOF OF THEOREM 4.1

We now give a proof of Theorem 4.1, which states that, the optimal classifier threshold for a
sandwiched learned Bloom filter is the point that maximizes the KL divergence between the true

and false positive rates KL(X7,||XF,), when the optimal filter has a nonempty prefilter.

Proof. Following the analysis in [64], the overall false positive rate of a sandwiched filter with b

bits per key and a learned model with false positive rate F, and false negative rate F, is given by
o (Fy+ (1= Fpat'™) (A.11)

where the second filter has b, bits per key (so that the first filter has b — b, bits per key), and
a ~ 0.6185 is chosen assuming each traditional filter uses an optimal number of hash functions
(in the sense of minimizing their respective false positive rates). In more detail, the first filter has
a false positive rate of «®~22 and the second filter has a false positive rate of «?>/#7, where the
“effective bits per key” b,/ F,, in the second traditional filter is scaled up because only the model

false negatives need be inserted.
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Thus, the overall bits per key in an optimal sandwiched filter is given by
b = log, (FPR) + b2 — log, (Fp + (1= Fp)ab/ F") (A.12)

where FPR gives the desired false positive rate of the whole sandwiched setup. Mitzenmacher

showed in [64] that the optimal value of b, is given by

b, = F,log, ( Fp b ) (A.13)
(1—F,)(1 = Fy)

independently of the overall bits per key b. Therefore, we can attempt to choose a classifier cutoff
which leads to model false positive and false negative rates F), and F;, that minimize the overall bits

per key, equivalent to minimizing
by —log, (Fp r(1— Fp)abz/Fn) (A.14)

independently of the target false positive rate FPR. Plugging in the optimal value for b, given above,

we are minimizing

by —log, (Fp +(1— F,,)ab2/Fn) (A.15)
F,F, F
= F,log, ( P ) —log, —%— (A.16)
(1—-F)(1—F,) 1—F,
F,1 Fa + F,1 1 £y (A.17)
= n 10 o n 10 o — 10 o .
& 1-— Fp 8 1 - n s 1— Fn
F,1 L+ (1—Fy)l 1= Fy (A.18)
el 0 —_ (0] .
n goc 1_ Fp n gO{ Fp
1
= —KL(F,||l — F,) (A.19)
logo
1
= KL(1 — F,||Fy) (A.20)
logo
_ ! KL(T,||F,) (A.21)
~ loga P '

where T, = 1 — F}, is the model’s true positive rate. Because loga < 0, our final result is that,
in order to minimize the bits per key » of the sandwiched filter, we should choose the model’s
classification threshold in order to maximize the KL divergence between the Bernoulli distributions

of true positives and false positives.
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A.4 PROOF OF THEOREM 5.1
We now give a proof of Theorem 5.1, which we restate for convenience.

Theorem 5.1. Suppose we have taken n; samples with replacement for some candidate i ’s histogram,

resulting in the empirical estimate r;. Then r; has &;-deviation with probability greater than 1 — §;

fore; = \/% (|VX| log 2 + log %) That is, with probability > 1 — §;, we have: ||r; —}||; < &;.

Proof. For j € [|Vx|], we use r; to denote the number of occurrences of attribute value j among
the n; samples, and the normalized count 7; is our estimate of F]’-*, the true proportion of tuples
having value j for attribute X. Note that we have omitted the candidate subscript i for clarity.

We need to introduce some machinery. Consider functions of the form f : [|Vx]|] — {+1,—1}.
Let { f,»} be the set of all such functions, where m € [2/Y*1], since there are 2!"X! such functions.

For any m € [2!"¥1], consider the random variable

Vx|

Y =Y fn () = 7)) (A.22)

j=1

By linearity of expectation, it’s clear that E [Y},,] = 0, since f,,(j) is constant and E [fj] = r; for
each j. Since each r; is a function of the samples taken {sx : 1 < k < n;}, each ¥, is likewise
uniquely determined from samples, so we can write Y, = g,,(s1, ..., Sy, ), where each sample s is
a random variable distributed according to s ~ r*. Note that the function g, satisfies the Lipschitz
property

|@m (St Sk eevsSny) — &m(S1s ooy Sy evny8Sn,)| < nz (A.23)

i
forany j € ||Vx|| and 51, ..., s,,. For example, this will occur with equality if f,,, (sx) = — fm(s}.);
that is, if f,, assigns opposite signs to s; and s, , then changing this single sample moves 1/n; of the
empirical mass in such a way that it does not get canceled out. We may therefore apply the method
of bounded differences [148] to yield the following McDiarmid inequality—a generalization of the
standard Hoeffding’s inequality [155]:

P (Y > E[Yu] + &) <exp(—&ni/2) (A.24)
Recalling that E [Y,,] = 0, this actually says that

P (Ym > &) < exp(—¢n;/2) (A.25)
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This holds for any m € [2!VX!]. Union bounding over all such 2, we have that
P@m: Y, > &) < 2"lexp (—e?n;/2) (A.26)

If this does not happen (i.e., for every Y,,, we have Y, < ¢;), then we have that ||r; — r}||; < &,
since for any attribute value j, [F; — 77| = maxy, e(+1,-134; (F; — r/). Butif Y, < ¢; for all m, this

means that we must have some m such that

&> fu(DF—F) =Y |7 =7 = |l — (A27)
J J
As such P (3m : Y,, > ¢;) is an upper bound on P (||1_',- -1} > ei). The desired result follows
from noting that

§; < 2" lexp (—e?n;/2) (A.28)

2 1
& < — | |Vx|log2 + log8— (A.29)

n; i

A.5 PROOF OF THEOREM 6.1

In Section 6.2.2, we claimed that the DKW inequality holds for sampling without replacement

from a finite population; we now sketch the proof.

Theorem 6.1. For any N > 0, the DKW inequality applies for sampling without replacement from
a finite dataset of size N.

Proof. Sketch: following the original paper from Wald and Wolfowitz on confidence limits for
CDFs [208], it suffices to consider the CDF for mass distributed uniformly at each integer 1,2, ..., N.
For each without-replacement sample size m and each deviation &, we would like to be able to claim
that

P (sup |Fny — fN,m| > 8) <P (sup | Fn: — fN/,m| > 8) (A.30)

for every N’ > N — that is, in some sense, the CDF becomes monotonically “harder” to estimate
as we increase the dataset size. Unfortunately, this turns out to not be the case, but in fact the claim

follows if we merely prove the weaker condition that

P (Sup |Fy — Fym| > g) <P (sup |Fy: — Eyrm| > s) (A31)
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for infinitely many N’ > N, implying that, as N’ — oo, the resulting probability to which
P (sup | Fn: — F, N’.m |> converges (necessarily bounded by the probability computed in the DKW
inequality) is an upper bound for the corresponding probability at every finite N’, from which the
claim would follow.

We show this via construction: namely, we show that, for every N, m, and ¢,
P (SUP |Fy — Fym| = 8) <P (SUP |Fon — Fonml| > 8) (A.32)

That is, the CDF becomes monotonically harder to estimate each time we double the dataset size.
To show this, we consider two cases. Case 1: if point 2i — 1 is sampled, then point 2i is not
sampled, and vice versa for everyi = 1,..., N. Conditioned on this event, the probability that
sup | Fony — ﬁz N.m| > € at least the (unconditioned) probability that sup | Fy — F, N.m| > &, since
samples at odd indices can only increase the deviation, and samples at even indices cannot decrease
it. Case 2: there is at least one i for which points at both indices 2i — 1 and 2i are sampled. Each
such point is conceptually similar to reducing m by 1 in the original dataset of size N, but randomly
weighting one of the samples by 2 instead of 1. It can be shown that each time this is done, the

probability that sup | Fy — F N.m| > € increases.

A.6 PROOF OF THEOREM 6.2

In this section, we prove Theorem 6.2, which states that the bounds computed by our range
trimming technique (see Algorithm 6.4) fail to enclose the average of some data of interest AVG(D)
with probability less than §. For the sake of simplicity, our analysis assumes that D contains no
duplicate values, although we show how to remove this assumption at the end of this section. We
begin by proving a crucial lemma about the sampling distribution of S — {max S}, given that S was

sampled uniformly without-replacement from D.

Lemma A.3. Given a dataset D of N unique real values in [a, b] and a uniform without-replacement
sample S of m values from D, if we denote b’ = max S, the set S — {b’} takes the distribution of a
uniform without-replacement sample from D = D N [a, b’), for any applicable value of b’ € D.

Proof. Because S is drawn uniformly without-replacement from D, any particular instance satisfies

-1 -1
Py [S = 5] = ('ﬁ') I{s C D} = (Z) I{s C D} (A.33)

where we use the notation Py, [S = s] to denote the probability that s was drawn uniformly without-

replacement from D, and I {-} denotes the indicator function. We need to show that, for any b’ € D,
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Py [S =s|max S =b'] =Pp_,, [S =5 — {b'}] I {max(s) = b’} (A.34)

First, letting s” be any set such that |s’| = m — 1, we have that

D<p|

m-—1

-1
) T{s' € Dyl (A.35)

Pp_, [S=4]= (

Next, consider Py, [S = s| max S = b’]. Bayes’ rule gives that

1 Pp[S=sAmaxS =0’
Py [S = s|max S = b'] = D[%[maxszbq ] (A.36)

We have Pp [S = s Amax S = b'] = Pp [S = s]I{max(s) = b’} which is a known quantity, so
the key is to compute the denominator Py, [max S = b’]. Using the assumption that D contains
unique elements, we may proceed by analogy with binary strings. The rank of b” within D (starting
from the smallest element) is 1 + |D |, so we need to compute the number of binary strings of
length N containing m 1’s and (N —m) 0’s such that position 1 4 |D /| has a 1, and the remaining
(m — 1) 1’s are all at positions less than 1 + |D,/|. This is precisely the same as the number of
binary strings of length |D_;/| with (m — 1) 1’s and (|D<p| — m + 1) 0’s. Putting everything
together,

_ Po[S = s]T{max(s) = b’}

Pp [S = s|maxS =b'] = Pr fmax S = b (A.37)
(M) {s € D A max(s) = b’}
(I®<b/\)/(N) (A.38)
m—1 m
-1
= Dl I{s <D =b
= o {s € D Amax(s) = b'} (A.39)
— |D<b’| _1H prc D N
= m— 1 {s —{b'} C Dop Amax(s) = } (A.40)
= Pop_, [S=1s5—{b}]I{max(s) = b} (A.41)

which is precisely what we wanted to show.

Wrinkle in Lemma A.3 and Fix. The proof of Lemma A.3 assumes unique values; we show here
how to remove this assumption without loss of generality. The uniqueness assumption as used is
necessary only to ensure that elements of D are fotally ordered under some relation “<” (with “<”

= “<” in the proof). To fix, we can simply augment every v € D with an additional unique label
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(where the set of labels are totally ordered) such that item v becomes v’ = (v, v;). Then, define “<”
as a relation such that v/ < w’ if v < w, or v = w and v; < w;. In this way, any v’, w’ € D’ satisfy
exactly one of v/ < w’ or w’ < v’, and the proof of Lemma A.3 goes through, replacing D with D’
and “<” with “<” where appropriate.

We next give a symmetric statement for S — {min S} and D- ,;, 5 as the below corollary:

Corollary A.1. Given a dataset D of N unique real values in [a,b] and a uniform without-
replacement sample S of m values from D such that min S = d’, the set S — {a’} is a uniform

without-replacement sample from D, = D N (a’, b), for any applicable value of a’ € D.

Monotonicity Property and Correctness Proof. Before proving the main result, we briefly
describe the dataset size monotonicity property obeyed by all bounders in Chapter 6. This fact will
be used in the main correctness proof. When N is unknown, an upper bound on N suffices, because
bounders in Chapter 6 all satisfy the following: for any S, a, b, N, §,and N’ > N,

Lbound(S,a,b, N',§) < Lbound(S,a, b, N, §) (A.42)

Rbound(S, a, b, N',§) > Rbound(S, a, b, N, §) (A.43)

That is, using an upper bound for N can only make the CI looser, and since SSI range-based error
bounders with the correct dataset size N fail with probability at most §, they must also fail with
probability at most § for any N’ > N.

We are now ready to prove Theorem 6.2 on the correctness of Algorithm 6.4, which we restate

below for convenience.

Theorem 6.2. Given SSI range-based bounders Lbound and Rbound for computing lower (resp.
upper) confidence bounds and a dataset D of N unique values known to all fall in the interval
[a,b] C R, Algorithm 6.4 returns a (1 — 8) confidence interval for AVG(D).

Proof. Algorithm 6.4 proceeds by drawing S uniformly and without replacement from D and
computing ¢’ = min S, »' = max S, Sy, and S,, where the latter two quantities capture relevant
statistics from the sample S —{b’} and S —{a’}, respectively, so we treat Sg and S, asif Sy = S—{b'}
and S, = S — {a’}. By Lemma A.3, we have that Sy is a uniform sample of m — 1 values drawn
without replacement from D/, and likewise by Corollary A.1 S, is a uniform sample of m — 1
values drawn without replacement from D- ... Because Lbound and Rbound are assumed to be SSI,

range-based error bounders, we have that
, )
P { Lbound(S¢,a,b’, N — 1, 5) > AVG(D) (A.44)
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<P (Lbound(Sg, a,b',|Dpl, g) > AVG(@)) (A.45)

) )
<P (Lbound(Sg, a,b',| Doy, E) > AVG(D<;,/)) < 3 (A.46)

and symmetrically for Rbound(S;,,a’, b, N —1, %), but with “>" replaced with “<” in the probability
expression above, and replacing D, with D ,/. (A.44) — (A.45) follows from the dataset size
monotonicity property of Lbound (§6.2.2), applicable since N —1 > |D_;/|, and (A4.45) — (A.46)
follows since AVG(D~p) < AVG(D), as the former is clipped above b’ (and similarly for Rbound
since AVG(D-~,) > AVG(D)). Union bounding over the cases for each of Lbound and Rbound, the
probability that Algorithm 6.4 returns an interval that does not enclose AVG(D) is at most 6.
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APPENDIX B: HML SPECIFICATIONS

B.1 SUMMARY OF HML SEMANTICS
Phrase Usage Operation Example
. , . . . “extl” refers_to
refers_to string refers_to NBsAFETY object Register a NBsaFETY object to a string name

Extractor(...)

is_read_into
using

DC;[SU] is_read_into
DC;[SU] using scanner

Apply scanner on D C; to obtain DC

“sentence” is_read_into “word”
using whitespaceTokenizer

has_extractorsg

DC[SU]has_extractors
extractor+

Apply extractors to DC

“word” has_extractors
(“ext1”, “ext2”)

on

synthesizer/learner/reducer on

DC[*]+

Apply synthesizer/learner on input DC(s) to
produce an output DC[E]

“match” on
(“person_candidate” ,
“known_persons”)

results_from

DC;[E] results_from
DC;[#] [with_label extractor]

Wrap each element in D C; in an Example
and optionally labels the Examples with the
output of extractor.

“income” results_from “rows”
with_label “target”

DC[E]/Scalar results_from

clause

Specify the name for clause’s output DC[E].

“learned” results_from “L”

on “income”

synthesizer/learner/reducer uses

Specify synthesizer/learner’s dependency
on the output of extractors+ to prevent

“match” uses (“extl”,

uses - . - :
extractors+ pruning or uncaching of intermediate results “ext2”)
due to optimization.
is_output D C[*]/result is_output Requires D C/result to be materialized. “learned” is_output

Table B.1: Usage and functions of key phrases in HML. D C[A] denotes a DC with name D C and elements
of type A € {SU, E}, with A = x indicating both types are legal. x+ indicates that x appears one or more
times. When appearing in the same statement, on takes precedence over results_£from.

171




B.2 HML GRAMMAR

(var) = (string)

(scanner) = (var) | (scanner-obj)

(extractor) = (var) | (extractor-obyj)

(typed-ext) ::= “C (var) *,’ (extractor) *)’

(extractors) = ‘C (extractor) { *,’ (extractor) } )’

(typed-exts) ::= ‘C (typed-ext) {*,’ (typed-ext)} )’

(obj) = (data-source) | (scanner-obj) | (extractor-obj) | (learner-obj) | (synthesizer-obj)
| (reducer-oby)

(assign) = (var) ‘refers_to’ (obj)

(exprl) = (var) ‘is_read_into’ (var) ‘using’ (scanner)

(expr2) = (var) ‘has_extractors’ (extractors)

(list) = (var) | “C (var) *,” (var) { *,” (var) } )’

(apply) = (var) ‘on’ (list)

(expr3) = (apply) ‘as_examples’ (var)

(expr4) = (apply) ‘as_results’ (var)

(exprs5) = (var) ‘as_examples’ (var)
‘with_labels’ (extractor)

(expr6) = (var) ‘uses’ (typed-exts)

(expr7) = (var) ‘is_output()’

(statement) ::= (assign) | {exprl) | (expr2) | (expr3) | (exprd) | (exprS) | (expr6) | {expr7) |
(Scala expr)

(program) = ‘object’ (string) ‘extends Workflow {’ { (statement) (line-break) } ‘}’

Figure B.1: HML syntax in Extended Backus-Naur Form. <string> denotes a legal String object in Scala;
<*-obj> denotes the correct syntax for instantiating object of type “*”; <Scala expr> denotes any legal Scala
expression. A HeLix Workflow can be comprised of any combination of HELix and Scala expressions, a
direct benefit of being an embedded DSL.
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APPENDIX C: SYSTEM EXTENSIONS

C.1 GENERALIZING FASTMATCH TO ADDITIONAL QUERIES

SUM aggregations

While we did not consider it explicitly in Chapter 5, Ding et al. [20] describe how to perform
SUM aggregations with £, distributional guarantees via measure-biased sampling. Briefly, a
measured-biased sample for some attribute Y involves sampling each tuple ¢ in 7', where the
probability of inclusion in the sample is proportional #’s value of Y. FAsTMATCH can also leverage

measure-biased samples in order to match bar graphs generated via the following types of queries:

SELECT X, SUM(Y) FROM T
WHERE Z = z_1i GROUP BY X

Figure C.1: Template for histogram-generating query involving SUM aggregation.

As in Definition 5.1, Z is the candidate attribute and X is the grouping attribute for the x-axis.
One measure-biased sample must be created per measure attribute Y the analyst is interested in,
so if there are n such attributes, we require an additional n complete passes over the data for
preprocessing. When matching bar graphs generated according to the above template, FAsTMATCH
would simply use the measure-biased sample for Y and pretend as if it were matching visualizations
generated according to Definition 5.1; that is, it would use COUNT instead of SUM. There is nothing
special about the £, metric used in [20], and the same techniques may be used by FASTMATCH to

process queries satisfying Guarantees 5.1 and 5.2.

Candidates based off arbitrary boolean predicates

In order to support candidates based off boolean predicates such as ZM = zl.(l) ANZPD = z](.z) ,

FastMATcH needs a way to estimate the number of active tuples in a block for the purposes of
applying AnyActive block selection. In this case, simple bitmap indexes with one bit per block
are not enough. We may instead opt to use the slightly costlier density maps from [11]. We refer
readers to that paper for a description of how to estimate the number of tuples in a block satisfying
an arbitrary boolean predicate. Even if different candidates share some of the same tuples, our
guarantees still hold since HistSim uses a Holm-Bonferroni procedure to get joint guarantees across
different candidates at a given iteration, a method which is agnostic to any dependency structure

between candidates.
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Multiple attributes in GROUP BY clause

In the case where the analyst wishes to use multiple attributes X W x@ xM o generate
the support of our histograms generated via Definition 5.1, all of the same methods apply, but we
estimate the support |Vy| as

Vx| [Vxa|-...-[Vxo] (C.1)

This may be an overestimate if two attribute values, say xi(l) and xj(.z), never occur together. Our

guarantees still hold in this case — overestimating the size of the support can only make the bound

in Theorem 5.1 looser, which does not cause any correctness issues.

Handling continuous X attributes via binning

If the analyst wishes to use a continuous X, they must simply provide a set of non-overlapping bin
ranges, or “buckets” in which to collect tuples. Everything else is still the same. In fact, FLicHTs-q1
and FLiGHTs-q2 used this technique, since the DepartureHour attribute was actually a continuous

attribute we placed into 24 bins (although we presented it as a discrete attribute for simplicity).

Handling an unknown candidate domain

If the candidate domain is unknown at query time, for example if we do not have any bitmap
index structures over the attribute(s) used to generate candidates, it is still possible to use a variant
of our methods. First of all, we may still employ ScanMatch, creating state for new candidates as
they are discovered. During stage 1 of HistSim, in which rare candidates are pruned, we must also
account for any potential candidates for which HistSim has not yet seen any tuples. In this case, we
may simply add one additional “dummy” candidate which matches against all the tuples for any
unseen candidates. We add an additional test to the Holm-Bonferroni procedure for this dummy
candidate — if the test rejects, and if U represents the indices of the unseen candidates, then we can
2jeuNj

N

be sure that < 0, which in turn implies that % <o foreach j € U.

Handling continuous candidates

If one or more of the attributes used to group candidates is continuous, then, as in the case of
continuous X, candidates may be “grouped” by placing different real-values into bins. We can also
construct bitmaps for continuous attributes at some predetermined finest level of granularity of
binning, which can then be used to induce bitmaps for any coarser granularity that may be needed.

Even if the finest granularity available is too coarse to isolate different candidates, as long as it
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isolates some subsets of candidates, it may still be useful for pruning the blocks that need to be
considered for AnyActive block selection. Even if there is no index available, one may still use
ScanMatch.

C.2 DIFFERENT TYPES OF FASTMATCH GUARANTEES

Allowing Distinct £, and ¢, for Guarantees 5.1 and 5.2

If the analyst believes one of Guarantees 5.1 and 5.2 is more important than the other, they may
indicate this by providing separate ¢, for Guarantee 5.1 and ¢, for Guarantee 5.2; HistSim generalizes
in a very straightforward way in this case. For example, if Guarantee 5.2 is more important than

Guarantee 5.1, the analyst may provide &; and &, with &, < ¢;.

Allowing other distance metrics

We can extend HistSim to work for any distance metric for which there exists an analogue to

Theorem 5.1. For example, there exist such bounds for £, distance [20, 151].

Allowing a range of Kk in input

In some cases, the analyst may not care about the exact number of matching candidates. For
example, the analyst may be fine with finding anywhere between 5 and 10 of the closest histograms
to a target. In this case, they may specify a range [k, k»], and FaAstTMaTcH may return some number
k € [ky, k,] of histograms matching the target, where k is automatically picked to make it as easy
as possible to satisfy Guarantees 5.1 and 5.2. For example, in the case [k, k] = [5, 10], there may
be a very large separation between the 7th- and 8th-closest candidates, in which case HistSim can

automatically choose k = 7, as this likely provides a small §*77¢" as soon as possible.

C.3 HANDLING ARBITRARY EXPRESSIONS IN FASTFRAME

Throughout Chapter 6, we assumed that column ¢; was known to lie in some range [a;, b;]. We
then showed how to feed these bounds into our RangeTrim procedure to compute conservative
CIs for, e.g., AVG(c;). In general, however, we may want to compute an aggregate involving an
arbitrary expression in terms of several columns. That is, we may want to compute Cls for, e.g.,

AVG( f(cy,...,cn)). We now show how to do so for a large class of f by optimizing over such
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f (while using the individual bounds [a;, b;] for each column as constraints) in order to compute

derived range bounds of the form

[inf f(c1,...,cn), sup f(cl,...,c,,)] (C2)

Cl,.--5Cn Cl,...,Cn

Applicable Expressions. To compute a derived lower range bound, we need to be able to either

solve or compute a lower bound for the following optimization problem:

min  f(c1,...,cn) (C.3)
Cls-5Cn
st. a; <c¢; <b;, VI<i<n (C4)

The case for the derived upper range bound is analogous, but with f replaced by — . We show how
to compute both lower and upper derived bounds under two kinds of conditions: (i) the monotonicity
condition; i.e., f is monotone in each c;, and (ii) the convexity condition; i.e., either f or — f is

convex. This handles a large number of expressions in practice.

1. Expressions Monotone in each Column. If f is monotone in each column c;, one simply needs to
check whether a; or b; gives the smaller (resp. larger) value when computing the lower (resp. upper)

bound, and evaluate f on the boundaries for each of these cases.

2. Convex or Concave Expressions. Without loss of generality, we now consider the case of convex
f. A large body of existing work focuses on minimizing a convex function subject to convex
constraints; please see Boyd et al. [209] for relevant background. In our case, the constraints are all
linear (and are sometimes referred to as “box’ constraints), and most kinds of convex functions in
practice can be optimized efficiently with off-the-shelf software under such constraints, so we do
not go into detail here.

Maximizing a f under box constraints is more difficult. Since f is convex, the maximum (and
therefore the derived upper range bound we seek) will occur at some set of boundary points; i.e., if
a; < c¢; < b;, we know that the maximum will occur at one of ¢; = a; or ¢; = b;. If we have n
columns involved in the expression f', however, we will require evaluating f on all 2" combinations
of boundary points for the constraints. Fortunately, database aggregates over expressions typically

do not involve more than 2 or 3 columns, and any n < 20 or so can be handled without trouble.

Example C.1. Suppose the user issues a query to compute AVG((2cy + 3¢, — 1)?) involving
columns ¢y and c,, where we have range bounds ¢, € [—3, 1] and ¢ € [—1, 3]. The minimum of
(2¢1 43¢, —1)? subject to these constraints is simply 0, and can be found via quadratic programming.
The maximum can be obtained by checking the boundaries (—3,—1), (=3, 3), (1,—1), and (1, 3),
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and we see that it occurs at (1,3), for which (2-1 + 3 -3 — 1)2 = 100; thus, the derived range
bounds will be [0, 100].
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